

DIGITAL NOTES
ON

OBJECT ORIENTED PROGRAMMING

THROUGH JAVA

(R22A0507)

B.TECH II YEAR - II SEM

(2023-24)

PREPARED BY

 R. CHANDRA SHEKHAR

DEPARTMENT OF INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited byNBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, INDIA.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

II Year B.Tech IT – II Sem L/T /P/C
3/-/-/3

(R22A0507) OBJECT ORIENTED PROGRAMMING THROUGH JAVA

COURSE OBJECTIVES:

 To understand object-oriented principles like abstraction, encapsulation, inheritance, polymorphism and apply

them in solving problems.

 To understand the implementation of packages and interfaces.

 To understand the concepts of exception handling, multithreading and collection classes.

 To understand how to connect to the database using JDBC.

 To understand the design of Graphical User Interface using applets and swing controls.

UNIT‐I
Java Programming‐ History of Java, comments, Data types, Variables, Constants, Scope and Lifetime of
variables, Operators, Type conversion and casting, Enumerated types, Control flow‐ block scope, conditional
statements, loops, break and continue statements, arrays, simple java standalone programs, class, object, and
its methods constructors, methods, static fields and methods, access control, this reference, overloading
constructors, recursion, exploring string class, garbage collection
UNIT – II
Inheritance – Inheritance types, super keyword, preventing inheritance: final classes and methods..
Polymorphism – method overloading and method overriding, abstract classes and methods.
Interfaces‐ Interfaces Vs Abstract classes, defining an interface, implement interfaces, accessing
implementations through interface references, extending interface, inner class.
Packages‐ Defining, creating and accessing a package, importing packages.
UNIT‐III
Exception handling‐Benefits of exception handling, the classification of exceptions ‐ exception hierarchy,
checked exceptions and unchecked exceptions, usage of try, catch, throw, throws and finally, creating own
exception subclasses.
Multithreading – Differences between multiple processes and multiple threads, thread life cycle, creating
threads, interrupting threads, thread priorities, synchronizing threads, inter‐thread communication, producer
consumer problem.

UNIT‐IV
Collection Framework in Java – Introduction to java collections, Overview of java collection framework,
commonly used collection classes‐ Array List, Vector, Hash table, Stack.
Files‐ Streams‐ Byte streams, Character streams, Text input/output, Binary input/output, File management
using File class.
Connecting to Database – JDBC Type 1 to 4 drivers, connecting to a database, querying a database and
processing the results, updating data with JDBC.
UNIT‐V
GUI Programming with Swing ‐ The AWT class hierarchy, Introduction to Swing, Swing Vs. AWT, Hierarchy for
Swing components, Overview of some Swing components – Jbutton, JLabel, JTextField, JTextArea, simple
Swing applications, Layout management – Layout manager types – border, grid and flow
Event Handling‐ Events, Event sources, Event classes, Event Listeners, Delegation event model, Examples:
Handling Mouse and Key events, Adapter classes.

TEXT BOOK:
1. Java Fundamentals–A Comprehensive Introduction, Herbert Schildt and DaleSkrien, TMH.

2. Core Java: An Integrated Approach – Dr R NageswaraRao

REFERENCE BOOKS:
1. Java for Programmers, P.J.Deitel and H.M.Deitel, PEA (or) Java: How to Program , P.J.Deitel and
H.M.Deitel, PHI

2. Object Oriented Programming through Java, P.RadhaKrishna, Universities Press.

3. Thinking in Java, Bruce Eckel,PE

4. Programming in Java, S. Malhotra and S. Choudhary, Oxford Universities Press.

5. Design Patterns Erich Gamma, Richard Helm, Ralph Johnson and JohnVlissides.

COURSE OUTCOMES:

At the end of this course, students will be able to:

 Understand the use of OOP’s Concepts

 Implement Packages and interfaces in java

 Develop and Understand exception handling, multithreaded applications with synchronization

 Understand the use of Collection Framework

 Design GUI based applications using AWT and Swings

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

INDEX

S. No Unit Topic Page

no

1 I Java Programming- History of Java 1

2 I Comments, Java Buzz Words 1

3 I Data types, variables and constants 3

4 I Scope and lifetime of variables,Operators 6

5 I Type conversion and casting and Enumerated Types 8

6 I Control flow- block scope, conditional statements, loops, break
and continue statements

10

7 I
arrays ,Simple java standalone programs

13

8 I Class, Object and Constructors 14

9 I access control, this reference, 15

10 I Overloading methods and constructors, recursion 16

11 I Building strings, exploring string class, Garbage Collection 19

12 II
Inheritance – Inheritance types, Super Keyword

22

13 II
Preventing Inheritance- final classes and methods

28

14 II
method overloading and method overriding

20

15
II abstract classes and Methods

30

16
II Interfaces, interface vs abstract classes

33

17
II implement interfaces, accessing ,extending interfaces

34

18
II Packages

37

19
II creating and accessing a package,importing a package

39

20 III
Exception handling

40

21
III exception hierarchy

42

22
III checked exceptions and unchecked exceptions

43

23
III usage of try, catch, throw, throws and finally

44

24
III Multithreading

53

25
III thread life cycle

54

26
III creating threads,interrupting threads

55

27
III Thread priorities, synchronizing threads

56

28
III inter-thread communication

61

29
IV Introduction to java collections

68

30
IV commonly used collection classes

69

31
IV Files- Streams

75

32
IV Text input/output

78

33
IV File management using File class.

80

34
IV ,JDBC, JDBC Type 1 to 4

83

35
IV Connecting to a database driver

92

36
IV querying a database and processing results

94

37
V

The AWT class hierarchy 97

38
V Introduction to Swing,swing vs AWT

98

39
V Hierarchy of Swing Components

99

40
V Overview of some Swing components-Jbutton, Jlabel

99

41
V Layout management-border,grid,flow

112

42
V Event Handling

113

43
V Events, Event sources, Event classes

114

44
V Event Listeners

115

45
V Handling Mouse and Key events

116

46
V Adapter classes

118

UNIT I

Java Programming‐ History of Java, comments, Data types, Variables, Constants, Scope and Lifetime

of variables, Operators, Type conversion and casting, Enumerated types, Control flow‐ block scope,

conditional statements, loops, break and continue statements, arrays, simple java standalone programs,

class, object, and its methods constructors, methods, static fields and methods, access control, this

reference, overloading constructors, recursion, exploring string class, garbage collection

HISTORY OF JAVA

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and

Mike Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first
Working version. This language was initially

Between the initial implementation of Oak in the fall of 1992 and the public Announcement of
Java in the spring of 1995, many more people contributed to the designand evolution of the
language. Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin, and Tim Lind Holm were key
contributors to the maturing of the original prototype.

The trouble With C and C++ (and most other languages) is that they are designed to be
compiled For a specific target. Although it is possible to compile a C++ program for just about
Any type of CPU, to do so requires a full C++ compiler targeted for that CPU. The Problem is that
compilers are expensive and time-consuming to create. An easier—and more cost- efficient—
solution was needed. In an attempt to find such a solution,Gosling and others began work on a
portable, platform-independent language thatcould be used to produce code that would run on a
variety of CPUs under differing Environments. This effort ultimately led to the creation of Java.

As mentioned earlier, Java derives much of its character from C and C++. This is by intent.
The Java designers knew that using the familiar syntax of C and echoing the object- oriented
features of C++ would make their language appealing to the legions of experienced C/C++
programmers. In addition to the surface similarities, Java shares some of the other attributes that
helped make C and C++ successful. First, Java was designed, tested, and refined by real, working
programmers.

The Java Buzzwords:

No discussion of the genesis of Java is complete without a look at the Java buzzwords.

Although the fundamental forces that necessitated the invention of Java are portability and
security, other factors also played an important role in molding the final form of the language. The
key considerations were summed up by the Java team in the Following list of buzzwords:

Simple

Secure

Portable

Object-oriented

Robust

Multithreaded

Architecture-neutral

Interpreted

High performance

Distributed

Dynamic

Simple
Java was designed to be easy for the professional programmer to learn and use

effectively. Assuming that you have some programming experience, you will not find Java hard to
master. If you already understand the basic concepts of object-oriented programming, learning Java
will be even easier. Best of all, if you are an experienced C++ programmer, moving to Java will
require very little effort. Because Java inherits the C/C++ syntax and many of the object- oriented
features of C++, most programmers have little trouble learning Java..

Object-Oriented

Although influenced by its predecessors, Java was not designed to be source-code
compatible with anyother language. Borrowing liberally from many seminal object-software

environments of the last few decades, Java manages to strike a balance between the everything is an object‖

paradigm and the programming.

Robust

The multi platformed environment of the Web places extraordinary demands on a program,
because the program must execute reliably in a variety of systems. Thus, the ability to create robust
programs was given a high priority in the design of Java.

To better understand how Java is robust, consider two of the main reasons for

program failure: memory management mistakes and mishandled exceptional conditions (that is,
run-time errors). Memory management can be a difficult, tedious ask in traditional programming
environments. For example, in C/C++, the pro grammer must manually allocate and free all
dynamic memory. This sometimes leads to problems, because programmers will either forget to
free memory that has been previously allocated or, worse, try to free some memory that another
part of their code is still using. Java virtually eliminates these problems by managing memory
allocation and deallocation for you.

Multithreaded

Java was designed to meet the real-world requirement of creating interactive, networked
programs. To accomplish this, Java supports multithreaded programming, which allows you to
write programs that do many things simultaneously. The Java run-time system comes with an
elegant yet sophisticated solution for multiprocess .synchronization that enables you to construct
smoothly running interactive systems.

Architecture-Neutral

A central issue for the Java designers was that of code longevity and portability. One of the

main problems facing programmers is that no guarantee exists that if you write a program today,
it will run tomorrow—even on the same machine. Operating system up grades, processor upgrades,
and changes in core system resources can all combine to make a program malfunction. The Java
designers made several hard decisions in the Java language and the Java Virtual

Machine in an attempt to alter this situation forever.‖ To a great extent, this goal was accomplished.

Interpreted and High Performance

As described earlier, Java enables the creation of cross-platform programs by compiling

into an intermediate representation called Java bytecode. This code can be interpreted on any
system that provides a Java Virtual Machine. Most previous attempts at cross platform solutions

have done so at the expense of performance. Other interpreted systems, such as BASIC, Tcl,
and PERL, suffer from almost insurmountable performance deficits. Java, however, was
designed to perform well on very low-power CPUs.

Distributed

Java is designed for the distributed environment of the Internet, because it handles TCP/IP
protocols. In fact, accessing a resource using a URL is not much different from accessing a file. The
original version of Java (Oak) included features for intra address-space messaging. This allowed objects
on two different computers to execute procedures remotely. Java revived these interfaces in a package
called Remote MethodInvocation (RMI). This feature brings an unparalleled level of abstraction to
client/server programming.

Dynamic

Java programs carry with them substantial amounts of run-time type information that is used to
verify and resolve accesses to objects at run time. This makes it possible to dynamically link code in a
safe and expedient manner. This is crucial to the robustness of the applet environment, in which small
fragments of bytecode may be dynamically updated on a running system.

DATA TYPES

Java defines eight simple (or elemental) types of data: byte, short, int, long, char, float,
double, and boolean. These can be put in four groups:

Integers- This group includes byte, short, int, and long, which are for whole valued signed

numbers.

 Floating-point numbers- This group includes float and double, which

represent numbers with fractional precision.

Characters- This group includes char, which represents symbols in a character set, like

letters and numbers.

Boolean- This group includes boolean, which is a special type for
representing true/false values.

Integers

Java defines four integer types: byte, short, int, and long. All of these are signed, positive and

negative values. Java does not support unsigned, positive-only integers. Many other Computer languages,
including C/C++, support both signed and unsigned integers.

Name Width Range

long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

int 32 –2,147,483,648 to 2,147,483,647

short 16 –32,768 to 32,767

byte 8 –128 to 127

byte

The smallest integer type is byte. This is a signed 8-bit type that has a range from –128 to

127. Variables of type byte are especially useful when you’re a network or file.

Syntax: byte b, c;

short

short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is probably the least-used

Java type, since it is defined as having its high byte first (called big-endian format). This type is mostly
applicable to 16-bit computers, which are becoming increasingly scarce.

Here are some examples of short variable declarations:

short s;

short t;

int

The most commonly used integer type is int. It is a signed 32-bit type that has a range from –
2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are commonly employed
to control loops and to index arrays. Any time you have an integer expression involving bytes, shorts,
ints, and literal numbers, the entire expression Is promoted to int before the calculation is done.

long

long is a signed 64-bit type and is useful for those occasions where an int type is not large enough
to hold the desired value. The range of a long is quite large. This makes it useful when big, whole numbers
are needed. For example, here is a program that computes the number of miles that light will travel in a
specified number of days.
Floating-Point Types
Floating-point numbers, also known as real numbers, are used when evaluating expressions that require
fractional precision. For example, calculations such as square root, or transcendental such as sine and
cosine, result in a value whose precision requires a floating-point type.
Their width and ranges are shown here:

Name Width Bits Approximate Range

double 64 4.9e–324 to 1.8e+308

float 32

The type float specifies a single-precision value that uses 32 bits of storage. Single precision is faster on

some processors and takes half as much space as double precision, but will become imprecise when the

values are either very large or verysmall. Variables of type float are useful when you need a fractional

component, but don’t require example, float can be useful when representing dollars and cents.

Here are some example float variable declarations:

float hightemp, lowtemp;

double

Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double precision
is actually faster than single precision on some modern processors that have been optimized for high-speed
mathematical calculations.
Here is a short program that uses double variables to compute the area of a circle:
// Compute the area of a circle.

class Area {

public static void main(String
args[]) { double pi, r, a;
r = 10.8; // radius of circle

pi = 3.1416; // pi,

approximately a = pi *
r * r; // compute area

System.out.println("Area of circle is " + a);

}

}

Characters

In Java, the data type used to store characters is char. However, C/C++ programmers
beware: char in Java is not the same as char in C or C++. In C/C++, char is an integer type
that is 8 bits wide. This is not the case in Java. Instead, Java uses Unicode to represent
characters.. There are no negative chars. The standard set of characters known as ASCII still
ranges from 0 to 127 as always, and the extended 8-bit character set, ISO-Latin-1,ranges from 0
to 255.

Booleans

Java has a simple type, called boolean, for logical values. It can have only one of

two possible values, true or false. This is the type returned by all relational operators, such has

a <b. boolean is also the type required by the conditional expressions that govern the

control statements such as if and for.

Here is a program that demonstrates the boolean type:

There are three interesting things to notice about this program. First, as

you can see, when a boolean value is output by println(), ―true‖ or ―false‖ Second, the value of a

boolean variable is sufficient, by itself, to control the if statement. There is no need to write an if statement like

this:

if(b == true) ...
Third, the outcome of a relational operator, such as <, is a boolean value. This is why the expression 10
> 9 displays the value ―true.‖ Further, around 10 > 9 is necessary because the + operator has a higher
precedence than the >.

Variables

The variable is the basic unit of storage in a Java program. A variable is defined by the
combination of an identifier, a type, and an optional initializer. In addition, all variables have a scope,
which defines their visibility, and a lifetime. These elements are examined next.

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of a variable declaration
is shown here:

type identifier [= value][, identifier [= value] ...] ;

The type is one of Java’s atomic types, or the nam interface types are discussed later in Part I of

this book.) The identifier is the name of the variable.

Here are several examples of variable declarations of various types. Note that some include an
initialization.

int a, b, c; // declares three ints, a, b, and c.

int d = 3, e, f = 5; // declares three more ints, initializing

// d and f.

byte z = 22; // initializes z.

double pi = 3.14159; // declares an approximation of pi.

char x = 'x'; // the variable x has the value 'x'.

The Scope and Lifetime of Variables

So far, all of the variables used have been declared at the start of the main() method. However,
Java allows variables to be declared within any block. As explained in Chapter 2, a block is begun with
an opening curly brace and ended by a closing curlybrace. A block defines a scope. Thus, each time you
start a new block, you are creating a new scope. As you probably know from your previous programming
experience, a scope determines what objects are visible to other parts of your program. It also determines
the lifetime of those objects.

Most other computer languages define two general categories of scopes: global and local.

However, these traditional scopes do not fit scope defined by a method begins with its opening curly

brace.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.

public SumExample

{

public void calculateSum() {

int a = 5; // local variable

int b = 10; // local variable

int sum = a + b;

System.out.println("The sum is: " + sum);

} // a, b, and sum go out of scope here

}

OPERATORS

Arithmetic operators are used in mathematical expressions in the same way that they are used in algebra.
The following table lists the arithmetic operators:

Operator Result

+ Addition

– Subtraction (also unary minus)

* Multiplication

/ Division

% Modulus

++ Increment

+= Addition assignment

–= Subtraction assignment

*= Multiplication assignment

Page 6

/= Division assignment

%= Modulus assignment

–– Decrement

The operands of the arithmetic operators must be of a numeric type. You cannot use them on boolean

types, but you can use them on char types, since the char type in Java is, essentially, a subset of int.

The Bitwise Operators

Java defines several bitwise operators which can be applied to the integer
types, long, int, short, char, and byte. These operators act upon the individual
bits of their operands. They are summarized in the following table:

Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

 ̂ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

Relational Operators

The relational operators determine the relationship that one operand has to the other. Specifically, they
determine equality and ordering. The relational operators are shown here:

Operator Result

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The outcome of these operations is a boolean value. The relational operators are most frequently
used in the expressions that control the if statement and the various loop statements.

The Assignment Operator

You have been using the assignment operator since Chapter 2. Now it is time to take

a formal look at it. The assignment operator is the single equal sign, =. The assignment operator works in
Java much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.

The assignment operator does have one interesting attribute that you may not be familiar with: it allows
you to create a chain of assignments. For example, consider this fragment:

int x, y, z;

x = y= z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement.
This works because the = is an operator that yields the value of the right-hand
expression. Thus, the value of

z = 100 is 100, which is then assigned to y, which in turn is assigned to x. Using a ―cha

assignment‖ is an easyway to set a group of variable values.

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain types
ofif- then-else statements. This operator is the ?, and it works in Java much like it doesin
C, C++, and C#. It can seem somewhat confusing at first, but the ? can be used very
effectively once mastered.

The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1
is true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of
the ? operation is that of the expression evaluated. Both expression2 and expression3 are
required to return the same void type.

Type Conversion and Casting

If you have previous programming experience, then you already know that it is fairly common to assign
a value of one type to a variable of another type. If the two types are compatible, then Java will perform
the conversion automatically. For example, it is always possible to assign an int value to a long variable.
However, not all types are compatible, and thus, not all type conversions are implicitly allowed.

Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type conversion will

take place if the following two conditions are met:

■ The two types are compatible.
■ The destination type is larger than the sou

When these two conditions are met, a widening conversion takes place. For example, the int type

is always large enough to hold all valid byte values, so no explicit cast statement is required.

