

 DIGITAL NOTES

OF

ARTIFICIAL INTELLIGENCE

[R22A6601]

B. TECH III YR - I SEM

(2024-25)

 PREPARED BY

 T.SHILPA

DEPARTMENT OF INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

Department of Information Technology

III Year B.Tech. IT – I Sem LT/P/D C

 3 -/-/- 3

(R22A6601) ARTIFICIAL INTELLIGENCE

Course Objectives:

1. To learn about Intelligent Agents and environments.

2. To acquire knowledge about uninformed and informed search algorithms.

3. To understand knowledge-based systems using First order logic and Uncertain Domains.

4. To comprehend knowledge acquisition through various learning techniques.

5. To understand the purpose and concepts of Expert Systems.

UNIT - I

Introduction: AI problems, Agents and Environments, Structure of Agents, Problem Solving Agents

Basic Search Strategies: Problem Spaces, Uninformed Search (Breadth First, Depth- First Search,

Depth-first with Iterative Deepening), Heuristic Search (Hill Climbing, Generic Best-First, A*),

Constraint Satisfaction (Backtracking, Local Search)

UNIT - II

Advanced Search: Constructing Search Trees, Stochastic Search, AO* Search Implementation, Minimax

Search, Alpha-Beta Pruning.

Basic Knowledge Representation and Reasoning: Propositional Logic, First-Order Logic, Forward

Chaining and Backward Chaining, Introduction to Probabilistic Reasoning, Bayes Theorem

UNIT - III

Advanced Knowledge Representation and Reasoning: Knowledge Representation Issues, Non-

monotonic Reasoning, Other Knowledge Representation Schemes.

Reasoning Under Uncertainty: Basic probability, Acting Under Uncertainty, Bayes’ Rule, Representing

Knowledge in an Uncertain Domain, Bayesian Networks

UNIT - IV

Learning: What Is Learning? Rote Learning, Learning by Taking Advice, Learning in Problem Solving,

Learning from Examples - Winston’s Learning Program, Decision Trees.

UNIT - V

Expert Systems: Representing and Using Domain Knowledge, Shell, Explanation, Knowledge

Acquisition.

TEXT BOOK:

1. Russell, S. and Norvig, P, Artificial Intelligence: A Modern Approach, Third Edition, Prentice-

Hall, 2010

REFERENCE BOOKS:

1. Artificial Intelligence, Elaine Rich, Kevin Knight, Shivasankar B. Nair, The McGraw

Hill publications, Third Edition, 2009. 2. George F. Luger,

2. Artificial Intelligence: Structures and Strategies for Complex Problem Solving

Pearson Education, 6th ed., 2009.

COURSE OUTCOMES:

At the end of the course, Students should be able to:

1. Apply search strategies to solve problems.

2. Represent real- life problems in a state space representation and devise solutions.

3. Devise knowledge representation frameworks for systems and games.

4. Formulate valid solutions for problems involving uncertain inputs or outcomes.

5. Design and evaluate expert models for perception and prediction from intelligent environment.

INDEX

S.NO Title Page No

1 UNIT-I: Introduction to AI 1

2 Uninformed Search Strategies 22

3 Heuristic Search 31

4 Constraint Satisfaction Problem 40

5 UNIT-II: Mini Max Algorithm 46

6 Alpha–Beta Pruning 51

7 AO* Search 58

8 Syntax and Semantics of First-Order Logic 67

9 Forward Chaining and Backward Chaining 77

10 Basic probability notation 85

11 Bayes Theorem 86

12 UNIT-III: Knowledge Representation Issues 88

13 Acting Under Uncertainty 90

14 Bayes’ Rule 94

15 Bayesian Networks 96

16 UNIT-IV: Forms of Learning 102

17 Winston’s Learning Program 108

18 Decision Trees 111

19 UNIT-V: Representing and Using Domain Knowledge 112

20 Expert System Shell 113

21 Knowledge Acquisition 116

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 1

UNIT- I

Introduction:

 Artificial Intelligence is concerned with the design of intelligence in an artificial device. The

term was coined by John McCarthy in 1956.

 Intelligence is the ability to acquire, understand and apply the knowledge to achieve goals in

the world.

 AI is the study of the mental faculties through the use of computational models

 AI is the study of intellectual/mental processes as computational processes.