It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to. For example, the following

fragment casts an int to a byte. If the integer’s valu than the range of a byte, it will bereduced modulo (the

remainder of an integer division bythe) byte’s range.

int a;
byte b;

// ...

b = (byte) a;

Page 9

A different type of conversion will occur when a floating-point value is assigned to an integer type:
truncation. As you know, integers do not have fractional components.Thus, when a floating-point
value is assigned to an integer type, the fractional component is lost. For example, if the value 1.23 is
assigned to an integer, the resulting value will simply be 1. The 0.23 will have been truncated. Of
course, if the size of the whole number component is too large to fit into the target integer type, then
that value will be

The following program demonstrates some type conversions that require casts:

// Demonstrate casts.

class Conversion {

public static void main(String args[]) { byte b;

int i = 257;

double d = 323.142; System.out.println("\nConversion of
int to byte."); b = (byte) i;

System.out.println("i and b " + i + " " + b);
System.out.println("\nConversion of double to int."); i
= (int) d;

System.out.println("d and i " + d + " " + i);
System.out.println("\nConversion of double to
byte.");

b = (byte) d;

System.out.println("d and b " + d + " " + b);

}

}

This program generates the following output:

Conversion of
int to byte.
i and b 257 1

Conversion of
double to int. d and
i 323.142 323
Conversion of
double to byte. d
and b 323.142 67

Enumerated Type

The Enum in Java is a data type which contains a fixed set of constants.

It can be used for days of the week (SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,

FRIDAY, and SATURDAY) , directions (NORTH, SOUTH, EAST, and WEST), season (SPRING,

SUMMER, WINTER, and AUTUMN or FALL), colors (RED, YELLOW, BLUE, GREEN, WHITE, and

BLACK) etc. According to the Java naming conventions, we should have all constants in capital

letters. So, we have enum constants in capital letters.

Java Enums can be thought of as classes which have a fixed set of constants (a variable that does not change).

The Java enum constants are static and final implicitly. It is available since JDK 1.5.

PARTMENT OF IT OOP THROGH JAV

DE A

Enums are used to create our own data type like classes. The enum data type (also known as Enumerated

Data Type) is used to define an enum in Java. Unlike C/C++, enum in Java is more powerful. Here, we can

define an enum either inside the class or outside the class.

Java Enum internally inherits the Enum class, so it cannot inherit any other class, but it can implement many

interfaces. We can have fields, constructors, methods, and main methods in Java enum.

1. class EnumExample1{

2. //defining the enum inside the class

3. public enum Season { WINTER, SPRING, SUMMER, FALL }

4. //main method

5. public static void main(String[] args) {

6. //traversing the enum

7. for (Season s : Season.values())

8. System.out.println(s);

9. }}

Output:

WINTER

SPRING

SUMMER

FALL

CONTROL STATEMENTS

if

The if statement was introduced in Chapter 2. It is examined in detail here. The if

statement is Java’sconditionalprogrambranchexecution state through two different paths.

Here is the general form of the if statement:

if (condition)
statement1;
else
statement2;

Here, each statement may be a single statement or a compound statement enclosed in

curly braces (that is, a block). The condition is any expression that returns a boolean value. The
else clause is optional.

int a,b; // ...
if(a < b) a = 0; else b = 0;

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the
if-else-if ladder. It looks like this:

if(condition)

statement;
else if(condition)

statement;

else if(condition)

statement;

...

else

statement;

switch

The switch statement is Java’s multiway branch dispatch execution to different parts of your

code

based on the value of an expression. As such, it often provides a better alternative than a large series of

if-else-if statements. Here is the general form of a switch statement:

switch (expression)

{ case value1:

// statement sequence

break;

case value2:

// statement

sequence

break;

...

case valueN:

// statement
sequence
break;
default:

// default statement sequence

}

The expression must be of type byte, short, int, or char; each of the values specified in the case statements
must be of a type compatible with the expression. Each case value must be a unique literal (that is, it must
be a constant, not a variable). Duplicate case values are not allowed

Iteration Statements

Java’s iteration for,while, and statements do-while. These statements are create what we
commonly call loops. As you probably know, a loop repeatedly executes the same set of instructions until
a termination condition is met. As you will see, Java has a loop to fit any programming need.

While

The while loop is Java’sfundamentalloopingmoststatement. It repeats a statement or block while its
controlling expression is true. Here is its general form:

While (condition) {

// bodyof loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long as the
conditional expression is true. When condition becomes false, control passes to the next line of code
immediately following the loop. The curly braces are unnecessary if only a single statement is being
repeated.

do-while

As you just saw, if the conditional expression controlling a while loop is initially false, then the
body of the loop will not be executed at all. However, sometimes it is desirable to execute the body of a
while loop at least once, even if the conditional expression is false to begin with.

Systex:
do {

// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the
loop and then evaluates the conditional expression. If this expression is
true, the loop will repeat. Otherwise, the loop terminates.

// Demonstrate the do-while

loop. class DoWhile {

public static void main(String
args[]) { int n = 10;
do {
System.out.println("tic

k " + n); n--;

} while(n > 0);

}

}

For

You were introduced to a simple form of the for loop in Chapter 2. As you will see, it is a powerful
and versatile construct. Here is the general form of the for statement:

for(initialization; condition; iteration) {

// body

}

If onlyone statement is being repeated, there is no need for the curly braces.

The for loop operates as follows. When the loop first starts, the initialization portion of the loop is
executed. Generally, this is an expression that sets the value of the loopcontrol variable, which acts as
a counter that controls the loop.. Next, condition is evaluated. This must be a Boolean expression. It
usually tests the loop control variable against a target value. If this expression is true, then the body of
the loop is executed. If it is false, the loop terminates. Next, the iteration portion of the loop is executed.
This is usually an expression that increments or decrements the loop control variable.
// Demonstrate the for loop.
class ForTick {

public static void main(String
args[]) { int n;

for(n=10; n>0; n--)
System.out.println("t
ick " + n);

}

}

Using break

In Java, the break statement has three uses. First, as you have seen, it terminates a statement
sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used as a
―civilized‖ form of goto. The last Return

The last control statement is return. The return statement is used to explicitly return from a

method. That is, it causes program control to transfer back to the caller of the method. As such, it is
categorized as a jump statement. Although a full discussion of return must wait until methods are
discussed in Chapter 7, a brief look at return is presented here.

As you can see, the final println() statement is not executed. As soon as return is executed, control

passes back to the caller.

SIMPLE JAVA PROGRAM

/*

This is a simple Java program. Call this file "Example.java".

*/

class Example {

// Your program begins with a call to main().

public static void main(String args[]) {

System.out.println("This is a simple Java program.");
}

}

Arrays

An array is a group of like-typed variables that are referred to by a common name. Arrays of
any type can be created and may have one or more dimensions. A specific element in an array is
accessed by its index. Arrays offer a convenient means of grouping related information.

One-Dimensional Arrays

A one-dimensional array is, essentially, a list of like-typed variables. To create an array, you first must
create an array variable of the desired type. The general form of a one dimensional array declaration is

type var-name[];

Here, type declares the base type of the array. The base type determines the data type of each element
that comprises the array.
// Demonstrate a one-
dimensional array. class
Array {

public static void main(String args[]) {
int month_days[];

month_days = new int[12];

month_days[0] = 31;

month_days[1] = 28;

month_days[2] = 31;
month_days[3] = 30;
month_days[4] = 31;

month_days[5] = 30;

month_days[6] = 31;
month_days[7] = 31;

month_days[8] = 30;

month_days[9] = 31;

month_days[10] = 30;
month_days[11] = 31;

System.out.println("April has " + month_days[3] + " days.");

}

}

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. These, as you mightexpect, look and
act like regular multidimensional arrays. However, as you will see there are a couple of subtle differences.
To declare a multidimensional array variable,specify each additional index using another set of square
brackets. For example, the following declares a two-dimensional array variable called twoD.

int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is implemented as an

array of arrays of int.

// Demonstrate a two-
dimensional array. class
TwoDArray {

public static void main(String
args[]) { int twoD[][]= new
int[4][5];

int i, j, k = 0; for(i=0; i<4; i++) for(j=0; j<5; j++)

{ twoD[i][j] = k; k++;
}

for(i=0; i<4; i++) { for(j=0; j<5; j++)

System.out.print(twoD[i][j] + "”);

System.out.println();

}
}

}
This program generates the following output: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

As stated earlier, since multidimensional arrays are actually arrays of arrays, the length of each array
is under your control. For example, the following program creates a two dimensional array in which
the sizes of the second dimension are unequal.

Objects and Classes in Java

In object-oriented programming technique, we design a program using objects and classes.

An object in Java is the physical as well as a logical entity, whereas, a class in Java is a logical entity
only.

object in Java

An entity that has state and behavior is known as an object e.g., chair, bike, marker, pen, table, car,
etc. It can be physical or logical (tangible and intangible). The example of an intangible object is the
banking system.

An object has three characteristics:

State: represents the data (value) of an object.

Behavior: represents the behavior (functionality) of an object such as deposit, withdraw, etc.

Identity: An object identity is typically implemented via a unique ID. The value of the ID is not visible
to the external user. However, it is used internally by the JVM to identify each object uniquely.

For Example, Pen is an object. Its name is Reynolds; color is white, known as its state. It is used to
write, so writing is its behavior.

An object is an instance of a class. A class is a template or blueprint from which objects are created.
So, an object is the instance (result) of a class.

Object Definitions:

An object is a real-world entity.

An object is a runtime entity.

The object is an entity which has state and behavior.

The object is an instance of a class

Class:

A class is a group of objects which have common properties. It is a template or blueprint from which
objects are created. It is a logical entity. It can't be physical.

A class in Java can contain:

Fields

Methods

Constructors

Blocks

Nested class and interface

Access Control

As you know, encapsulation links data with the code that manipulates it. However, encapsulation
provides another important attribute: access control.

How a member can be accessed is determined by the access specifier that modifies its declaration.
Java supplies a rich set of access specifiers. Some aspects of access control are related mostly to
inheritance or packages. (A package is, essentially, a grouping of classes.) These parts of Java’s access
control mechanism examining access control as it applies to a single class. Once you understand the
fundamentals of access control, the rest willpublic, private, and easy protected. .
Java also defines a default access level. protected applies only when inheritance is involved. The other
access specifiers are described next.

Let’s begin public by and private defining.When a member of a class is modified by the public
specifier, then that member can be accessed by any other code. When a member of a class is specified
as private, then that member can only be accessed byother members of its class. Now
you can understand why main() has always been preceded by the public specifier. It is called by code
that is outside the program—that is, by the Java run-time system. When no access specifier is used,
then by default the member of a class is public with in its own package, but cannot be accessed outside
of its package.

this Keyword

Sometimes a method will need to refer to the object that invoked it. To allow this, Java defines

the this keyword. this can be used inside any method to refer to the current object. That is, this is always
a reference to the object on which the method was invoked. You can use this anywhere a reference to
an object of the cur what this refers to, consider the following version of Box():

// A redundant use of this.
Box(double w, double h, double d)

{

this.width = w;

this.height = h;

this.depth = d;

}

This version of Box() operates exactly like the earlier version. The use of this is redundant, but perfectly
correct. Inside Box(), this will always refer to the invoking object. While it is redundant in this case, this is
useful in other contexts, one of which is explained in the next section.

Instance Variable Hiding

As you know, it is illegal in Java to declare two local variables with the same name inside

the same or enclosing scopes. Interestingly, you can have local variables, including formal
parameters to methods, which instance variables. However, when a local variable has the samename
as an instance variable, the local variable hides the instance variable.

// Use this to resolve name-space collisions. Box(double width, double height, double depth) { this.width
= width;

this.height = height;

this.depth = depth;

}

A word of caution: The use of this in such a context can sometimes be confusing, and some
programmers are careful not to use local variables and formal parameter names that hide instance
variables.

Overloading methods and constructors

Overloading Methods

In Java it is possible to define two or more methods within the same class that

share the same name, as long as their parameter declarations are different. When this is
the case, the methods are said to be overloaded, and the process is referred to as

method overloading. Method overloading is one of the ways that Java implements polymorphism.

///Demonstrate method overloading.
class OverloadDemo {
void test() {

System.out.println("No parameters");

}

// Overload test for one integer parameter.

void test(int a)

{

System.out.println("a: " + a);

}

// Overload test for two integer parameters.

void test(int a, int b)

{

System.out.println("a and b: " + a + " " + b);

}

// overload test for a double parameter
double test(double a)
{
System.out.println("double a: " + a);
return a*a;

}

}

class Overload {

public static void main(String args[])

{

OverloadDemo ob = new OverloadDemo();

double result;

// call all versions of test() ob.test();

ob.test(10);

ob.test(10, 20);

result = ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result);

}
}

This program generates the following output:

No parameters
a: 10

a and b: 10 20
double a: 123.25

Result of ob.test(123.25): 15190.5625

As you can see, test() is overloaded four times.

Overloading Constructor

In addition to overloading normal methods, you can also overload constructor methods. In fact,

for most real-world classes that you create, overloaded constructors will be the norm, not the exception.
To Boxunderstandclass why developed in the preceding chapter. Following is the latest version of Box:
class Box {

double width;

double height;
double depth;

// This is the constructor for Box.

Box(double w, double h, double d)

{

width = w; height = h; depth = d;

}

// compute and
return volume
double volume() {

return width * height * depth;
}

}

Argument/Parameter passing

In general, there are two ways that a computer language can pass an argument to a subroutine. The
first way is call-by-value. This method copies the value of an argument into the formal parameter of the
subroutine. Therefore, changes made to the parameter of the subroutine have no effect on the argument.
The second way an argument can be passed is call-by-reference.

In this method, a reference to an argument (not the value of the argument) is passed to the
parameter. Inside the subroutine, this reference is used to access the actual argument specified in the call.
This means that changes made to the parameter will affect the argument used to call the subroutine. As
you will see, Java uses both approaches, depending upon what is passed.
For example, consider the
following program:
// Simple types are passed by value.
class Test {

void meth(int i, int j)

{

i*=2;

j /= 2;

}
}
class CallByValue {
public static void main(String args[]) {
Test ob = new Test();

int a = 15, b = 20;

System.out.println("a and b before call: " + a + " " + b);

ob.meth(a, b);

System.out.println("a and b fter call: " + a + " " + b);

}
}
The output from this program is shown here: a and b before
call: 15 20 a and b after call: 15 20

Recursion

Java supports recursion. Recursion is the process of defining something in terms of itself. As

it relates to Java programming, recursion is the attribute that allows a method to call itself. A method
that calls itself is said to be recursive.The classic example of recursion is the computation of the
factorial of a number. The factorial of a number N is the product of all the whole numbers between 1
and N.

// A simple example of recursion(factorial).

class Factorial {

// this is a recursive function

int fact(int n) {

int result;
if(n==1) return 1;
result = fact(n-1) * n;
return result;

}

}

class Recursion {

public static void main(String args[])

{

Factorial f = new Factorial();

System.out.println("Factorial of 3 is " + f.fact(3));

System.out.println("Factorial of 4 is " + f.fact(4));

System.out.println("Factorial of 5 is " + f.fact(5));

}
}
The output from this program is shown here:

Factorial of 3 is 6

Factorial of 4 is 24

Factorial of 5 is 120

String class

Although the String class will be examined in depth in Part II of this book, a short exploration of

it is warranted now, because we will be using strings in some of the example programs shown toward the
end of Part I. String is probably the most commonly used class in Java’s class library. The
obviousareaveryimportantreasonpartof for programming.

The first thing to understand about strings is that every string you create is actually an object of type String.
Even string constants are actually String objects. For example, in the statement

System.out.println("This is a String, too");

The string ―ThisStringisconstant. Fortunately, String, Java handles too‖ String is constants in the same

way that other computer language worry about this.The second thing to understand about strings is that

objects of type String are immutable; once a String object is created, its contents cannot be altered.

While this may seem like a serious restriction, it is not, for two reasons:

■ If you need to change a string, you can domodifications.
■ Java defines String , called StringBuffer class,which allows of strings to be altered, so all of the
normal string manipulations are still available in Java.

(StringBuffer is described in Part II of this book.)
Strings can be constructed a variety of ways. The easiest is to use a statement like this:
String myString = "this is a test";

Once you have created a String object, you can use it anywhere that a string is allowed.

For example, this statement displays myString: System.out.println(myString);

Java defines one operator for String objects: +. It is used to concatenate two strings.

For example, this statement

String myString = "I" + " like " + "Java.";

results in myString containing ―I like Java.‖

The following program demonstrates the preceding concepts:
// Demonstrating Strings.

class StringDemo {

public static void main(String
args[]) { String strOb1 = "First

String";

String strOb2 = "Second String";
String strOb3 = strOb1 + " and "

+ strOb2;

System.out.println(strOb1);

System.out.println(strOb2);

System.out.println(strOb3);

}

}

The output produced by this program is shown here:

First String Second String

First String and Second String

The String class contains several methods that you can use. Here are a few. You can test two strings

for equality by using equals(). You can obtain the length of a string by calling the length() method.

You can obtain the character at a specified index within a string by calling charAt(). The general

forms of these three methods are shown here:

boolean equals(String object)

int length()

char charAt(int index)

Here is a program that demonstrates these methods:

// Demonstrating some String

methods. class StringDemo2 {

public static void main(String args[]) { String strOb1 = "First String";

String strOb2 = "Second String"; String strOb3 = strOb1;

System.out.println("Length of strOb1: "+ strOb1.length());

System.out.println("Char at index 3 in strOb1: "+ strOb1.charAt(3));

if(strOb1.equals(strOb2))

System.out.println("strOb1 == strOb2");

else

System.out.println("strOb1 != strOb2");

if(strOb1.equals(strOb3))

System.out.println("strOb1 == strOb3");

else

System.out.println("strOb1 != strOb3");
}
}

This program generates the following output:
Length of strOb1: 12
Char at index 3 in strOb1: s
strOb1 != strOb2

strOb1 == strOb3

Of course, you can have arrays of strings, just like you can have arrays of any other type of object.

For example:

// Demonstrate String arrays.

class StringDemo3 {

public static void main(String args[])

{

String str[] = { "one", "two", "three" };

for(int i=0; i<str.length; i++)

System.out.println("str[" + i + "]: "+ str[i]);

}
}
Here is the output from this
program:
str[0]: one

str[1]: two

str[2]: three

As you will see in the following section, string arrays play an important part in many Java programs.

Garbage Collection

Since objects are dynamically allocated by using the new operator, you might be wondering how such
objects are destroyed and their memory released for later reallocation. In some languages, such as C++,
dynamically allocated objects must be manually released by use of a delete operator. Java takes a different
approach; it handles deallocation for you automatically. The technique that accomplishes this is Called
garbage collection. It works like this: when no references to an object exist, that object is assumed to be
no longer needed, and the memory occupied by the object can be reclaimed. Furthermore, different Java
run-time implementations will take varying approaches to garbage collection, but for the most part, you
should not have to think about it while writing your programs.

UNIT-II

Inheritance – Inheritance types- super keyword- preventing inheritance: final classes and methods

Polymorphism – method overloading and method overriding, abstract classes and methods.

Interface – Interfaces VS Abstract classes- defining an interface- implement interfaces-

accessing implementations through interface references- extending interface -inner classes.

Packages – Defining- creating and accessing a package- importing packages.

Types of Inheretence:

Single

Inheretence

Hierarichal

Inherintence

Multiple

Inherintence

Multilevel

Inherintence

Hybrid

Inherintence

Single Inherintence:

Derivation a subclass from only one super class is called Single Inherintence.

Hierarchical Inherintence:

Derivation of several classes from a single super class is called Hierarchical Inherintence:

Multilevel Inheritance:

Derivation of a classes from another derived classes called Multilevel Inheritance.

Multiple Inheritance:

Derivation of one class from two or more super classes is called Multiple Inheritance

But java does not support Multiple Inheritance directly. It can be implemented by using
interface concept.

Hybrid Inheritance:

Derivation of a class involving more than one from on Inheritance is called Hydrid Inheritance

Defining a Subclass:

A subclass is defined as

Systax: class subclass-name extends superclass-name

{

Variable declaration; Method declaration;

}

The keyword extends signifies that the properties of the super class name are extended to the

subclass name. The subclass will now contain its own variables and methods as well as
those of the super class. But it is not vice-versa.

Member access rules

o Even though a subclass includes all of the members of its super class, it cannot

access those members who are declared as Private in super class.

o We can assign a reference of super class to the object of sub class. In that
situation we can access only super class members but not sub class members.
This concept is called as

―Super class Reference, Sub cals

/* In a class hierarchy, private members remain private to their class.
This program contains an error and will not compile.

*/

// Create a superclass. class A {

int i; // public by default

private int j; // private to A

void setij(int x, int y) {

i = x;
j = y;

}

}

// A's j is not accessible here.

class B extends A {int total; void sum() {

total = i + j; // ERROR, j is not accessible here

}}

class Access {

public static void main(String args[])

{

B subOb = new B();

subOb.setij(1
0, 12);
subOb.sum();
System.out.println("Total is " + subOb.total);

}

}

Super class variables can refer sub-class object
o To a reference variable of a super class can be assigned a reference to any subclass

derived from that super class.

o When a reference to a subclass object is assigned to a super class reference variable,
we will have to access only to those parts of the object defined by the superclass

o It is bcz the super class has no knowledge about what a sub class adds to it.

Program

class RefDemo

{

public static void main(String args[])

{

BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37);

Box plainbox = new Box();

double vol;

vol = weightbox.volume(); System.out.println("Volume of weightbox is " + vol);
System.out.println("Weight of weightbox is " + weightbox.weight);
System.out.println();

// assign BoxWeight reference to Box reference

plainbox = weightbox;

vol = plainbox.volume(); // OK, volume() defined in Box
System.out.println("Volume of plainbox is " + vol);

/* The following statement is invalid because plainbox does not define a weight member. */

// System.out.println("Weight of plainbox is " + plainbox.weight);
}

}

Using super keyword

o When ever a sub class needs to refer to its immediate super class, it can do

so by use of the key word super.
o Super has two general forms:

o Calling super class constructor
o Used to access a member of the super class that has been hidden by a

member of a sub class

Using super to call super class constructor

o A sub class can call a constructor defined by its super class by use of the

following form of super:
o super (parameter-list);
o Parameter list specifies parameters needed by the constructor in the super class.

Note: Super () must always by the first statement executed inside a sub-class constuctor.

// A complete implementation of BoxWeight.
class Box {

private double width;

private double height;

private double depth;

// construct clone of an object

Box(Box ob)

{ // pass object to constructor width

= ob.width;
Page 24

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w; height = h; depth = d;

}

// constructor used when no dimensions
specified Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;
}
// compute and return volume double volume() {

return width * height * depth;

}

}

// BoxWeight now fully implements all constructors.

class BoxWeight extends Box {

double weight; // weight of box
// construct clone of an object
BoxWeight(BoxWeight ob) { // pass object to constructor super(ob);

weight = ob.weight;

}

// constructor when all parameters are specified

BoxWeight(double w, double h, double d, double m)

{

super(w, h, d); // call superclass constructor

weight = m;

}

// default constructor

BoxWeight()
{
super();
weight = -1;

}

// constructor used when cube is created
BoxWeight(double len, double m)

{

super(len);

weight = m;
}

Page 25

}

class DemoSuper {

public static void main(String args[]) {
BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
BoxWeight mybox3 = new BoxWeight(); //default
BoxWeight mycube = new BoxWeight(3, 2);
BoxWeight myclone = new BoxWeight(mybox1);
double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight); System.out.println();

vol = mybox2.volume(); System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is " + mybox2.weight);

System.out.println();

vol = mybox3.volume(); System.out.println("Volume of mybox3 is " + vol);

System.out.println("Weight of mybox3 is " + mybox3.weight); System.out.println();

vol = myclone.volume(); System.out.println("Volume of myclone is " + vol);

System.out.println("Weight of myclone is " + myclone.weight);

System.out.println();

vol = mycube.volume(); System.out.println("Volume of mycube is " + vol);

System.out.println("Weight of mycube is " + mycube.weight); System.out.println();

}

}

Output:
Volume of mybox1 is 3000.0

Weight of mybox1 is 34.3

Volume of mybox2 is 24.0

Weight of mybox2 is 0.076

Volume of mybox3 is -1.0

Weight of mybox3 is -1.0

Volume of myclone is 3000.0

Weight of myclone is 34.3

Volume of mycube is 27.0

Weight of mycube is 2.0

Calling members of super class using super

o The second form of super acts somewhat like this keyword, except that it

always refers to the super class of the sub class in which it is used.
o The syntax is:

o Super.member ;

o Member can either be method or an instance variable

Program

// Using super to overcome name hiding.

class A {

int i;

}
Page 26

// Create a subclass by extending class A.

class B extends A {

int i; // this i hides the i in A B(int a, int b) {

super.i = a; // i in A i = b; // i in B

}
void show() {

System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + i);

}

}

class UseSuper {

public static void
main(String args[]) { B
subOb = new B(1, 2);
subOb.show();

}

}
Output:
i in superclass: 1 i in subclass: 2

Using Final keyword:

We can use final key word in three ways:

o Used to create equivalent of a named constant

Final datatype identifier = ;

o Used to prevent inheritance

Final class …………..

o Used to avoid overloading
Final return type ………….

Using final to Prevent Overriding:

While method overridingul features,is thereonewill ofbetimesJava’swhenyou most will want to prevent

it fromoccurring. To disallow a method from being overridden, specify final as a modifier at the start

of its declaration. Methods declared as final cannot be overridden.

The following fragment

illustrates final: class A {

final void meth() {
System.out.println("This is a final method.");

}

}

class B extends A {

void meth() { // ERROR!
Can't override.
System.out.println("Illegal!");

}

}

Using final to Prevent Inheritance:

Sometimes you will want to prevent a class from being inherited. To do this, precede the
class declaration with final. Declaring a class as final implicitly declares all of its
methods as final, too. As you might expect, it is illegal to declare a class as both abstract
and final since an abstract class is incomplete by itself and relies upon its subclasses to
provide complete implementations.

Here is an example of a final class:

final class A {

// ...

}
// The following class is illegal.

class B extends A { // ERROR! Can't

subclass A // ...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

Polymorphism Method overriding:

In a class hierarchy, when a method in a sub class has the same name and type signatureas a method
in its super class, then the method in the sub class is said to be override the method in the

sub class.

When an overridden method is called from within a sub class, it will always refers
to the version of that method defined by the sub class.

The version of the method defined in the super class is hidden.

In this situation, first it checks the method is existed in super class are not. If it is
existed then it executes the version of sub class otherwise it gives no such method
found exception.

Note: Methods with different signatures overloading but not overriding.

// Method
overriding.
class A {
int i, j;

A(int a, int b)

{

i = a;

j = b;

}

// display i and j void show() {

System.out.println("i and j: " + i + " " + j);

}
}

class B extends A

{ int k;
B(int a, int b, int c)
{
sup
er(
a,
b);
k =
c;

}

// display k –this overrides
show() in A void show() {
System.out.println("k: " + k);

}

}

class Override {

public static void main(String
args[]) { B subOb = new B(1,
2, 3);

subOb.show(); // this calls show() in B

}}

Output:

k: 3

Dynamic method dispatch

o It is a mechanism by which a call to an overridden method is resolved at run

time rather then compile time.
o It is important because this is how java implements runtime polymorphism.

o Before going to that we must know about super class reference sub class object.

// Dynamic Method
Dispatch class A {
void callme() {

System.out.println("Inside A's callme method");

}

}
class B extends A {
// override

callme()
void

callme() {

System.out.println("Inside B's callme method");

}

}

class C extends A {
//
override
callme()
void
callme()

{

System.out.println("Inside C's callme method");

}

}
class Dispatch {

public static void main(String args[]) {
A a = new A(); // object of type A

B b = new B(); // object of type B
C c = new C(); // object
of type C A r; // obtain a
reference of type A r = a;

// r refers to an A object

r.callme(); // calls A's version

of callme r = b; // r refers to a

B object
r.callme(); // calls B's version
of callme r = c; // r refers to a
C object r.callme();

// calls C's version of callme

}

}

Output:

Inside A’s callme method
Inside B’s callme method

Inside C’s callme method

Abstract class:

o An abstract method is a method that is declared with only its

signatures with out implementations.
o An abstract class is class that has at least one abstract method.

The syntax is:

Abstract class class-name

{

Variables

Abstract methods;

Concrete methods;

.

.

.}

o We can’t declare any abstract constructor. o Abstract class should not include any abstract static
method.

o Abstract class can’t be directly instantiated with
o Any sub class of abstract class must be either implements all the abstract

methods in the super class or declared it self as abstract.

o Abstract modifiersubclassresponsibilitiesreferred
.sebecauofasnoimplementation― of methods. Thus, a sub class must
overridden them.

// A Simple demonstration of abstract.

abstract class A {

abstract void callme();

// concrete methods are still allowed in abstract
classes void callmetoo() {
System.out.println("This is a concrete method.");

}

}

class B extends A
{ void callme() {
System.out.println("B's implementation of callme.");
}

}

class AbstractDemo {

public static void main(String args[]) {

B b = new B();

callme();
b.callmetoo();

}

}

// Using abstract methods and classes.

abstract class Figure {

double dim1;.

double dim2;

Figure(double a,

double b) { dim1 = a;
dim2 = b;

}

// area is now an abstract method abstract double area();

}

class Rectangle extends Figure

{

Rectangle(double a, double b)

{

super(a, b);

}

// override area for rectangle

double area() {

System.out.println("Inside Area for Rectangle.");

return dim1 * dim2;

}
}

class Triangle extends Figure

{

Triangle(double a, double b)

{

super(a, b);

}
// override area for right
triangle double area() {

System.out.println("Inside Area for Triangle."); return dim1 *
dim2 / 2;

}

}

class AbstractAreas

{

public static void main(String args[])

{
// Figure f = new Figure(10, 10); // illegal now

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

Figure figref; // this is OK, object is created

figref = r;
System.out.println("Area is " + figref.area());

DEPARTMENT OF IT OOP THROGH JAVA

figref = t;
System.out.println("Area is " + figref.area());
}}

Interface:

An interface in Java is a blueprint of a class. It has static constants and abstract methods.

The interface in Java is a mechanism to achieve abstraction. There can be only abstract methods in the

Java interface, not method body. It is used to achieve abstraction and multiple inheritance in Java.

In other words, you can say that interfaces can have abstract methods and variables. It cannot have a

method body.Java Interface also represents the IS-A relationship.

It cannot be instantiated just like the abstract class.

Difference between abstract class and interface:

Abstract class Interface

1) Abstract class can have abstract and

non-abstract methods.
Interface can have only abstract methods.

Since Java 8, it can have default and static

methods also.

2) Abstract class doesn't support

multiple inheritance.
Interface supports multiple inheritance.

3) Abstract class can have final, non-

final, static and non-static variables.

Interface has only static and final

variables.

4) Abstract class can provide the

implementation of interface.

Interface can't provide the

implementation of abstract class.

5) The abstract keyword is used to

declare abstract class.

The interface keyword is used to declare

interface.

6) An abstract class can extend another

Java class and implement multiple Java

interfaces.

An interface can extend another Java

interface only.

7) An abstract class can be extended

using keyword "extends".

An interface can be implemented using

keyword "implements".

8) A Java abstract class can have class

members like private, protected, etc.

Members of a Java interface are public by

default.

9)Example:

public abstract class Shape{

public abstract void draw();

}

Example:

public interface Drawable{

void draw();

}

Page 33

Interface is a collection of method declarations and constants that one or more classes ofobjects will use.

We can implement multiple inheritance using interface.

Because interface consists only signatures followed by semi colon and parameter
list they are implicitly abstract.

Variables can be declared and initialized inside interface they are implicitly
final and static.
An interface method can’t be final

or static An interface can be extended

from another interface.

Declaration of interface:

Access interface name

{

Return type member-
name1(parametelist); Return type
member-name2(parametelist);

.

.

.

Type finalvariablename=initialization;

}

o There will be no default implementation for methods specified in an interface.
o Each class that include interface must implements all methods.
o All the methods and variables are implicitly public if interface itself is declared as public.

Implementing Interfaces:

Once an interface has been defined, one or more classes can implement that

interface. To implement an interface, include the implements clause in a class definition,
and then create the methods defined by the interface. The general form of a class that
includes the implements clause looks like this:

access class classname [extends
superclass] [implements interface
[,interface...]] {

// class-body

}

Here, access is either public or not used. If a class implements more than one interface, the
interfaces are separated with a comma. If a class implements two interfaces that declare the same
method, then the same method will be used by clients of either interface. The methods that implement
an interface must be declared public. Also, the type signature of the implementing method must
match exactly the type signature specified in the interface definition.

Applying Interfaces:

To understand the power of interfaces, let chapters you developed a class called

Stack that implemented a simple fixed-size stack.

However, there are many ways to implement a stack. For example, the stack can be of a fixed

size or it can be ―growable.‖ The stack can and so on. No matter how the stack is

implemented, the interface to the stack remains the same. That is, the methods push() and
pop() define the interface to the stack independently of the details of the implementation.
Because the interface to a stack is separate from its implementation, it is easy to define a stack
interface, leaving it to each implementation to define the specific.

First, here is the interface that defines an integer stack. Put this in a file called IntStack.java. This

interface will be used by both stack implementations.

// Define an integer
stack interface.
interface IntStack {

void push(int item); // store
an item int pop(); // retrieve
an item

}

Variables in Interfaces:

When you include that interface in a class interface), all of those variable names will be in scope

as constants. This is similar to
using a header file in C/C++ to create a large number of #defined constants or const declarations. If an

interface contains no methods, then any class that includes such an interface doesn’t implement any

thing actually.It is as if that class were importing the constant variables into the class name space

as final variables.

import java.util.Random; interface SharedConstants

{

int NO = 0; int YES = 1; int MAYBE = 2; int LATER = 3; int SOON = 4; int NEVER = 5;

}

class Question implements SharedConstants
{ Random rand = new
Random();
int ask() {

int prob = (int) (100 *
rand.nextDouble()); if (prob <
30)

return NO; // 30%

else if (prob < 60) return YES; // 30%

else if (prob < 75) return LATER; // 15%

else if (prob < 98) return SOON; // 13% else

return NEVER; // 2%

} }

class AskMe implements SharedConstants
{ static void answer(int result) {
switch(result) {

case NO: System.out.println("No"); break;

case YES:

System.out.println(―yes‖)

; break; case MAYBE:
System.out.println("Maybe
");

break;

case LATER: System.out.println("Later");

break;

case SOON:

System.out.println("Soon");

break;

case NEVER: System.out.println("Never"); break;

}}

public static void main(String
args[]) { Question q = new
Question(); answer(q.ask());
answer(q.ask());

answer(q.ask());

answer(q.ask());

}}

Interfaces Can Be Extended:

One interface can inherit another byuse of the keyword extends. The syntax is

the same as for inheriting classes. When a class implements an interface that inherits
another interface, it must provide implementations for all methods defined within the
interface inheritance chain. Following is an example:
// One interface can extend another.
interface A {

void
meth1(
); void
meth2(
);
}

// B now includes meth1() and meth2() -- it
adds meth3(). interface B extends A {
void meth3();

}

// This class must implement all of A

and B class MyClass implements B

{

public void meth1() { System.out.println("Implement meth1().");

}

public void meth2() {
System.out.println("Implement
meth2().");

}

public void meth3() {
System.out.println("Implement
meth3().");

}

}

class IFExtend {

public static void main(String arg[]) {

MyClass ob = new
MyClass();

ob.meth1();

ob.meth2();

ob.meth3();

}

}

As an experiment you might want to try removing the implementation for meth1() in
MyClass. This will cause a compile-time error. As stated earlier, any class that implements an
interface must implement all methods defined by that interface, including any that are
inherited from other interfaces.

Packages and Interfaces : Defining, Creating and Accessing a Package, importing
packages,

.Defining Package:

o Generally, any java source file contains any (or all) of the following internal parts: o
o A single package statement (optional)

o Any number of import statements (optional)

o A single public class declaration (required)
o Any number of classes private to the package (optional)

o Packages and Interfaces are two of the basic components of a java program.
o Packages are collection of related classes.
o Packages are containers for classes that are used to keep the class name compartmentalized.
o Packages are stored in an hierarchical manner and are explicitly imported into

new class defination.
o Java packages are classified into two types:

o Java API package or pre-defined packages or built –in –
packages.
o User –defined packages
o Java 2 API contains 60 java.* packages.

To create a package

Just give package <<packagename>> as a first statement in java program.

Anyclasses declared within that file will belong to the specified package. If we omit package

statement, the classes are stored in the default package.

Syntex:

Package packagename

Syntax: Package

packagename.subpackage

Access protection:

Classes and packages both means of encapsulating and containing the name
space and scope of variables and methods.
Packages acts as a containers for classes and other sub –ordinate packages.

Classes act as containers for data and code.

Java address four categories of visibility for class members: o Sub –classes
in the same package.

o Non –sub class in the same
package. O Sub –classes in
the different package.

o Classes that are neither in the same package nor subclasses.

The 3 access specifiers private, public and protected provide a variety of ways
to produce the many levels of access required by these categories.

Access specifier

Access Location

Private No modifier Protected Public

Same class Yes Yes Yes Yes

Same package sub class No Yes Yes Yes

 No

Different package sub class No No Yes Yes

Different package non
sub class

No No No Yes

From the above table,

o Any thing declared public can be accessed from any where
o Any thing accessed private cannot be accessed from outside of its class
o In the default, it is visible to sub-class as well as to other classes in the same package
o Any thing declared as protected, this is allow an element to be seen

outside your current package, but also allow to sub class in other
packages access.

DEPARTMENT OF IT OOP THROGH JAVA

Importing Packages:

 There are no core Java classes in the unnamed default package; all of the standard

classes are stored in some named package. Since classes within packages must be fully
qualified with their package name or names, it could become tedious to type in the long
dot-separated package path name for every class you want to use. For this reason, Java
includes the import statement to bring certain classes, or entire packages, into visibility.
Once imported, a class can be referred to directly, using only its name. The import

statement is a convenience to the programmer and is not technically needed to write a
complete Java program. If you are going to refer to a few dozen classes in your
application, however, the import statement will save a lot of typing.

In a Java source file, import statements occur immediately following the package

statement (if it exists) and before any class definitions. This is the general form of the

import statement:

import pkg1[.pkg2].(classname|*);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a

subordinate package inside the outer package separated by a dot (.). There is no practical
limit on the depth of a package hierarchy, except that imposed by the file system. Finally,

you specify either an explicit classname or a star (*), which indicates that the Java
compiler should import the entire package. This code fragment shows both forms in use:
import

java.util.Date;

import

java.io.*;

DEPARTMENT OF IT UNIT-III OOP THROGH JAVA

Exception Handling –Dealing with errors- benefits of exception handling- the
classification of exceptions –exception hierarchy- checked exceptions and unchecked
exceptions- usage of try- catch-throw-throws and finally-rethrowing exceptions-
exception specification- built in exceptions- creating own exception sub classes.

Multithreading –Differences between multiple processes and multiple threads- thread
states- creating threads- interrupting threads- thread priorities- synchronizing threads-
inter –thread communication- producer consumer problem

Introduction

o An exception is an event that occurs during the execution of a program that

disrupts the normal flow of instruction.
Or

o An abnormal condition that disrupts Normal program flow.
o There are many cases where abnormal conditions happen during program

execution, such as
o Trying to access an out - of –bounds array elements.
o The file you try to open may not exist.
o The file we want to load may be missing or in the wrong format.
o The other end of your network connection may be non –existence.

o If these cases are not prevented or at least handled properly, either the
program will be aborted abruptly, or the incorrect results or status will be
produced.

o When an error occurs with in the java method, the method creates an
exception object and hands it off to the runtime system.

o The exception object contains information about the exception including its
type and the state of the program when the error occurred. The runtime
system is then responsible for finding some code to handle the error.

o In java creating an exception object and handling it to the runtime
system is called throwing an exception.

o Exception is an object that is describes an exceptional (i.e. error)
condition that has occurred in a piece of code at run time.

o When a exceptional condition arises, an object representing that exception is
created and thrown in the method that caused the error. That method may
choose to handle the exception itself, or pass it on. Either way, at some point,
the exception is caught and processed.

o Exceptions can be generated by the Java run-time system, or
they can be manually generated by your code.

o System generated exceptions are automatically thrown by the Java runtime system

General form of Exception
Handling block try {

// block of code to monitor for errors

}

catch (ExceptionType1 exOb) {

// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb) {

// exception handler for ExceptionType2
}
// ...
finally{

// block of code to be executed before try block ends

}

No

Exception Throws exception object

arise or

No Catch Block

appropriate

Catch

block

Exceptional Handler

Finally Block

Optional part

By using exception to managing errors, Java programs have have the following advantage
over traditional error management techniques:

– Separating Error handling code from regular code.
– Propagating error up the call stack.
– Grouping error types and error differentiation.

For Example:

class Exc0 {

public static void main(String args[]) {
int d = 0;

int a = 42 / d;

}

}

When the Java run-time system detects the attempt to divide by zero, it constructs a

new exception object and then throws this exception. This causes the execution of Exc0 to stop,
because once an exception has been thrown, it must be caught by an exception handler and dealt

with immediately. In this example, we haven’t supp the exception is caught bythe default handler
provided by the Java run-time system. Any exception that is not caught by your program will ultimately
be processed by the default handler. The default handler displays a string describing the exception, prints
a stack trace from the point at which the exception occurred, and terminates the program. Here is the
output generated when this example is executed.

java.lang.ArithmeticException: / by zero at Exc0.main(Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java;
and the line number, 4

Hierarchy of Java Exception classes

Java Built –In Exceptions

Inside the standard package java.lang, Java defines several exception classes. A few have been
used by the preceding examples. The most general of these exceptions are subclasses of the
standard type RuntimeException. Since java.lang is implicitly imported into all Java programs,
most exceptions derived from RuntimeException are automatically available. Furthermore, they
need not be included throws list. In the language any of method’s Java,these are called unchecked
exceptions because the compiler does not check to see if a method handles or throws these
exceptions. The unchecked exceptions defined in java.lang are listed in Table 10-1.

Table lists those exceptions defined by java.lang that must be included throws list in if that
method can generate one of these exceptions and does not handle it itself. These are called
checked exceptions. Java defines several other types of exceptions that relate to its various class
libraries.

List of Checked exceptions

List of Unchecked exceptions

Try and Catch Blocks

If we don’t want to prevent the programapthe to trap the exception using the try block. So we can
place the statements that may causes an exception in the try block.

Try

{
}

If an exception occurs with in the try block, the appropriate exception handler that is associated with
the try block handles the exception immediately following the try block, include a catch clause specifies
the exception type we wish to catch. A try block must have at least one catch block or finally that allows
it immediately.

Catch block

The catch block is used to process the exception raised. A try block can be one or more
catch blocks can handle a try block.
Catch handles are placed immediately after the try block.

Catch(exceptiontype e)

{

//Error handle routine is placed here for handling exception

}

Program 1

Class trycatch

{

Public static void main(String args[])

{

Int[] no={1,2,3};

Try

{

System.out.println(no[3]);

}

Catch(ArrayIndexOutOfBoundsException e)

{

System.out.println(―Out of bonds‖);

}

System.out.println(―Quit‖);

}

}

Output

Out of the Range

Quit

Program 2 Class
ArithExce

{

Public static void main(String args[])

{

Int a=10;
Int b=0;
Try

{
a=a/b;

System.out.println(―Won’t Print‖);

}

Catch(ArithmeticException e)

{

System.out.println(―Division by Zero error‖); System.out.println(―Change the b value‖);

}

System.out.println(―Quit‖);

}

}

Output

Division By zero error
Please change the B value
Quit

Note:

A try ad its catch statement form a unit.

We cannot use try block alone.

The compiler does not allow any statement between tryblock and its associated catch
block

Displaying description of an Exception

Throwable overrides the toString() method (defined by Object) so that it returns a
string containing a description of the exception. We can display this description in a
println statement bysimply passing the exception as an argument.

catch (ArithmeticException e) {
System.out.println("Exception: " + e);
a = 0; // set a to zero and continue

}

 When this version is substituted in the program, and the program is run, each divide-by-

zero error displays the following message:

– Exception: java.lang.ArithmeticException: / by zero

Multiple Catch Blocks

In some cases, more than one exception could be raised by a single piece of code. To handle this
type of situation, you can specify two or more catch clauses, each catching a different type of
exception. When an exception is thrown, each catch statement is inspected in order, and the first
one whose type matches that of the exception is executed. After one catch statement executes, the
others are bypassed, and execution continues after the try/catch block. The following example
traps two different exception types:

// Demonstrate multiple catch statements.
class MultiCatch {

public static void main(String args[]) {
try {

int a = args.length;
System.out.println("a = " + a);
int b = 42 / a;

int c[] = { 1 };
c[42] = 99;

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

} catch(ArrayIndexOutOfBoundsException e)
{ System.out.println("Array index oob: " + e);
}

System.out.println("After try/catch blocks.");

}

}

This program will cause a division-by-zero exception if it is started with no commandline parameters,
since a will equal zero. It will survive the division if you provide a command-line argument, setting a to
something larger than zero. But it will cause an ArrayIndexOutOfBoundsException, since the int
array c has a length of 1, yet the program attempts to assign a value to c[42].

Here is the output generated byrunning it both
ways: C:\>java MultiCatch

a = 0

Divide by 0: java.lang.ArithmeticException: / by

zero After try/catch blocks.

C:\>java MultiCatch
TestArg a = 1

Array index oob: java.lang.ArrayIndexOutOfBoundsException
After try/catch blocks.

Throw Keyword

So far, we have only been catching exceptions that are thrown by the Java Run –Time

systems. How ever, it is possible for our program to throw an exception explicitly, using
the throw statement.

Throw throwableInstance

Here, ThrowableInstance must be an object of type Throwable or a subclass of
Throwable. Simple types, such as int or char, as well as non-Throwable classes, such
as String and Object, cannot be used as exceptions

There are two ways you can obtain a Throwable object:

– using a parameter into a catch clause
– creating one with the new operator.

The flow of execution stops immediately after the throw statement; any subsequent
statements are not executed. The nearest enclosing try block is inspected to see if it has a
catch statement that matches the type of the exception. If it does find a match, control is
transferred to that statement. If not, then the next enclosing try statement is inspected, and
so on. If no matching catch is found, then the default exception handler halts the program
and prints the stack trace

// Demonstrate throw.
class ThrowDemo {
static void demoproc()

{ try {

throw new NullPointerException("demo");

} catch(NullPointerException e) {
System.out.println("Caught inside
demoproc."); throw e; // rethrow the exception

}

}

public static void main(String args[]) {
try {

demoproc();

} catch(NullPointerException e) {
System.out.println("Recaught: " + e);

}

}

}

This program gets two chances to deal with the same error. First, main() sets up an
exception context and then calls demoproc(). The demoproc() method then sets up
another exception-handling context and immediately throws a new instance of
NullPointerException, which is caught on the next line. The exception is then rethrown.
Here is the resulting output:

 Caught inside demoproc.

Recaught: java.lang.NullPointerException: demo

The program also illustrates how to create one of J close attention to this line:

throw new NullPointerException("demo");

Here, new is used to construct an instance of NullPointerException. All of- Java’ in run-time
exceptions have at least two constructors: one with no parameter and one that

takes a string parameter. When the second form is used, the argument specifies a string
 that describes the exception. This string is displayed when the object

is used as an argument to print() or println(). It can also be obtained by a call to

getMessage(), which is defined by Throwable.

Throws Keyword

If a method is capable of causing an exception that it does not handle, it must specify this
behavior so that callers of the method can guard themselves against that exception. You

do this by including a throws clause in the method’sthrowsclauselistsdeclar the types of

exceptions thata method might throw. This is necessary for all exceptions,

except those of type Error or RuntimeException, or any of their subclasses. All other
exceptions that a method can throw must be declared in the throws clause. If they are not,
a compile-time error will result. This is the general form of a method declaration that
includes a throws clause:

type method-name(parameter-list) throws exception-list

{

// bodyof method

}

Here, exception-list is a comma-separated list of the exceptions that a method can throw

Program

class ThrowsDemo {

static void throwOne() throws IllegalAccessException
{ System.out.println("Inside throwOne.");
throw new IllegalAccessException("demo");

}

public static void main(String args[]) {
try {

throwOne();

} catch (IllegalAccessException e)
{ System.out.println("Caught " + e);

}

}
}

Here is the output generated byrunning this example program:

inside throwOne

caught java.lang.IllegalAccessException

S.No. throw throws

1) Java throw keyword is used to explicitly Java throws keyword is used to declare an throw an
exception. exception.

2) Checked exception cannot be propagated Checked exception can be propagated with using

throw only. throws.

3) Throw is followed by an instance. Throws is followed by class. 4) Throw is used within the method.
Throws is used with the method signature.

5) You cannot throw multiple exceptions.
You can declare multiple exceptions e.g. public

Finally block
void method() throws IOException,
SQLException.

When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear

path that alters the normal flow through the method. Depending upon how the method is
coded, it is even possible for an exception to cause the method to return prematurely.
This could be a problem in some methods. For example, if a method

opens a file upon entry and closes it upon exit, then you will not want the code that closes
the file to be bypassed by the exception-handling mechanism. The finally keyword is
designed to address this contingency.

finally creates a block of code that will be executed after a try/catch block has completed
and before the code following the try/catch block. The finally block will execute whether
or not an exception is thrown. If an exception is thrown, the finally block will execute
even if no catch statement matches the exception. Any time a method is about to return to
the caller from inside a try/catch block, via an uncaught exception or an explicit return
statement, the finally clause is also executed just before the method returns. This can be
useful for closing file handles and freeing up any other resources that

might have been allocated at the beginning of a method with the intent of disposing of them
before returning. The finally clause is optional. However, each try statement requires at
least one catch or a finally clause.

// Demonstrate finally.
class FinallyDemo {

// Through an exception out of the method.
static void procA() {

try {

System.out.println("inside procA");
throw new RuntimeException("demo");

} finally {
System.out.println("procA's finally");

}

}

// Return from within a try
block. static void procB() {
try{

System.out.println("inside procB");
return;

} finally { System.out.println("procB's
finally");

}

}

// Execute a tryblock normally.
static void procC() {
try {

System.out.println("inside procC"); }
finally { System.out.println("procC's
finally");

}

}

public static void main(String args[]) {
try {
procA();

} catch (Exception e) {
System.out.println("Exception caught");

}
procB();

procC();

}

}
 In this example, procA() prematurely breaks out of the try by throwing an exception. The

finally clause is executed on the way out. procB()’stry statement is exited via a return
statement. The finally clause is executed before procB() returns. In procC(), the

try statement executes normally, without error. However, the finally block is still executed.
If a finally block is associated with a try, the finally block will be executed upon conclusion
of the try.

Here is the output generated bythe preceding

program: inside procA

procA’s finally Exception caught
inside procB

procB’s finally inside procC

procC’sly final

Difference between final, finally and finalize

There are many differences between final, finally and finalize. A list of differences between
final, finally and finalize are given below:

No. final finally finalize

Final is used to apply restrictions Finally is used to place Finalize is used to

on class, method and variable. important code perform clean up

Final class can't be inherited, It will be executed there The object is garbage

final method can't be overridden is an exception or not collected

and final variable value can’t be changed.

Final is a keyword. Finally is a block. Finalize is a method.

Java final example

1. class FinalExample{
2. public static void main(String[] args){
3. final int x=100;
4. x=200;//Compile Time Error
5. }}

Java finally example

1. class FinallyExample{
2. public static void main(String[] args){
3. try{
4. int x=300;

5. }catch(Exception e){System.out.println(e);}

6. finally{System.out.println("finally block is executed");}
7. }}

Java finalize example

1. class FinalizeExample{
2. public void finalize(){System.out.println("finalize

called");}
3. public static void main(String[] args){
4. FinalizeExample f1=new FinalizeExample();
5. FinalizeExample f2=new FinalizeExample();
6. f1=null;
7. f2=null;
8. System.gc();
9. }}

Multi Threaded Programming

Introduction:

o Java provides a built –in support for multithreaded programming.
o A multithreaded program contains two o more parts that can run concurrently.
o Each part of such a program called thread.
o Each thread defines a separate path of execution.
o Thus multi thread is a specialized form of multi tasking.
o Multitasking is supported by OS
o There are two distinct types of multi tasking
o Process based multi tasking
o Process is a program that is executing.
o In process based multi tasking, a program is the smallest unit of code that can be

dispatched by the scheduler

o Process based multi tasking is a feature that allows computer to run two or more
programs concurrently

o For example :
o This tasking enables us to run the Java compiler and text editor at the same time
o Thread based multi tasking
o Thread is a smallest unit of dispatchable code
o The single program can perform two or more tasks simultaneously.
o For example:
o A text editor can format text at the same time that is printing as long as these two

actions are performed by two separate threads.
o Multitasking threads require less overhead than multitasking processes.

Thread Model

o One thread can pause without stopping other parts of your program.

o For example, the idle time created when a thread reads data from a network or
waits for user input can be utilized elsewhere.

o Multithreading allows animation loops to sleep for a second between each
frame without causing the whole system to pause.

o When a thread blocks in a Java program, only the single thread that is blocked pauses.
All other threads continue to run.

o Thread States
o Threads exist in several states.

A thread can be running. It can be ready to run as soon as it gets CPU time.

A running thread can be suspended, which temporarily suspends its activity.

A suspended thread can then be resumed, allowing it to pick up where it left off.

A thread can be blocked when waiting for a resource.

 At any time, a thread can be terminated, which halts its execution immediately.

Once terminated, a thread cannot be resumed

o Every thread after creation and before destruction can have any one of four states:
Newly created

o Runnable state
o Blocked

o Dead

THREAD LIFE CYCLE

New State

o A thread enters the newly created by using a new operator.

o It is new state or born state immediately after creation. i.e. when a constructor is called
the Thread is created but is not yet to run() method will not begin until it start() method
is called.

o After the start() method is called, the thread will go to the next state, Runnable state.
o Note : in the above cycle stop(), resume() and suspand are deprecated methods. Java

2 strongly discourage their usage in the program

o Runnable state

Once we invoke the start() method, the thread is runnable.

It is divided into two states:

The running state

When the thread is running state, it assigned by CPU cycles and is
actually running.

The Queued state.

When the thread is in Queued state, it is waiting in the Queue and
competing for its turn to spend CPU cycles

It is controlled by Virtual Machine Controller.

When we use yield() method it makes sure other threads of the same
priority have chance to run.

This method cause voluntary move itself to the queued state from the
running state.

Blocked state

The blocked state is entered when one of the following events occurs:

• The thread itself or another thread calls the suspend() method (it is deprecated)
• The thread calls an object’s wait() met
• The thread itself calls the sleep() method.
• The thread is waiting for some I/O operations to complete.
• The thread will join() another thread.

Dead state

A thread is dead for anyone of the following reasons:

• It dies a natural death because the un method exists normally.
• It dies abruptly because an uncaught exception terminates the run method.
• In particular stop() is used to kill the thread. This is depricated.
• To find whether thread is alive i.e. currently running or blocked

Use isAlive() method

• If it returns true the thread is alive

Thread priorities

Java assigns to each thread a priority that determines how that thread should be treated with
respect to the others. Thread priorities are integers that specify the relative priority of one
thread to another. As an absolute value, a priority is meaningless; a higher-priority

thread doesn’t run-priorityanythread fasterifitistheonly threadthanrunninga. lower Instead, a

 thread’spriority is used to d the next. This is called a context switch. The rules that determine

when a contextswitch

takes place are simple:

• A thread can voluntarily relinquish control. This is done by explicitly yielding,
sleeping, or blocking on pending I/O. In this scenario, all other threads are
examined, and the highest-priority thread that is ready to run is given the CPU.

• A thread can be preempted by a higher-priority thread. In this case, a lower-
priority thread that does not yield the processor is simply preempted—no matter
what it is doing—by a higher-priority thread. Basically, as soon as a higher- priority
thread wants to run, it does. This is called preemptive multitasking.

In cases where two threads with the same priority are competing for CPU cycles, the
situation is a bit complicated. For operating systems such as Windows 98, threads of equal
priority are time-sliced automatically in round-robin fashion. For other types of operating
systems, threads of equal priority must voluntarily yield control to their peers.
If they don’t, the other threads will not

Synchronization

Because multithreading introduces an asynchronous behavior to your programs, there
must be a way for you to enforce synchronicity when you need it. For example, if you
want two threads to communicate and share a complicated data structure, such as a
linked list, you need some way to ensure that is, you must prevent one thread from
writing data while another thread is in the middle of reading it. For this purpose,
Java implements an elegant twist on an age-old model of interprocess
synchronization: the monitor. The monitor is a control mechanism first defined by
C.A.R. Hoare. You can think of a monitor as a very small box that can hold only one
thread. Once a thread enters a monitor, all other threads must wait until that thread
exits the monitor. In this way, a monitor can be used to protect a shared asset from
being manipulated by more than one thread at a time.

.

Messaging

After you divide your program into separate threads, you need to define how they will
communicate with each other. When programming with most other languages, you must
depend on the operating system to establish communication between threads. This, of
course, adds overhead. By contrast, Java provides a clean, low-cost way for two or more
threads to talk to each other, via calls to pre messaging system allows a thread to enter a

synchronized method on an object, and then wait there until some other thread explicitly

notifies it to come out.

Thread class and Runnable interface

The Thread Class and the Runnable Interface

Thread class, its methods, and its companion interface, Runnable. Thread encapsulates a thread of

execution oSincetheethereal stateyouofa runningcan’tthread, directlyyou will deal with it through its

proxy, the Thread instance that spawned it. To create a new thread, your program will either extend

Thread or implement the Runnable interface.

The Thread class defines several methods that help manage threads.

Main method

When a Java program starts up, one thread begins running immediately. This is usually
called the main thread of your program, because it is the one that is executed when your
program begins. The main thread is important for two reasons:

o It is the thread from which . other ―chil o Often it must be the last thread to finish execution
because it performs various

shutdown actions.

Although the main thread is created automatically when your program is started, it can be
controlled through a Thread object. To do so, you must obtain a reference to it bycalling

the method currentThread(), which is a public static member of Thread. Its general
form is

o static Thread currentThread()

This method returns a reference to the thread in which it is called. Once you have a
reference to the main thread, you can control it just like any other thread.

// Controlling the main Thread.

class CurrentThreadDemo {

public static void main(String args[]) {
Thread t = Thread.currentThread();
System.out.println("Current thread: " + t);
// change the name of the thread
t.setName("My Thread");

System.out.println("After name change: " +
t); try {

for(int n = 5; n > 0; n--) {
System.out.println(n);
Thread.sleep(1000);

}

} catch (InterruptedException e) {
System.out.println("Main thread interrupted");

}

}}
Current thread: Thread[main,5,main]

After name change: Thread[My

Thread,5,main] 5 4 3 2 1

How to create a thread
In the most general sense, you create a thread by instantiating an object of type Thread.
Java defines two ways in which this can be accomplished:

You can implement the Runnable interface.

You can extend the Thread class, itself.

Implementing thread class

The easiest way to create a thread is to create a class that implements the Runnable
interface. Runnable abstracts a unit of executable code. You can construct a thread on any

 object that implements Runnable. To implement Runnable, a class need only implement
 a single method called run(), which is declared like this:

o public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to
understand that run() can call other methods, use other classes, and declare variables, just
like the main thread can. The only difference is that run() establishes the entry point for
another, concurrent thread of execution within your program. This thread will end when
run() returns.

After you create a class that implements Runnable, you will instantiate an object of type
Thread from within that class. Thread defines several constructors. The one that we will
use is shown here:

o Thread(Runnable threadOb, String threadName)
In this constructor, threadOb is an instance of a class that implements the
Runnableinterface. This defines where execution of the thread will begin. The name of the
new thread is specified by threadName.

After the new thread is created, it will not start running until you call its start()

method, which is declared within Thread. In essence, start() executes a call to run().

The start() method is shown here:

o void start()

Extending thread class

The second way to create a thread is to create a new class that extends Thread, and then to create
an instance of that class. The extending class must override the run() method, which is the entry
point for the new thread. It must also call start() to begin execution of the new thread. Here is the
preceding program rewritten to extend Thread

// Create a second thread byextending Thread
class NewThread extends Thread {
NewThread() {

// Create a new, second thread

super("Demo Thread");
System.out.println("Child thread: " + this);
start(); // Start the thread

}

// This is the entry point for the second thread.
public void run() {

try {

for(int i = 5; i > 0; i--) {
System.out.println("Child Thread: " + i);
Thread.sleep(500);

}

} catch (InterruptedException e) {
System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

class ExtendThread {

public static void main(String args[]) {
new NewThread(); // create a new
thread try {

for(int i = 5; i > 0; i--) {
System.out.println("Main Thread: " +
i); Thread.sleep(1000);

}

} catch (InterruptedException e) {
System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

Synchronization

When two or more threads need access to a shared resource, they need some way to ensure that the
resource will be used by only one thread at a time. The process by which this is achieved is called
synchronization. As you will see, Java provides unique, language-level support for it. Key to
synchronization is the concept of the monitor (also called a semaphore).

A monitor is an object that is used as a mutually exclusive lock, or mutex. Only one thread can own
a monitor at a given time. When a thread acquires a lock, it is said to have entered the monitor. All
other threads attempting to enter the locked monitor will be suspended until the first thread exits
the monitor. These other threads are said to be waiting for the monitor. A thread that owns a
monitor can reenter the same monitor if it so desires.

You can synchronize your code in either of two ways. Both involve the use of the synchronized

keyword, and both are examined here.

Using Synchronized Methods

Synchronization is easy in Java, because all objects have their own implicit monitor associated

with them. To enter an object’s m with the synchronized keyword. While a thread is inside a

synchronized method,all other

threads that try to call it (or any other synchronized method) on the same instance have to wait.
To exit the monitor and relinquish control of the object to the next waiting thread, the owner of
the monitor simply returns from the synchronized method.

While creating synchronized methods within classes that you create is an easy and
effective means of achieving synchronization, it will not work in all cases. To understand why,
consider the following. Imagine that you want to synchronize access to objects of a class that was

not designed for multithreaded access. That is, the class does not use synchronized methods.
Further, this class was not created by you, but by a third party, and you do not have access to the
source code. Thus, you can’t synchronizedadd to the appropriate methods within the class. How

can access to an object of this class be synchronized? Fortunately, the solution to this problem is
quite easy: You simply put calls to the methods defined by this class inside a synchronized block.
This is the general form of the synchronized statement:

synchronized(object) {

// statements to be synchronized
}

Here, object is a reference to the object being synchronized. A synchronized block ensures that a
call to a method that is a member of object occurs only after the current thread has successfully
entered object’s monitor.

Here is an alternative version of the preceding example, using a synchronized block within the
run() method:

// This program uses a synchronized block.

class Callme {

void call(String msg) {
System.out.print("[" +
msg); try {
Thread.sleep(1000);

} catch (InterruptedException e) {
System.out.println("Interrupted");

}

System.out.println("]");

}

}

class Caller implements Runnable
{ String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s)
{ target = targ;
msg = s;

t = new Thread(this);
t.start();

}

// synchronize calls to
call() public void run() {

synchronized(target) { // synchronized
block target.call(msg);

}

}

}

class Synch1 {

public static void main(String args[]) {
Callme target = new Callme();

Caller ob1 = new Caller(target, "Hello");

Caller ob2 = new Caller(target, "Synchronized");
Caller ob3 = new Caller(target, "World");

// wait for threads to
end try {
ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException e) {
System.out.println("Interrupted");

}

}

}

Here, the call() method is not modified by synchronized. Instead, the synchronized statement is
used inside Caller’srun() method. This causes the same correct output as the preceding example,
because each thread waits for the prior one to finish before proceeding.

Daemon Threads

A ―daemon‖ thread is one that is supposed to as the program is running, but is not part of the essence of
the program. Thus when all of the non-daemon threads complete, the program is terminated. you an find
out if a thread is a daemon by calling isDaemon(), and you can turn the setDaemon().if a thread is a
daemon, then any threads it creates will automatically be daemons.

INTER-THREAD COMMUNICATION IN JAVA

Inter-thread communication or Co-operation is all about allowing synchronized threads to
communicate with each other.

Cooperation (Inter-thread communication) is a mechanism in which a thread is paused running in
its critical section and another thread is allowed to enter (or lock) in the same critical section to be
executed.It is implemented by following methods of Object class:

wait()
notify()

notifyAll()

1) wait() method

Causes current thread to release the lock and wait until either another thread invokes the notify()
method or the notifyAll() method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor, so it must be called from the synchronized
method only otherwise it will throw exception.

Method Description

public final void wait()throws InterruptedException waits until object is notified.

public final void wait(long timeout)throws waits for the specified amount of

InterruptedException time.

2) notify() method

Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this
object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion
of the implementation. Syntax:

public final void notify()

3) notifyAll() method

Wakes up all threads that are waiting on this object's monitor. Syntax:

public final void notifyAll()

Understanding the process of inter-thread communication

The point to point explanation of the above diagram is as follows:

1. Threads enter to acquire lock.
2. Lock is acquired by on thread.

3. Now thread goes to waiting state if you call wait() method on the object. Otherwise it
releases the lock and exits.

4. If you call notify() or notifyAll() method, thread moves to the notified state (runnable
state).

5. Now thread is available to acquire lock.

6. After completion of the task, thread releases the lock and exits the monitor state of the
object.

Why wait(), notify() and notifyAll() methods are defined in Object class not
Thread class?

It is because theyare related to lock and object has a lock.

Difference between wait and sleep?

Let's see the important differences between wait and sleep methods.

wait() sleep()

wait() method releases the lock sleep() method doesn't release the lock.

is the method of Object class is the method of Thread class

is the non-static method is the static method

is the non-static method is the static method

should be notified by notify() or notifyAll() after the specified amount of time, sleep is
methods completed.

Example of inter thread communication in java

Let's see the simple example of inter thread communication.

1. class Customer{
2. int amount=10000;

3.

4. synchronized void withdraw(int amount){
5. System.out.println("going to withdraw...");

6.

7. if(this.amount<amount){
8. System.out.println("Less balance; waiting for deposit...");
9. try{wait();}catch(Exception e){}
10. }

11. this.amount-=amount;

12. System.out.println("withdraw completed...");
13. }
14.

15. synchronized void deposit(int amount){
16. System.out.println("going to deposit...");

17. this.amount+=amount;

18. System.out.println("deposit completed... ");
19. notify();
20. }

21. }

22.

23. class Test{
24. public static void main(String args[]){
25. final Customer c=new Customer();
26. new Thread(){

27. public void run(){c.withdraw(15000);}
28. }.start();
29. new Thread(){
30. public void run(){c.deposit(10000);}
31. }.start();
32.

33. }}

Output: going towithdraw...

Less balance; waiting for

deposit... going to deposit...

deposit
completed...
withdrawcomple
ted

INTERRUPTING A THREAD:

If any thread is in sleeping or waiting state (i.e. sleep() or wait() is invoked), calling the interrupt() method

on the thread, breaks out the sleeping or waiting state throwing InterruptedException. If the thread is not

in the sleeping or waiting state, calling the interrupt() method performs normal behaviour and doesn't

interrupt the thread but sets the interrupt flag to true. Let's first see the methods provided by the Thread

class for thread interruption.

The 3 Methods Provided By The Thread Class For Interrupting A Thread

public void interrupt()

public static boolean interrupted()

public boolean isInterrupted()

Example of interrupting a thread that stops working

In this example, after interrupting the thread, we are propagating it, so it will stop working. If we don't want

to stop the thread, we can handle it where sleep() or wait() method is invoked. Let's first see the example

where we are propagating the exception.

1. class TestInterruptingThread1 extends Thread{
2. public void run(){
3. try{
4. Thread.sleep(1000);
5. System.out.println("task");
6. }catch(InterruptedException e){
7. throw new RuntimeException("Thread interrupted..."+e); 8. }
9.
10. }

11.

12. public static void main(String args[]){
13. TestInterruptingThread1 t1=new TestInterruptingThread1();
14. t1.start();
15. try{
16. t1.interrupt();
17. }catch(Exception e){System.out.println("Exception handled "+e);}
18.

19. }

20. }

Output:Exception in thread-0
java.lang.RuntimeException: Thread interrupted...

java.lang.InterruptedException: sleep interrupted at

A.run(A.java:7)

Example of interrupting a thread that doesn't stop working

In this example, after interrupting the thread, we handle the exception, so it will break out the sleeping but
will not stop working.

1. class TestInterruptingThread2 extends Thread{
2. public void run(){
3. try{
4. Thread.sleep(1000);
5. System.out.println("task");
6. }catch(InterruptedException e){
7. System.out.println("Exception handled
"+e); 8. }
9. System.out.println("thread is running...");
10. }

11.

12. public static void main(String args[]){
13. TestInterruptingThread2 t1=new TestInterruptingThread2();
14. t1.start();

15.

16. t1.interrupt();
17.

18. }
19. }

Output:Exception handled

java.lang.InterruptedException: sleep interrupted thread is running...

Example of interrupting thread that behaves normally

If thread is not in sleeping or waiting state, calling the interrupt() method sets the interrupted flag to true
that can be used to stop the thread by the java programmer later.

1. class TestInterruptingThread3 extends Thread{

2.

3. public void run(){
4. for(int i=1;i<=5;i++)
5. System.out.println(i);

6. }

7.

8. public static void main(String args[]){
9. TestInterruptingThread3 t1=new TestInterruptingThread3();
10. t1.start();
11.

12. t1.interrupt();
13.

14. }
15. }

Output:1

2

3
4

5

What About Isinterrupted And Interrupted Method?

The isInterrupted() method returns the interrupted flag either true or false. The static interrupted() method

returns the interrupted flag afterthat it sets the flag to false if it is true.

1. public class TestInterruptingThread4 extends Thread

2. {

3. public void run(){

4. for(int i=1;i<=2;i++){

5. if(Thread.interrupted()){
6. System.out.println("code for interrupted thread"); 7. }
8. else{
9. System.out.println("code for normal thread");
10. }
11.

12. }//end of for loop
13. }
14.

15. public static void main(String args[]){

16.

17. TestInterruptingThread4 t1=new TestInterruptingThread4();
18. TestInterruptingThread4 t2=new TestInterruptingThread4();

20. t1.start();
21. t1.interrupt();
23. t2.start();
25. }
26. }

Output:Code for interrupted thread code for normal thread code for normal thread code for

normal thread

DEPARTMENT OF IT UNIT-IV OOP THROGH JAVA

Collection Framework in java –Introduction to java collections- overview of java collection
frame work-generics-commonly used collection classes- Array List- vector -hash table-stack-
enumeration-iterator-string tokenizer -random -scanner -calendar and properties

Files – streams–byte streams- character stream- text input/output- binary input/output- file
management using file class.

Connecting to Database –JDBC Type 1 to 4 drivers- connecting to a database- quering a database
and processing the results- updating data with JDBC Data Access Object(DAO)

Collections in Java

Collections in java is a framework that provides an architecture to store and manipulate the group
of objects.

All the operations that you perform on a data such as searching, sorting, insertion, manipulation,
deletion etc. can be performed by Java Collections.

Java Collection simply means a single unit of objects. Java Collection framework provides many

interfaces (Set, List, Queue, Deque etc.) and classes (ArrayList, Vector, LinkedList, PriorityQueue,

HashSet, LinkedHashSet, TreeSet etc).

WHAT IS COLLECTION IN JAVA

Collection represents a single unit of objects i.e. a group.

What is framework in java

provides readymade architecture represents set of classes and interface. Iis optional.

What is Collection framework

Collection framework represents a unified architecture for storing and manipulating group of
objects. It has:

1. Interfaces and its implementations i.e. classes
2. Algorithm

Hierarchy of Collection Framework

Let us see the hierarchy of collection framework.The java.util package contains all the classes

and interfaces for Collection framework.

Methods of Collection interface
There are many methods declared in the Collection interface. They are as follows:

No. Method Description

add(Object
1 public boolean is used to insert an element in this collection. element)

is used to insert the specified collection elements in the invoking

2 public boolean addAll(collection c) collection.
remove(Object)

3 public boolean is used to delete an element from this
collection. element)

4 public boolean is used to delete all the elements of specified collection from

the removeAll(Collection c)invoking collection.

5 public boolean retainAll(Collection C) is used to delete all the elements of invoking collection except
the specified collection.

6 public int size() return the total number of elements in the collection.

7 public void clear() removes the total no of element from the collection.

8 public boolean contains(object element) is used to search an element

9 public boolean containsAll(Collection c) is used to search the specified collection in this collection.

10 public Iterator iterator() returns an iterator.

11 public Object[] toArray() converts collection into array.

12 public boolean isEmpty() checks if collection is empty.

13 Public booleanequals(Object element) matches two collection.

14 public int hashCode() returns the hashcode number for collection.

Iterator interface

Iterator interface provides the facility of iterating the elements in forward direction only.

Methods of Iterator interface

There are only three methods in the Iterator interface. They are:

1. public boolean hasNext() it returns true if iterator has more elements.
2. public object next() it returns the element and moves the cursor pointer to the next element.

3. public void remove() it removes the last elements returned by the iterator. It is rarely used.

Java ArrayList class

Java ArrayList class uses a dynamic array for storing the elements.It extends AbstractList
class and implements List interface.
Java ArrayList class can contain duplicate elements.

Java ArrayList class maintains insertion order.

Java ArrayList class is non synchronized.

 Java ArrayList allows random access because array works at the index basis.

In Java ArrayList class, manipulation is slow because a lot of shifting needs to be
 occurred if any element is removed from the array list.

Java Non-generic Vs Generic Collection

Java collection framework was non-generic before JDK 1.5. Since 1.5, it is generic.

Java new generic collection allows you to have only one type of object in collection. Now it is
type safe so typecasting is not required at run time.

Let's see the old non-generic example of creating java collection.

1. ArrayList al=new ArrayList();//creating old non-generic arraylist

Let's see the new generic example of creating java collection.

1. ArrayList<String> al=new ArrayList<String>();//creating new generic arraylist

In generic collection, we specify the type in angular braces. Now ArrayList is forced to have only

specified type of objects in it. If you try to add another type of object, it gives compile time error.

Example of Java ArrayList class

1. import java.util.*;

2. class TestCollection1{
3. public static void main(String args[]){

4.

5. ArrayList<String> al=new ArrayList<String>();//creating arraylist
6. al.add("Ravi");//adding object in arraylist
7. al.add("Vijay");
8. al.add("Ravi");
9. al.add("Ajay");

10.

11. Iterator itr=al.iterator();//getting Iterator from arraylist to traverse elements
12. while(itr.hasNext()){
13. System.out.println(itr.next());
14. }
15. }

16. }

Ravi

Vijay

Ravi

Ajay

Two ways to iterate the elements of collection in java

1. By Iterator interface.

2. By for-each loop.

In the above example, we have seen traversing ArrayList by Iterator. Let's see the example to
traverse ArrayList elements using for-each loop.

Iterating the elements of Collection by for-each loop

1. import java.util.*;
2. class TestCollection2{
3. public static void main(String args[]){
4. ArrayList<String> al=new ArrayList<String>();
5. al.add("Ravi");
6. al.add("Vijay");
7. al.add("Ravi");
8. al.add("Ajay");
9. for(String obj:al)
10. System.out.println(obj);
11. }

12. }

Ravi

Vijay

Ravi

Ajay

User-defined class objects in Java ArrayList

1. class Student{
2. int rollno;

3. String name;
4. int age;
5. Student(int rollno,String name,int age){
6. this.rollno=rollno;
7. this.name=name;
8. this.age=age;
9. }
10. }

1. import java.util.*;
2. public class TestCollection3{
3. public static void main(String args[]){
4. //Creating user-defined class objects
5. Student s1=new Student(101,"Sonoo",23);

6. Student s2=new Student(102,"Ravi",21);
7. Student s2=new Student(103,"Hanumat",25);

8.

9. ArrayList<Student> al=new ArrayList<Student>();//creating arraylist
10. al.add(s1);//adding Student class object
11. al.add(s2);
12. al.add(s3);

13. Iterator itr=al.iterator();

14.

15. //traversing elements of ArrayList object
16. while(itr.hasNext()){

17. Student st=(Student)itr.next();System.out.println(st.rollno+" "+st.name+" "+st.age);
19. }
20. }

21. }

101 Sonoo 23
102 Ravi 21
103 Hanumat 25

Example of addAll(Collection c) method

1. import java.util.*;
2. class TestCollection4{
3. public static void main(String args[]){

4.

5. ArrayList<String> al=new ArrayList<String>();
6. al.add("Ravi");
7. al.add("Vijay");
8. al.add("Ajay");
10. ArrayList<String> al2=new ArrayList<String>();
11. al2.add("Sonoo");
12. al2.add("Hanumat")
; 13.
14. al.addAll(al2);

15.

16. Iterator itr=al.iterator();

17. while(itr.hasNext()){
18. System.out.println(itr.next());
19. }

20. }

21. }

Ravi

Vijay

Ajay

Sonoo

Hanumat

Example of removeAll() method

1. import java.util.*;
2. class TestCollection5{

3. public static void main(String args[]){

5. ArrayList<String> al=new ArrayList<String>();
6. al.add("Ravi");
7. al.add("Vijay");
8. al.add("Ajay");
9.

10. ArrayList<String> al2=new ArrayList<String>();
11. al2.add("Ravi");

12. al2.add("Hanumat")
; 13.
14. al.removeAll(al2);
15.

16. System.out.println("iterating the elements after removing the elements of al2...");
17. Iterator itr=al.iterator();
18. while(itr.hasNext()){
19. System.out.println(itr.next());
20. }

21.
22. }

23. }

iterating the elements after removing the elements of al2...
Vijay

Ajay

Example of retainAll() method

1. import java.util.*;
2. class TestCollection6{
3. public static void main(String args[]){
4. ArrayList<String> al=new ArrayList<String>();
5. al.add("Ravi");
6. al.add("Vijay");
7. al.add("Ajay");
8. ArrayList<String> al2=new ArrayList<String>();
9. al2.add("Ravi");

10. al2.add("Hanumat")
; 11.
12. al.retainAll(al2);

13.

14. System.out.println("iterating the elements after retaining the elements of al2...");
15. Iterator itr=al.iterator();
16. while(itr.hasNext()){
17. System.out.println(itr.next());
18. }

19. }

20. }

iterating the elements after retaining the elements of al2...

Ravi

Byte Streams

Java byte streams are used to perform input and output of 8-bit bytes. Though there are many
classes related to byte streams but the most frequently used classes are , FileInputStream and
FileOutputStream. Following is an example which makes use of these two classes to copy an
input file into an output file:

import java.io.*;

public class CopyFile {

public static void main(String args[]) throws IOException

{

FileInputStream in = null;
FileOutputStream out = null;

try {

in = new FileInputStream("input.txt"); out
= new FileOutputStream("output.txt");
int c;

while ((c = in.read()) != -1)

{ out.write(c);

}

}finally {

if (in != null) {

in.close();

}

if (out != null) {

out.close();

}
}

}

}

Now let's have a file input.txt with the following content:

This is test for copy file.
As a next step, compile above program and execute it, which will result in creating output.txt file
with the same content as we have in input.txt. So let's put above code in CopyFile.java file and
do the following:

$javac CopyFile.java

$java CopyFile

Character Streams
Java Byte streams are used to perform input and output of 8-bit bytes, where as Java Character
streams are used to perform input and output for 16-bit unicode. Though there are many classes
related to character streams but the most frequently used classes are , FileReader and FileWriter..
Though internally FileReader uses FileInputStream and FileWriter uses FileOutputStream but here
major difference is that FileReader reads two bytes at a time and FileWriter writes two bytes at a
time.

We can re-write above example which makes use of these two classes to copy an input file
(having unicode characters) into an output file:

import java.io.*;

public class CopyFile {

public static void main(String args[]) throws IOException

{

FileReader in = null;
FileWriter out = null;

try {

in = new FileReader("input.txt");
out = new FileWriter("output.txt");

int c;

while ((c = in.read()) != -1)
{ out.write(c);

}

}finally {

if (in != null) {

in.close();
}

if (out != null) {
out.close();

}

}

DEPARTMENT OF IT OOP THROGH JAVA

}

}

Now let's have a file input.txt with the following content:

This is test for copy file.

As a next step, compile above program and execute it, which will result in creating output.txt file
with the same content as we have in input.txt. So let's put above code in CopyFile.java file and
do the following:

$javac CopyFile.java

$java CopyFile

Standard Streams

All the programming languages provide support for standard I/O where user's program can take
input from a keyboard and then produce output on the computer screen. If you are aware if C or
C++ programming languages, then you must be aware of three standard devices STDIN, STDOUT
and STDERR. Similar way Java provides following three standard streams

 Standard Input: This is used to feed the data to user's program and usually a keyboard is used as

standard input stream and represented as System.in.

Standard Output: This is used to output the data produced bythe user's program and
usually a computer screen is used to standard output stream and represented as
System.out.

Standard Error: This is used to output the error data produced by the user's program
and usually a computer screen is used to standard error stream and represented as
System.err.

Following is a simple program which creates InputStreamReader to read standard input stream
until the user types a "q":

import java.io.*;

public class ReadConsole {

public static void main(String args[]) throws IOException

{

InputStreamReader cin = null;

try {

cin = new InputStreamReader(System.in);
System.out.println("Enter characters, 'q' to quit.");
char c;

do {

c = (char) cin.read();
System.out.print(c);

} while(c !=

'q'); }finally {

if (cin != null)
{ cin.close();

}

}
}

}

Let's keep above code in ReadConsole.java file and tryto compile and execute it as below. This
program continues reading and outputting same character until we press 'q':

$javac ReadConsole.java

$java ReadConsole

Enter characters, 'q' to quit.
1 1

Reading and Writing Files:

As described earlier, A stream can be defined as a sequence of data. The InputStream is used to
read data from a source and the OutputStream is used for writing data to a destination.

Here is a hierarchy of classes to deal with Input and Output streams.

4 This method reads r.length bytes from the input stream into an array. Returns the total

number of bytes read. If end of file -1 will be returned.

5 public int available() throws IOException{}

Gives the number of bytes that can be read from this file input stream. Returns an int.

There are other important input streams available, for more detail you can refer to the following
links:

ByteArrayInputStream
DataInputStream

FileOutputStream:

FileOutputStream is used to create a file and write data into it. The stream would create a file, if
it doesn't already exist, before opening it for output.

Here are two constructors which can be used to create a FileOutputStream object.

Following constructor takes a file name as a string to create an input stream object to write the
file:

OutputStream f = new FileOutputStream("C:/java/hello")

Following constructor takes a file object to create an output stream object to write the file. First,
we create a file object using File() method as follows:

File f = new File("C:/java/hello");

OutputStream f = new FileOutputStream(f);

Once you have OutputStream object in hand, then there is a list of helper methods, which can be
used to write to stream or to do other operations on the stream.

SN Methods with Description

public void close() throws IOException{}

1 This method closes the file output stream. Releases any system resources associated with
the file. Throws an IOException.

protected void finalize()throws IOException {}

2 This method cleans up the connection to the file. Ensures that the close method of this file
output stream is called when there are no more references to this stream. Throws an
IOException.

3 public void write(int w)throws IOException{}

This methods writes the specified byte to the output stream.
4 public void write(byte[] w)

Writes w.length bytes from the mentioned byte arrayto the OutputStream.

There are other important output streams available, for more detail you can refer to the following
links:

ByteArrayOutputStream

DataOutputStream

Example:

Following is the example to demonstrate InputStream and OutputStream:

import java.io.*;

public class fileStreamTest{

public static void main(String args[]){

try{

byte bWrite [] = {11,21,3,40,5};

OutputStream os = new FileOutputStream("test.txt");
for(int x=0; x < bWrite.length ; x++){

os.write(bWrite[x]); // writes the bytes

}

os.close();

InputStream is = new FileInputStream("test.txt");

int size = is.available();

for(int i=0; i< size; i++){
System.out.print((char)is.read() + " ");

}

is.close();
}catch(IOException e){

System.out.print("Exception");

}

}

}

The above code would create file test.txt and would write given numbers in binary format. Same
would be output on the stdout screen.

File Navigation and I/O:

There are several other classes that we would be going through to get to know the basics of File
Navigation and I/O.

 File Class

 FileReader Class

 FileWriter Class

http://www.tutorialspoint.com/java/java_file_class.htm
http://www.tutorialspoint.com/java/java_filereader_class.htm
http://www.tutorialspoint.com/java/java_filewriter_class.htm

Directories in Java:
A directory is a File which can contains a list of other files and directories. You use File object to
create directories, to list down files available in a directory. For complete detail check a list of all
the methods which you can call on File object and what are related to directories.

Creating Directories:

There are two useful File utility methods, which can be used to create directories:

The mkdir() method creates a directory, returning true on success and false on failure.
Failure indicates that the path specified in the File object already exists, or that the directory
cannot be created because the entire path does not exist yet.

The mkdirs() method creates both a directory and all the parents of the directory.

Following example creates "/tmp/user/java/bin" directory:

import java.io.File;

public class CreateDir {

public static void main(String args[]) {
String dirname = "/tmp/user/java/bin";
File d = new File(dirname);

// Create directory now.
d.mkdirs();

}

}

Compile and execute above code to create "/tmp/user/java/bin".

Note: Java automatically takes care of path separators on UNIX and Windows as per conventions.
If you use a forward slash (/) on a Windows version of Java, the path will still resolve correctly.

Listing Directories:

You can use list() method provided by File object to list down all the files and directories
available in a directory as follows:

import java.io.File;

public class ReadDir {

public static void main(String[] args) {

File file = null;

String[] paths;

try{

// create new file object
file = new File("/tmp");

// array of files and directory
paths = file.list();

// for each name in the path
array for(String path:paths)

{

// prints filename and directory name
System.out.println(path);

}

}catch(Exception e){
// if any error occurs
e.printStackTrace();

}

}

}

This would produce following result based on the directories and files available in your /tmp

directory:
test1.txt

test2.txt

ReadDir

.java

ReadDir.

class

JDBC

JDBC stands for Java Database Connectivity, which is a standard Java API for database-
independent connectivity between the Java programming language and a wide range of
databases.

The JDBC library includes APIs for each of the tasks commonly associated with database usage:

Making a connection to a

database Creating SQL or

MySQL statements

Executing that SQLor MySQL queries in the

database Viewing & Modifying the resulting

records

Fundamentally, JDBC is a specification that provides a complete set of interfaces that allows
for portable access to an underlying database. Java can be used to write different types of
executables, such as:

 Java

Applications

Java

Applets

Java

Servlets

Java ServerPages (JSPs)

Enterprise JavaBeans (EJBs)

All of these different executables are able to use a JDBC driver to access a database and take
advantage of the stored data.

JDBC provides the same capabilities as ODBC, allowing Java programs to contain
database- independent code.

JDBC Architecture:

The JDBC API supports both two-tier and three-tier processing models for database access
but in general JDBC Architecture consists of two layers:

JDBC API: This provides the application-to-JDBC Manager connection.

JDBC Driver API: This supports the JDBC Manager-to-Driver Connection.

The JDBC API uses a driver manager and database-specific drivers to provide transparent
connectivity to heterogeneous databases.

The JDBC driver manager ensures that the correct driver is used to access each data source.
The driver manager is capable of supporting multiple concurrent drivers connected to multiple
heterogeneous databases.

Following is the architectural diagram, which shows the location of the driver manager with
respect to the JDBC drivers and the Java application:

Common JDBC Components:

The JDBC API provides the following interfaces and classes:

DriverManager: This class manages a list of database drivers. Matches connection

requests from the java application with the proper database driver using
communication subprotocol. The first driver that recognizes a certain subprotocol
under JDBC will be used to establish a database Connection.

Driver: This interface handles the communications with the database server. You
will interact directly with Driver objects very rarely. Instead, you use DriverManager
objects, which manages objects of this type. It also abstracts the details associated
with working with Driver objects

Connection : This interface with all methods for contacting a database. The
connection object represents communication context, i.e., all communication with

 database is through connection object only.
Statement : You use objects created from this interface to submit the SQL statements

 to the database. Some derived interfaces accept parameters in addition to executing
stored procedures.

 ResultSet: These objects hold data retrieved from a database after you execute an
SQL query using Statement objects. It acts as an iterator to allow you to move through
its data. SQLException: This class handles any errors that occur in a database
application.

Creating JDBC Application:

There are following six steps involved in building a JDBC application:

 Import the packages . Requires that you include the packages containing the JDBC
classes needed for database programming. Most often, using import java.sql.* will

 suffice.

Register the JDBC driver . Requires that you initialize a driver so you can open a
communications channel with the database.

 Open a connection . Requires using the DriverManager.getConnection() method to

create a Connection object, which represents a physical connection with the database.

Execute a query . Requires using an object of type Statement for building and
submitting an SQL statement to the database.

Extract data from result set . Requires that you use the appropriate ResultSet.getXXX()
method to retrieve the data from the result set.

Clean up the environment . Requires explicitly closing all database resources
versus relying on the JVM's garbage collection.

Creating JDBC Application:

There are six steps involved in building a JDBC application which I'm going to brief
in this tutorial:

Import the packages:

This requires that you include the packages containing the JDBC classes needed for
database programming. Most often, using import java.sql.* will suffice as follows:
//STEP 1. Import required

packages import java.sql.*;

 Register the JDBC driver:
This requires that you initialize a driver so you can open a communications channel

 with the database. Following is the code snippet to achieve this:

 //STEP 2: Register JDBC driver

 Class.forName("com.mysql.jdbc.Driver")

; Open a connection:
 This requires using the DriverManager.getConnection() method to create a
 Connection object, which represents a physical connection with the database as
 follows:

 //STEP 3: Open a connection

// Database credentials

 static final String USER =

 "username"; static final String

 PASS = "password";

System.out.println("Connecting to database...");

conn = DriverManager.getConnection(DB_URL,USER,PASS);

 Execute a query:

 This requires using an object of type Statement or PreparedStatement for building
 and submitting an SQL statement to the database as follows:
 //STEP 4: Execute a query System.out.println("Creating statement...");

 stmt = conn.createStatement();

 String sql;

 sql = "SELECT id, first, last, age FROM
Employees"; ResultSet rs = stmt.executeQuery(sql);

If there is an SQL UPDATE,INSERT or DELETE statement required, then following code
snippet would be required:

 //STEP 4: Execute a query System.out.println("Creating statement...");
 stmt = conn.createStatement();

 String sql;

 sql = "DELETE FROM Employees"; ResultSet rs = stmt.executeUpdate(sql); Extract data from

 result set:

 This step is required in case you are fetching data from the database. You can use the

appropriate ResultSet.getXXX() method to retrieve the data from the result set as follows:

 //STEP 5: Extract data from result

 set while(rs.next()){
//Retrieve by column name int id = rs.getInt("id");

int age = rs.getInt("age");

String first =

rs.getString("first"); String last

= rs.getString("last");

//Display values System.out.print("ID: " + id); System.out.print(",

Age: " + age); System.out.print(", First: " + first);

System.out.println(", Last: " + last);

}

 Clean up the environment:

You should explicitly close all database resources versus relying on the JVM's
 garbage collection as follows:
 //STEP 6: Clean-up

 environment rs.close();

 stmt.close();

conn.close();

First JDBC Program:

Based on the above steps, we can have following consolidated sample code which we can
use as a template while writing our JDBC code:

This sample code has been written based on the environment and database setup done in
Environment chapter.

//STEP 1. Import required

packages import java.sql.*;

public class FirstExample {

// JDBC driver name and database URL
static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";

static final String DB_URL = "jdbc:mysql://localhost/EMP";

// Database credentials

static final String USER = "username";

static final String PASS = "password";

public static void main(String[] args) {

Connection conn = null;
Statement stmt = null; try{

//STEP 2: Register JDBC driver
Class.forName("com.mysql.jdbc.Driver");

//STEP 3: Open a connection
System.out.println("Connecting to database...");

conn = DriverManager.getConnection(DB_URL,USER,PASS);

//STEP 4: Execute a query
System.out.println("Creating statement...");

stmt = conn.createStatement();String sql;

sql = "SELECT id, first, last, age FROM Employees";

ResultSet rs = stmt.executeQuery(sql);

//STEP 5: Extract data from result

set while(rs.next()){

//Retrieve by column name int id = rs.getInt("id");

int age = rs.getInt("age");

String first = rs.getString("first");

String last = rs.getString("last");

//Display values System.out.print("ID: " + id);

System.out.print(", Age: " + age); System.out.print(", First: " + first);

System.out.println(", Last: " + last);

}
//STEP 6: Clean-up environment

rs.close();
stmt.close();

conn.close();

}catch(SQLException se){

 //Handle errors for JDBC

se.printStackTrace();

}catch(Exception e){

//Handle errors for Class.forName

e.printStackTrace();

 }finally{
//finally block used to close
resources try{

if(stmt!=null)

stmt.close();

}catch(SQLException se2){

}// nothing we can do

try{

if(conn!=null)
conn.close();

}catch(SQLException se){

se.printStackTrace();

}//end finally try
}//end try
System.out.println("Goodbye!");

}//end main

}//end FirstExample

Now let us compile above example as follows:

C:\>javac

FirstExample.java C:\>

When you run FirstExample, it produces following result:

C:\>java FirstExample

Connecting to database...
Creating statement...

ID: 100, Age: 18, First: Zara, Last: Ali
ID: 101, Age: 25, First: Mahnaz, Last:

Fatma ID: 102, Age: 30, First: Zaid,

 Last: Khan ID: 103, Age: 28, First:

 Sumit, Last: Mittal

 SQLException Methods:

 A SQLException can occur both in the driver and the database. When such an exception occurs,

an object of type SQLException will be passed to the catch clause.

 The passed SQLException object has the following methods available for retrieving additional
 information about the exception:

Method Description

getErrorCode() Gets the error number associated with the exception.

getMessage() Gets the JDBC driver's error message for an error handled by

the driver or gets the Oracle error number and message for a database error.

getSQLState() Gets the XOPEN SQLstate string. For a JDBC driver error, no

useful information is returned from this method. For a database
error, the five-digit XOPEN SQLstate code is returned

getNextException() Gets the next Exception object in the exception chain.

printStackTrace() Prints the current exception, or throwable, and its backtrace to a
standard error stream.

printStackTrace(PrintStream s) Prints this throwable and its backtrace to the print stream
you specify.

printStackTrace(PrintWriter w) Prints this throwable and its backtrace to the print writer
you specify

By utilizing the information available from the Exception object, you can catch an
exception and continue your program appropriately. Here is the general form of a try
block:

try {
// Your risky code goes between these curly braces!!!

}

catch(Exception ex) {

// Your exception handling code goes between these

// curly braces, similar to the exception clause

// in a PL/SQL block.

}

finally {

// Your must-always-be-executed code goes between these

// curly braces. Like closing database connection.
}

JDBC - Data Types:

The following table summarizes the default JDBC data type that the Java data type is converted
to when you call the setXXX() method of the PreparedStatement or CallableStatement object or
the ResultSet.updateXXX() method.

JDBC/Java setXXX updateXXX

SQL

VARCHAR java.lang.String setString updateString

CHAR java.lang.String setString updateString

LONGVARCHAR java.lang.String setString updateString

BIT Boolean setBoolean updateBoolean

NUMERIC java.math.BigDecimal setBigDecimal updateBigDecimal

TINYINT Byte setByte updateByte

SMALLINT Short setShort updateShort

INTEGER Int setInt updateInt

BIGINT Long setLong updateLong

REAL Float setFloat updateFloat

FLOAT Float setFloat updateFloat

DOUBLE Double setDouble updateDouble

VARBINARY byte[] setBytes updateBytes

BINARY byte[] setBytes updateBytes

DATE java.sql.Date setDate updateDate

TIME java.sql.Time setTime updateTime

TIMESTAMP java.sql.Timestamp setTimestamp updateTimestamp

CLOB java.sql.Clob setClob updateClob

BLOB java.sql.Blob setBlob updateBlob

ARRAY java.sql.Array setARRAY updateARRAY

REF java.sql.Ref SetRef updateRef

STRUCT java.sql.Struct SetStruct updateStruct

JDBC 3.0 has enhanced support for BLOB, CLOB, ARRAY, and REF data types.
The ResultSet object now has updateBLOB(), updateCLOB(), updateArray(), and
updateRef() methods that enable you to directly manipulate the respective data on the
server.

The setXXX() and updateXXX() methods enable you to convert specific Java types
to specific JDBC data types. The methods, setObject() and updateObject(), enable you
to map almost any Java type to a JDBC data type.

ResultSet object provides corresponding getXXX() method for each data type to
retrieve column value. Each method can be used with column name or by its ordinal
position.

SQL JDBC/Java setXXX getXXX

VARCHAR java.lang.String setString getString

CHAR java.lang.String setString getString

LONGVARCHAR java.lang.String setString getString
BIT Boolean setBoolean getBoolean

NUMERIC java.math.BigDecimal setBigDecimal getBigDecimal

TINYINT Byte setByte getByte

SMALLINT Short setShort getShort

INTEGER Int setInt getInt

BIGINT Long setLong getLong

REAL Float setFloat getFloat

FLOAT Float setFloat getFloat

DOUBLE Double setDouble getDouble

VARBINARY byte[] setBytes getBytes

BINARY byte[] setBytes getBytes

DATE java.sql.Date setDate getDate

TIME java.sql.Time setTime getTime

TIMESTAMP java.sql.Timestamp setTimestamp getTimestamp

CLOB java.sql.Clob setClob getClob

BLOB java.sql.Blob setBlob getBlob

ARRAY java.sql.Array setARRAY getARRAY

REF java.sql.Ref SetRef getRef

STRUCT java.sql.Struct SetStruct getStruct

Sample Code:

This sample example can serve as a template when you need to create your own JDBC
application in the future.

This sample code has been written based on the environment and database setup
done in previous chapter.

Copyand past following example in FirstExample.java, compile and run as follows:

//STEP 1. Import required
packages import java.sql.*;

public class FirstExample {

// JDBC driver name and database URL

static final String JDBC_DRIVER =
"com.mysql.jdbc.Driver"; static final String DB_URL =
"jdbc:mysql://localhost/EMP";

// Database credentials

static final String USER =
"username"; static final String PASS
= "password";

public static void main(String[]
args) { Connection conn = null;

Statement stmt = null;

try{

//STEP 2: Register JDBC driver
Class.forName("com.mysql.jdbc.Driver");
//STEP 3: Open a connection
System.out.println("Connecting to database...");

conn = DriverManager.getConnection(DB_URL,USER,PASS);

//STEP 4: Execute a query
System.out.println("Creating
statement..."); stmt =

conn.createStatement();

String sql;

sql = "SELECT id, first, last, age FROM Employees";

ResultSet rs = stmt.executeQuery(sql);
//STEP 5: Extract data from result
set while(rs.next()){

//Retrieve by column name

int id = rs.getInt("id");

int age = rs.getInt("age");

String first = rs.getString("first");

String last = rs.getString("last");

//Display values System.out.print("ID: " + id);
System.out.print(", Age: " + age);

System.out.print(", First: " + first);

System.out.println(", Last: " + last);

}

//STEP 6: Clean-up
environment rs.close();
stmt.close();

conn.close();

}catch(SQLException se){

//Handle errors for
JDBC
se.printStackTrace()
;

}catch(Exception e){

//Handle errors for Class.forName
e.printStackTrace();

}finally{

//finally block used to close
resources try{

if(stmt!=null) stmt.close();

}
catch(SQLException se2){ }// nothing we can do

try{

if(conn!=null)
conn.close();

}catch(SQLException se){

se.printStackTrace();

}//end finally try

}//end try
System.out.println("Goodbye!");

}//end main

}//end FirstExample

Now let us compile above example as follows:

C:\>javac
FirstExample.java C:\>

When you run FirstExample, it produces following result:

C:\>java FirstExample

Connecting to database...

Creating statement...

ID: 100, Age: 18, First: Zara, Last: Ali
ID: 101, Age: 25, First: Mahnaz, Last:

Fatma ID: 102, Age: 30, First: Zaid,

Last: Khan ID: 103, Age: 28, First:

Sumit, Last: Mittal C:\>

JDBC Drivers Types:
JDBC driver implementations vary because of the wide variety of operating systems and
hardware platforms in which Java operates. Sun has divided the implementation types into
four categories, Types 1, 2, 3, and 4, which is explained below:

Type 1: JDBC-ODBC Bridge Driver:

In a Type 1 driver, a JDBC bridge is used to access ODBC drivers installed on each client
machine. Using ODBC requires configuring on your system a Data Source Name (DSN) that
represents the target database.

When Java first came out, this was a useful driver because most databases only supported
ODBC access but now this type of driver is recommended only for experimental use or when
no other alternative is available.

driver to communicate with the database, understanding the nuances will prove helpful.

Type 4: 100% pure Java:
In a Type 4 driver, a pure Java-based driver that communicates directly with vendor's database
through socket connection. This is the highest performance driver available for the database and

is usually provided by the vendor itself.

This kind of driver is extremely flexible, you don't need to install special software on the client
or server. Further, these drivers can be downloaded dynamically.

MySQL's Connector/J driver is a Type 4 driver. Because of the proprietary nature of their
network protocols, database vendors usually supply type 4 drivers.

Which Driver should be used?

If you are accessing one type of database, such as Oracle, Sybase, or IBM, the preferred driver
type is 4.

If your Java application is accessing multiple types of databases at the same time, type 3 is the
preferred driver.

Type 2 drivers are useful in situations where a type 3 or type 4 driver is not available yet for your
database.

The type 1 driver is not considered a deployment-level driver and is typically used for
development and testing purposes only.

UNIT-V

GUI Programming with Swing –The AWT class hierarchy- introduction to swing- swing Vs
AWT- overview of some swing components –JButton-JLabel- JTextField-JTextArea- simple
applications- Layout management –Layout manager types –border- grid and flow

Event Handling: Events- Event sources- Event classes- Event Listeners- Delegation event model-
Example: handling mouse events- Adapter classes.

The AWT Class Hierarchy:

INTRODUCTION OF SWING

The Swing-related classes are contained in javax.swing and its subpackages, such

as javax.swing.tree. Manyother Swing-related classes and interfaces exist that are not examined in
this chapter.

The remainder of this chapter examines various Swing components and illustrates them through sample
applets.

Difference between AWT and Swing:

There are many differences between java awt and swing that are given below.

No Java AWT Java Swing
.

1) AWT components

are platform-dependent.

Java swing components

are platform-

independent.

2) AWT components

are heavyweight.

Swing components

are lightweight.

3) AWT doesn't support

pluggable look and

feel.

Swing supports

pluggable look and feel.

4) AWT provides less

components than

Swing.

Swing provides more

powerful

components such as

tables, lists, scrollpanes,

colorchooser, tabbedpane

etc.

5) AWT doesn't follows

MVC(Model View

Controller) where

model represents data,

view represents

presentation and

controller acts as an

interface between

model and view.

Swing follows MVC.

Page 98

Hierarchy for Swing Components

JApplet

Fundamental to Swing is the JApplet class, which extends Applet. Applets that

useSwing must be subclasses of JApplet. JApplet is rich with functionality that is notfound in

Applet. For example, JApplet supports various ―panes,‖heglass such pane, and the root pane. For the
examples in this chapter, we will not be using most of

JApplet’s enhanced features. However,AppletandJAppletoneis diffe important to this discussion,
because it is used by the sample applets in this chapter. When

adding a component to an instance of JApplet, do not invoke the add() method of the applet.
Instead, call add() for the content pane of the JApplet object. The content pane can be obtained
via the method shown here:

Container getContentPane()

The add() method of Container can be used to add a component to a content pane.
Its form is shown here:

void add(comp)

Here, comp is the component to be added to the content pane.

Icons and Labels

In Swing, icons are encapsulated by the ImageIcon class, which paints an icon from an image.
Two of its constructors are shown here:

ImageIcon(String filename)

ImageIcon(URL url)

The first form uses the image in the file named filename. The second form uses the image in the
resource identified by url.

The ImageIcon class implements the Icon interface that declares the methods shown here:
Method Description
int getIconHeight() Returns the height of the icon in pixels.

int getIconWidth() Returns the width of the icon in pixels.

void paintIcon(Component comp, Graphics g, int x, int y)

Paints the icon at position x, y on the graphics context g. Additional information about the paint
operation can be provided in comp.

Swing labels are instances of the JLabel class, which extends JComponent. It can display text
and/or an icon. Some of its constructors are shown here:
JLabel(Icon i)

Label(String s)

JLabel(String s, Icon i, int align)

Here, s and i are the text and icon used for the label. The align argument is either LEFT,RIGHT,
CENTER, LEADING, or TRAILING. These constants are defined in the SwingConstants
interface, along with several others used by the Swing classes.

The icon and text associated with the label can be read and written by the following methods:

Icon getIcon()

String getText()

void setIcon(Icon i)

void setText(String s)

Here, i and s are the icon and text, respectively.

The following example illustrates how to create and display a label containing bothan icon and a
string. The applet begins by getting its content pane. Next, an ImageIcon object is created for the
file france.gif. This is used as the second argument to the JLabel constructor. The first and last
arguments for the JLabel constructor are the label text and the alignment. Finally, the label is
added to the content pane.

import java.awt.*;
import javax.swing.*;

/* <applet code="JLabelDemo" width=250 height=150> </applet>*/

public class JLabelDemo extends JApplet

{ public void init() {
// Get content pane

Container contentPane =

getContentPane(); // Create an icon
ImageIcon ii = new
ImageIcon("france.gif"); // Create a label
JLabel jl = new JLabel("France", ii,
JLabel.CENTER); // Add label to the content pane

contentPane.add(jl);

}

}

Output from this applet is shown here:

JText Fields

The Swing text field is encapsulated by the JTextComponent class, which extends JComponent.
It provides functionality that is common to Swing text components. One of its subclasses is
JTextField, which allows you to edit one line of text. Some of its constructors are shown here:

JTextField()
JTextField(int cols)

JTextField(String s, int cols)
JTextField(String s)

Here, s is the string to be presented, and cols is the number of columns in the text field.

The following example illustrates how to create a text field. The applet begins by getting its content
pane, and then a flow layout is assigned as its layout manager. Next, a JTextField object is created
and is added to the content pane.

import java.awt.*;
import javax.swing.*;

/*

<applet code="JTextFieldDemo" width=300 height=50>

</applet>

*/

public class JTextFieldDemo extends JApplet {
JTextField jtf;

public void init() {

// Get content pane

Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());
// Add text field to content pane
jtf = new JTextField(15);

contentPane.add(jtf);

}

}

Output from this applet is shown here:

Buttons

Swing buttons provide features that are not found in the Button class defined by theAWT.
For example, you can associate an icon with a Swing button. Swing buttons are subclasses of the
AbstractButton class, which extends JComponent. AbstractButton contains many methods that
allow you to control the behavior of buttons, check boxes, and radio buttons. For example, you can
define different icons that are displayed for the component when it is disabled, pressed, or selected.
Another icon can be used as a rollover icon, which is displayed when the mouse is positioned over
that component.

The following are the methods that control this behavior:
void setDisabledIcon(Icon di)

void setPressedIcon(Icon pi)

void setSelectedIcon(Icon si)

void setRolloverIcon(Icon ri)

Here, di, pi, si, and ri are the icons to be used for these different conditions.

The text associated with a button can be read and written via the following methods:

String getText() void
setText(String s)

Here, s is the text to be associated with the button.

Concrete subclasses of AbstractButton generate action events when they are pressed. Listeners
register and unregister for these events via the methods shown here:

void addActionListener(ActionListener al)
void removeActionListener(ActionListener al)
Here, al is the action listener.

AbstractButton is a superclass for push buttons, check boxes, and radio buttons.
Each is examined next.

The JButton Class

The JButton class provides the functionality of a push button. JButton allows an icon,a string,
or both to be associated with the push button. Some of its constructors are shown here:
JButton(Icon i)

JButton(String s)

JButton(String s, Icon i)

Here, s and i are the string and icon used for the button.
Check Boxes

The JCheckBox class, which provides the functionality of a check box, is a concrete
implementation of AbstractButton. Its immediate superclass is JToggleButton, which provides
support for two-state buttons. Some of its constructors are shown here:

JCheckBox(Icon i)

JCheckBox(Icon i, boolean state)

JCheckBox(String s)

JCheckBox(String s, boolean state)

JCheckBox(String s, Icon i)

JCheckBox(String s, Icon i, boolean state)

Here, i is the icon for the button. The text is specified by s. If state is true, the check box is
initially selected. Otherwise, it is not.

The state of the check box can be changed via the following
method: void setSelected(boolean state)

Here, state is true if the check box should be checked.

The following example illustrates how to create an applet that displays four checkboxes
and a text field. When a check box is pressed, its text is displayed in the text field.

The content pane for the JApplet object is obtained, and a flow layout is assigned as itslayout
manager. Next, four check boxes are added to the content pane, and icons are assigned for the
normal, rollover, and selected states. The applet is then registered to receive item events. Finally,
a text field is added to the content pane.

When a check box is selected or deselected, an item event is generated. This is handled by
itemStateChanged(). Inside itemStateChanged(), the getItem() method gets the JCheckBox
object that generated the event. The getText() method gets the text for that check box and uses it
to set the text inside the text field.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*; /*

<applet code="JCheckBoxDemo" width=400 height=50>

</applet>

*/

public class JCheckBoxDemo extends JApplet
implements ItemListener {

JTextField jtf;
public void init() {

// Get content pane

Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());
// Create icons

ImageIcon normal = new ImageIcon("normal.gif");

ImageIcon rollover = new ImageIcon("rollover.gif");

ImageIcon selected = new ImageIcon("selected.gif"); //

Add check boxes to the content pane

JCheckBox cb = new JCheckBox("C", normal);
cb.setRolloverIcon(rollover);

cb.setSelectedIcon(selected);
cb.addItemListener(this);
contentPane.add(cb);

cb = new JCheckBox("C++",
normal); cb.setRolloverIcon(rollover);
cb.setSelectedIcon(selected);
cb.addItemListener(this);
contentPane.add(cb);

cb = new JCheckBox("Java", normal);

cb.setRolloverIcon(rollover);

cb.setSelectedIcon(selected);

cb.addItemListener(this);

contentPane.add(cb);

cb = new JCheckBox("Perl", normal);
cb.setRolloverIcon(rollover);
cb.setSelectedIcon(selected);
cb.addItemListener(this);
contentPane.add(cb);

// Add text field to the content
pane jtf = new JTextField(15);
contentPane.add(jtf);

}

public void itemStateChanged(ItemEvent ie) {
JCheckBox cb = (JCheckBox)ie.getItem();
jtf.setText(cb.getText());

}
}

Here is the output:

Radio Buttons

Radio buttons are supported by the JRadioButton class, which is a concrete implementation of
AbstractButton. Its immediate superclass is JToggleButton, which provides support for two-
state buttons. Some of its constructors are shown here:

JRadioButton(Icon i)
JRadioButton(Icon i, boolean state)
JRadioButton(String s)
JRadioButton(String s, boolean state)
JRadioButton(String s, Icon i)

JRadioButton(String s, Icon i, boolean state)

Here, i is the icon for the button. The text is specified by s. If state is true, the button
is initially selected. Otherwise, it is not.
Radio buttons must be configured into a group. Onlyone of the buttons in that

group can be selected at anytime. For example, if a user presses a radio button that is

in a group, anypreviously selected button in that group is automatically deselected.

The ButtonGroup class is instantiated to create a button group. Its default constructor is invoked
for this purpose. Elements are then added to the button group via the following method:

void add(AbstractButton ab)

Here, ab is a reference to the button to be added to the group.

Radio button presses generate action events that are handled by actionPerformed().
The getActionCommand() method gets the text that is associated with a radio
button and uses it to set the text field.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*; /*

<applet code="JRadioButtonDemo" width=300
height=50> </applet>

*/

public class JRadioButtonDemo extends JApplet
implements ActionListener {

JTextField tf;
public void init() {
// Get content pane

Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());

// Add radio buttons to content pane
JRadioButton b1 = new JRadioButton("A");

b1.addActionListener(this);
contentPane.add(b1);

JRadioButton b2 = new JRadioButton("B");
b2.addActionListener(this);
contentPane.add(b2);

JRadioButton b3 = new JRadioButton("C");
b3.addActionListener(this);

contentPane.add(b3);

// Define a button group

ButtonGroup bg = new ButtonGroup();
bg.add(b1);

bg.add(b2);

bg.add(b3);

// Create a text field and add it to the content pane

tf = new JTextField(5);
contentPane.add(tf);
}

public void actionPerformed(ActionEvent ae)

{

tf.setText(ae.getActionCommand());

}

}

Output from this applet is shown here:

Combo Boxes

Swing provides a combo box (a combination of a text field and a drop-down list) through the
JComboBox class, which extends JComponent. A combo box normally displays one entry.
However, it can also display a drop-down list that allows a user to select a different entry. You

can also type your selection into the text field. Two of JComboBox’s constructors here:

JComboBox()
JComboBox(Vector v)

Here, v is a vector that initializes the combo box.
Items are added to the list of choices via the addItem() method, whose signature is
shown here:

void addItem(Object obj)

Here, obj is the object to be added to the combo box.

The following example contains a combo box and a label. The label displays an icon. The combo

box contains entries for ―France‖,. ―Germany‖,

When a country is selected, the label is updated to display the flag for that country.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*; /*

<applet code="JComboBoxDemo" width=300
height=100> </applet>

*/

public class JComboBoxDemo extends JApplet
implements ItemListener {

JLabel jl;

ImageIcon france, germany, italy, japan; public void init() {

// Get content pane

Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());

// Create a combo box and add it

// to the panel

JComboBox jc = new JComboBox();
jc.addItem("France");
jc.addItem("Germany");
jc.addItem("Italy");
jc.addItem("Japan");
jc.addItemListener(this);
contentPane.add(jc);

// Create label

jl = new JLabel(new
ImageIcon("france.gif")); contentPane.add(jl);

}

public void itemStateChanged(ItemEvent ie) {
String s = (String)ie.getItem();

jl.setIcon(new ImageIcon(s + ".gif"));

}

}

Output from this applet is shown here:

Tabbed Panes

A tabbed pane is a component that appears as a group of folders in a file cabinet. Each folder has
a title. When a user selects a folder, its contents become visible. Only one of the folders may be
selected at a time. Tabbed panes are commonly used for setting configuration options.

Tabbed panes are encapsulated by the JTabbedPane class, which extends JComponent. We will
use its default constructor. Tabs are defined via the following method:

void addTab(String str, Component comp)

Here, str is the title for the tab, and comp is the component that should be added to the
tab. Typically, a JPanel or a subclass of it is added.

The general procedure to use a tabbed pane in an applet is outlined here:

1. Create a JTabbedPane object.

2. Call addTab() to add a tab to the pane. (The arguments to this method
define the title of the tab and the component it contains.)
3. Repeat step 2 for each tab.
4. Add the tabbed pane to the content pane of the applet.

Scroll Panes

A scroll pane is a component that presents a rectangular area in which a componentmay be
viewed. Horizontal and/or vertical scroll bars may be provided if necessary.

Scroll panes are implemented in Swing by the JScrollPane class, which extendsJComponent.
Some of its constructors are shown here:

JScrollPane(Component comp) JScrollPane(int vsb, int hsb)

JScrollPane(Component comp, int vsb, int hsb)
Here, comp is the component to be added to the scroll pane. vsb and hsb are intconstants that define
when vertical and horizontal scroll bars for this scroll pane areshown. These constants are defined
by the ScrollPaneConstants interface. Some

examples of these constants are described as follows:

Constant Description

HORIZONTAL_SCROLLBAR_ALWAYS Always provide horizontal scroll bar
HORIZONTAL_SCROLLBAR_AS_NEEDED Provide horizontal scroll bar, if needed
VERTICAL_SCROLLBAR_ALWAYS Always provide vertical scroll bar
VERTICAL_SCROLLBAR_AS_NEEDED Provide vertical scroll bar, if needed

Here are the steps that you should follow to use a scroll pane in an applet:

1. Create a JComponent object.

2. Create a JScrollPane object. (The arguments to the constructor specify
the component and the policies for vertical and horizontal scroll bars.)
3. Add the scroll pane to the content pane of the applet.

The following example illustrates a scroll pane. First, the content pane of the JApplet object is
obtained and a border layout is assigned as its layout manager. Next, a JPanel object is created
and four hundred buttons are added to it, arranged into twenty columns. The panel is then added
to a scroll pane, and the scroll pane is added to the content pane. This causes vertical and horizontal
scroll bars to appear. You can use the scroll bars to scroll the buttons into view.

import java.awt.*;
import javax.swing.*;

/*

<applet code="JScrollPaneDemo" width=300 height=250>

</applet>
*/

public class JScrollPaneDemo extends JApplet

{ public void init() {

// Get content pane

Container contentPane = getContentPane();
contentPane.setLayout(new BorderLayout());

// Add 400 buttons to a panel

JPanel jp = new JPanel();

jp.setLayout(new GridLayout(20, 20));
int b = 0;

for(int i = 0; i < 20; i++) {
for(int j = 0; j < 20; j++) {

jp.add(new JButton("Button " + b));
++b;
}
}

// Add panel to a scroll pane
int v = ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;

int h = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED;
JScrollPane jsp = new JScrollPane(jp, v, h);

// Add scroll pane to the content pane
contentPane.add(jsp, BorderLayout.CENTER);

}

}

Output from this applet is shown here:

Trees

A tree is a component that presents a hierarchical view of data. A user has the ability to expand
or collapse individual subtrees in this display. Trees are implemented in Swing by the JTree class,
which extends JComponent. Some of its constructors are shown here:

JTree(Hashtable ht)
JTree(Object obj[])
JTree(TreeNode tn)
JTree(Vector v)

The first form creates a tree in which each element of the hash table ht is a child node.

Each element of the array obj is a child node in the second form. The tree node tn is the root of
the tree in the third form. Finally, the last form uses the elements of vector v as child nodes.

A JTree object generates events when a node is expanded or collapsed. The
addTreeExpansionListener() and removeTreeExpansionListener() methods allow listeners
to register and unregister for these notifications. The signatures of these methods are shown here:
void addTreeExpansionListener(TreeExpansionListener tel)

void removeTreeExpansionListener(TreeExpansionListener tel)

Here, tel is the listener object.

The getPathForLocation() method is used to translate a mouse click on a specific point of the
tree to a tree path. Its signature is shown here:

TreePath getPathForLocation(int x, int y)

Here, x and y are the coordinates at which the mouse is clicked. The return value is a TreePath

object that encapsulates information about the tree node that was selected by the user.
Tables

A table is a component that displays rows and columns of data. You can drag the cursor on column
boundaries to resize columns. You can also drag a column to a new position. Tables are
implemented by the JTable class, which extends JComponent.

One of its constructors is shown here:

JTable(Object data[][], Object colHeads[])
Here, data is a two-dimensional arrayof the information to be presented, and colHeads
is a one-dimensional array with the column headings.
Here are the steps for using a table in an applet:

1. Create a JTable object.

2. Create a JScrollPane object. (The arguments to the constructor specify the
table and the policies for vertical and horizontal scroll bars.)
3. Add the table to the scroll pane.
4. Add the scroll pane to the content pane of the applet.

The following example illustrates how to create and use a table. The content pane of the JApplet
object is obtained and a border layout is assigned as its layout manager.A one-dimensional array
of strings is created for the column headings. This table has three columns. A two-dimensional
array of strings is created for the table cells. You can see that each element in the array is an array
of three strings. These arrays are passed to the JTable constructor. The table is added to a scroll
pane and then the scroll pane is added to the content pane.

import java.awt.*;
import javax.swing.*;

/*

<applet code="JTableDemo" width=400
height=200> </applet>

*/

public class JTableDemo extends JApplet {

public void init() {

// Get content pane
Container contentPane = getContentPane();

// Set layout manager
contentPane.setLayout(new BorderLayout());

// Initialize column headings

final String[] colHeads = { "Name", "Phone", "Fax"

}; // Initialize data

final Object[][] data = {

{ "Gail", "4567", "8675" },

{ "Ken", "7566", "5555" },

{ "Viviane", "5634", "5887" },
{ "Melanie", "7345", "9222" },
{ "Anne", "1237", "3333" },

{ "John", "5656", "3144" },

{ "Matt", "5672", "2176" }, {

"Claire", "6741", "4244" }, {

"Erwin", "9023", "5159" }, {

"Ellen", "1134", "5332" },

{ "Jennifer", "5689", "1212" },

{ "Ed", "9030", "1313" },

{ "Helen", "6751", "1415"
} };

// Create the table

JTable table = new JTable(data, colHeads);

// Add table to a scroll pane
int v = ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;

int h = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED;

JScrollPane jsp = new JScrollPane(table, v, h);

// Add scroll pane to the content pane
contentPane.add(jsp, BorderLayout.CENTER);

}

}

Here is the output:

Layout Managers

The LayoutManagers are used to arrange components in a particular manner. The Java
LayoutManagers facilitates us to control the positioning and size of the components in GUI
forms. LayoutManager is an interface that is implemented by all the classes of layout managers.
There are the following classes that represent the layout managers:

1. java.awt.BorderLayout

2. java.awt.FlowLayout

3. java.awt.GridLayout

4. java.awt.CardLayout

5. java.awt.GridBagLayout

6. javax.swing.BoxLayout

7. javax.swing.GroupLayout

8. javax.swing.ScrollPaneLayout

9. Javax.swing.SpringLayout etc.

Java BorderLayout

The BorderLayout is used to arrange the components in five regions: north, south, east, west, and
center. Each region (area) may contain one component only. It is the default layout of a frame or
window. The BorderLayout provides five constants for each region:

1. public static final int NORTH

2. public static final int SOUTH

3. public static final int EAST

4. public static final int WEST

5. public static final int CENTER

Java GridLayout

The Java GridLayout class is used to arrange the components in a rectangular grid. One
component is displayed in each rectangle.

Constructors of GridLayout class

1. GridLayout(): creates a grid layout with one column per component in a row.

2. GridLayout(int rows, int columns): creates a grid layout with the given rows and columns
but no gaps between the components.

3. GridLayout(int rows, int columns, int hgap, int vgap): creates a grid layout with the
given rows and columns along with given horizontal and vertical gaps.

Java FlowLayout

The Java FlowLayout class is used to arrange the components in a line, one after another (in a
flow). It is the default layout of the applet or panel.

Fields of FlowLayout class

1. public static final int LEFT

2. public static final int RIGHT

3. public static final int CENTER

4. public static final int LEADING

5. public static final int TRAILING

Constructors of FlowLayout class

1. FlowLayout(): creates a flow layout with centered alignment and a default 5 unit horizontal
and vertical gap.

2. FlowLayout(int align): creates a flow layout with the given alignment and a default 5 unit
horizontal and vertical gap.

3. FlowLayout(int align, int hgap, int vgap): creates a flow layout with the given alignment
and the given horizontal and vertical gap.

Event Handling

Event Handling is at the core of successful applet programming. Most events to which your
applet will respond are generated by the user. These events are passed to your applet in a variety
of ways, with the specific method depending upon the actual event. There are several

types of events. The most commonly handled events are those generated by the mouse, the
keyboard, and various controls, such as a push button. Events are supported by the java.awt.event
package.

Events

In the delegation model, an event is an object that describes a state change in a source. It

can be generated as a consequence of a person interacting with the elements in a graphical user
interface. Some of the activities that cause events to be generated are pressing a button, entering
a character via the keyboard, selecting an item in a list, and clicking the mouse. Many other user
operations could also be cited as examples. Events may also occur that are not directly caused by
interactions with a user interface. For example, an event may be generated when a timer expires,

a counter exceeds a value, a software or hardware failure occurs, or an operation is completed.
You are free to define events that are appropriate for your application.

Event Sources

A source is an object that generates an event. This occurs when the internal state of that object
changes in some way. Sources may generate more than one type of event. A source must register
listeners in order for the listeners to receive notifications about a specific type of event. Each type
of event has its own registration method.

Here is the general form:

public void addTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the event listener. For example, the
method that registers a keyboard event listener is called addKeyListener(). The method that
registers a mouse motion listener is called addMouseMotionListener(). When an event occurs,

all registered listeners are notified and receive a copy of the event object. This is known as multicasting
the event. In all cases, notifications are sent only to listeners that register to receive them. Some sources
may allow only one listener to register. The general form of such a method is this:
public void addTypeListener(TypeListener el)
throws java.util.TooManyListenersException

Here, Type is the name of the event and el is a reference to the event listener. When such an event
occurs, the registered listener is notified. This is known as unicasting the event.

A source must also provide a method that allows a listener to unregister an interest in a specific type of
event.

The general form of such a method is this:

public void removeTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the event listener. For example, to
remove a keyboard listener, you would call removeKeyListener().

The methods that add or remove listeners are provided by the source that generates events. For
example, the Component class provides methods to add and remove keyboard and mouse event
listeners.

Event Classes

The classes that represent events are at the begin our studyof event handling with a tour of the event

classes.

As you will see, they provide a consistent, easy-to-use means of encapsulating events. At the root of the

Java event class hierarchy is EventObject, which is in java.util. It is the superclass for all events. Its one
constructor is shown here: EventObject(Object src)

Here, src is the object that generates this event. EventObject contains two methods: getSource() and
toString(). The getSource() method returns the source of the event. Its general form is shown here:

Object getSource()

As expected, toString() returns the string equivalent of the event.

The class AWTEvent, defined within the java.awt package, is a subclass ofEventObject. It is the
superclass (either directly or indirectly) of all AWT-based events used by the delegation event
model. Its getID() method can be used to determine the type of the event. The signature of

this method is shown here:

int getID()

Additional details about AWTEvent are provided at the end of Chapter 22. At this point, it is
important to know only that all of the other classes discussed in this section are subclasses of
AWTEvent.

To summarize:

■ EventObject is a superclass of all events.

■ AWTEvent is a superclass of all AWT events that are handled by the delegation
event model.
The package java.awt.event defines several types of events that are generated by various user
interface elements. Table 20-1 enumerates the most important of these event classes and provides
a brief description of when they are generated. The most commonly used constructors and methods
in each class are described in the following sections.

Event Listeners

A listener is an object that is notified when an event occurs. It has two major requirements. First,
it must have been registered with one or more sources to receive notifications about specific types
of events. Second, it must implement methods to receive and process these notifications.

The methods that receive and process events are defined in a set of interfaces found in
java.awt.event. For example, the MouseMotionListener interface defines two methods to
receive notifications when the mouse is dragged or moved. Anyobject may receive and process
one or both of these events if it provides an implementation of this interface.

The Delegation Event Model

The modern approach to handling events is based on the delegation event model, which defines
standard and consistent mechanisms to generate and process events. Its conceptis quite simple: a
source generates an event and sends it to one or more listeners. In thisscheme, the listener simply
waits until it receives an event. Once received, the listener processes the event and then returns. The
advantage of this design is that the applicationlogic that processes events is cleanly separated from
the user interface logic that generates those events. A user interface element is able to ―delegate‖
to theaseparateprocessingpieceofcode. of an event
In the delegation event model, listeners must register with a source in order to receive an event
notification. This provides an important benefit: notifications are sent only to listeners that want
to receive them. This is a more efficient way to handle events than the design used by the old
Java 1.0 approach. Previously, an event was propagated up the containment hierarchy until it was
handled by a component. This required components to receive events that they did not process,
and it wasted valuable time. The delegation event model eliminates this overhead.

The MouseEvent Class

There are eight types of mouse events. The MouseEvent class defines the following
integer constants that can be used to identify them:

MOUSE_CLICKED The user clicked the mouse.

MOUSE_DRAGGED The user dragged the mouse.

MOUSE_ENTERED The mouse entered a component.

MOUSE_EXITED The mouse exited from a component.

MOUSE_MOVED The mouse moved.

MOUSE_PRESSED The mouse was pressed.

MOUSE_RELEASED The mouse was released.

MOUSE_WHEEL The mouse wheel was moved (Java 2, v1.4).

MouseEvent is a subclass of InputEvent. Here is one of its constructors.
MouseEvent(Component src, int type, long when, int modifiers,

int x, int y, int clicks, boolean triggersPopup)

Here, src is a reference to the component that generated the event. The type of the event is specified
by type. The system time at which the mouse event occurred is passed in when. The modifiers
argument indicates which modifiers were pressed when a mouse event occurred. The coordinates
of the mouse are passed in x and y. The click count is passed in clicks. The triggersPopup flag
indicates if this event causes a pop-up menu to appear on this platform. Java 2, version 1.4 adds a
second constructor which also allows the button that caused the event to be specified.

The most commonly used methods in this class are getX() and getY(). These return the X and
Y coordinates of the mouse when the event occurred. Their forms are shown here:

int getX()
int getY()

Alternatively, you can use the getPoint() method to obtain the coordinates of the mouse.

It is shown here:

Point getPoint()

It returns a Point object that contains the X, Y coordinates in its integer members: x and y.
The translatePoint() method changes the location of the event. Its form is shown here:
void translatePoint(int x, int y)

Here, the arguments x and y are added to the coordinates of the event.

The getClickCount() method obtains the number of mouse clicks for this event.
Its signature is shown here:
int getClickCount()
The isPopupTrigger() method tests if this event causes a pop-up menu to appear on this
platform. Its form is shown here:
boolean isPopupTrigger()
Java 2, version 1.4 added the getButton() method, shown here.
int getButton()
It returns a value that represents the button that caused the event. The return value will be one of
these constants defined by MouseEvent.

NOBUTTON BUTTON1 BUTTON2 BUTTON3

The NOBUTTON value indicates that no button was pressed or released

Handling Keyboard Events

To handle keyboard events, you use the same general architecture as that shown in
the mouse event example in the preceding section. The difference, of course, is that you
will be implementing the KeyListener interface.

Before looking at an example, it is useful to review how keyevents are generated.

When a key is pressed, a KEY_PRESSED event is generated. This results in a call to the
keyPressed() event handler. When the key is released, a KEY_RELEASED event is generated
and the keyReleased() handler is executed. If a character is generated bythe keystroke, then a
KEY_TYPED event is sent and the keyTyped() handler is invoked.Thus, each time the user
presses a key, at least two and often three events are generated. If all you care about are actual
characters, then you can ignore the information passed by the key press and release events.
However, if your program needs to handle special keys, such as the arrow or function keys, then it
must watch for them through the keyPressed() handler.

There is one other requirement that your program must meet before it can process keyboard
events: it must request input focus. To do this, call requestFocus(), which is defined by
Component. If you don’t, then yourkeyboard eventsprogram. will n

// Demonstrate the keyevent handlers.
import java.awt.*;

import java.awt.event.*;
import java.applet.*;

/*

<applet code="SimpleKey" width=300 height=100>
</applet>

*/

public class SimpleKey extends Applet
implements KeyListener {

String msg = "";

int X = 10, Y = 20; // output
coordinates public void init() {
addKeyListener(this);
requestFocus(); // request input focus

}

public void keyPressed(KeyEvent ke)

{ showStatus("Key Down");

}

public void keyReleased(KeyEvent ke)

{ showStatus("Key Up");

}

public void keyTyped(KeyEvent ke)

{ msg += ke.getKeyChar();

repaint();

}

// Display keystrokes.

public void paint(Graphics g)

{ g.drawString(msg, X, Y);

}

}

Sample output is shown here:

If you want to handle the special keys, such as the arrow or function keys, you need to respond to
them within the keyPressed() handler. They are not available through keyTyped(). To identify
the keys, you use their virtual key codes. For example, the next applet outputs the name of a few
of the special keys:

Adapter Classes

Java provides a special feature, called an adapter class, that can simplify the creation of

event handlers in certain situations. An adapter class provides an empty implementation of all
methods in an event listener interface. Adapter classes are useful when you want to receive and
process only some of the events that are handled by a particular event listener interface. You can
define a new class to act as an event listener by extending one of the adapter classes and
implementing only those events in which you are interested.

For example, the MouseMotionAdapter class has two methods, mouseDragged() and

mouseMoved(). The signatures of these empty methods are exactly as defined in the
MouseMotionListener interface. If you were interested in only mouse drag events, then you could
simply extend MouseMotionAdapter and implement mouseDragged(). The empty
implementation of mouseMoved() would handle the mouse motion events for you. Table 20-4
lists the commonly used adapter classes in java.awt.event and notes the interface that each
implements.

The following example demonstrates an adapter. It displays a message in the status bar of
an applet viewer or browser when the mouse is clicked or dragged. However, all other mouse
events are silently ignored. The program has three classes. AdapterDemo extends Applet. Its init(

) method creates an instance of MyMouseAdapter and registers that object to receive notifications
of mouse events. It also creates an instance of MyMouseMotionAdapter and registers that object
to receive notifications of mouse motion events. Both of the constructors take a reference to the

applet as an argument. MyMouseAdapter implements the mouseClicked() method. The other
mouse events are silently ignored by code inherited from the MouseAdapter class.
MyMouseMotionAdapter implements the mouseDragged() method. The other mouse
motion event is silently ignored bycode inherited from the MouseMotionAdapter class.

Adapter Class Listener Interface

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter

MouseMotionListener

WindowAdapter WindowListener

Demonstrate an adapter.

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

/*

<applet code="AdapterDemo" width=300 height=100>

</applet>

*/

public class AdapterDemo extends Applet

{ public void init() {

addMouseListener(new MyMouseAdapter(this));
addMouseMotionListener(new MyMouseMotionAdapter(this));

}

}

class MyMouseAdapter extends MouseAdapter

{ AdapterDemo adapterDemo;

public MyMouseAdapter(AdapterDemo adapterDemo) {

this.adapterDemo = adapterDemo;

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me) {
adapterDemo.showStatus("Mouse clicked");

}

}

class MyMouseMotionAdapter extends MouseMotionAdapter {
AdapterDemo adapterDemo;

public MyMouseMotionAdapter(AdapterDemo adapterDemo) {
this.adapterDemo = adapterDemo;

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me) {
adapterDemo.showStatus("Mouse dragged");

}

}

	(Autonomous Institution – UGC, Govt. of India)
	(R22A0507) OBJECT ORIENTED PROGRAMMING THROUGH JAVA
	INDEX
	The Scope and Lifetime of Variables
	OPERATORS
	// Demonstrate casts.

	Enumerated Type
	CONTROL STATEMENTS
	The if-else-if Ladder
	Multidimensional Arrays

	Objects and Classes in Java
	object in Java
	An object has three characteristics:
	Instance Variable Hiding
	Overloading methods and constructors
	Syntax: Package packagename.subpackage
	UNIT-III
	Introduction
	Difference between AWT and Swing:
	Hierarchy for Swing Components
	Layout Managers
	Java BorderLayout