 AI program will demonstrate a high level of intelligence to a degree that equals or exceeds the

intelligence required of a human in performing some task.

 AI is unique, sharing borders with Mathematics, Computer Science, Philosophy, Psychology,

Biology, Cognitive Science and many others.

 Although there is no clear definition of AI or even Intelligence, it can be described as an

attempt to build machines that like humans can think and act, able to learn and use

knowledge to solve problems on their own.

Sub Areas of AI:

1) Game Playing

Deep Blue Chess program beat world champion Gary Kasparov

2) Speech Recognition

PEGASUS spoken language interface to American Airlines' EAASY SABRE reservation

system, which allows users to obtain flight information and make reservations over the

telephone. The 1990s has seen significant advances in speech recognition so that limited

 Introduction: AI problems, Agents and Environments, Structure of Agents, Problem Solving

Agents Basic Search Strategies: Problem Spaces, Uninformed Search (Breadth First, Depth-

First Search, Depth-first with Iterative Deepening), Heuristic Search (Hill Climbing, Generic

Best-First, A*), Constraint Satisfaction (Backtracking, Local Search)

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 2

systems are now successful.

3) Computer Vision

Face recognition programs in use by banks, government, etc. The ALVINN system from CMU

autonomously drove a van from Washington, D.C. to San Diego (all but 52 of 2,849 miles), averaging 63

mph day and night, and in all weather conditions. Handwriting recognition, electronics and manufacturing

inspection, photo interpretation, baggage inspection, reverse engineering to automatically construct a 3D

geometric model.

4) Expert Systems

Application-specific systems that rely on obtaining the knowledge of human experts in an area and

programming that knowledge into a system.

a. Diagnostic Systems: MYCIN system for diagnosing bacterial infections of the blood

and suggesting treatments. Intellipath pathology diagnosis system (AMA approved).

Pathfinder medical diagnosis system, which suggests tests and makes diagnoses. Whirlpool

customer assistance center.

b. System Configuration

DEC's XCON system for custom hardware configuration. Radiotherapy treatment

planning.

c. Financial Decision Making

Credit card companies, mortgage companies, banks, and the U.S. government employ

AI systems to detect fraud and expedite financial transactions. For example, AMEX

credit check.

d. Classification Systems

Put information into one of a fixed set of categories using several sources of

information. E.g., financial decision making systems. NASA developed a system for

classifying very faint areas in astronomical images into either stars or galaxies with

very high accuracy by learning from human experts' classifications.

5) Mathematical Theorem Proving

Use inference methods to prove new theorems.

6) Natural Language Understanding

AltaVista's translation of web pages. Translation of Catepillar Truck manuals into 20

languages.

http://babelfish.altavista.digital.com/cgi-bin/translate

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 3

7) Scheduling and Planning

Automatic scheduling for manufacturing. DARPA's DART system used in Desert Storm and

Desert Shield operations to plan logistics of people and supplies. American Airlines rerouting

contingency planner. European space agency planning and scheduling of spacecraft assembly,

integration and verification.

8) Artificial Neural Networks:

9) Machine Learning

Applications of AI:

AI algorithms have attracted close attention of researchers and have also been applied

successfully to solve problems in engineering. Nevertheless, for large and complex problems, AI

algorithms consume considerable computation time due to stochastic feature of the search

approaches

1. Business; financial strategies

2. Engineering: check design, offer suggestions to create new product, expert systems for all

engineering problems

3. Manufacturing: assembly, inspection and maintenance

4. Medicine: monitoring, diagnosing

5. Education: in teaching

6. Fraud detection

7. Object identification

8. Information retrieval

9. Space shuttle scheduling

Building AI Systems:

1) Perception

Intelligent biological systems are physically embodied in the world and experience the world

through their sensors (senses). For an autonomous vehicle, input might be images from a camera

and range information from a rangefinder. For a medical diagnosis system, perception is the set of

symptoms and test results that have been obtained and input to the system manually.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 4

2) Reasoning

Inference, decision-making, classification from what is sensed and what the internal "model" is of

the world. Might be a neural network, logical deduction system, Hidden Markov Model induction,

heuristic searching a problem space, Bayes Network inference, genetic algorithms, etc.

Includes areas of knowledge representation, problem solving, decision theory, planning, game

theory, machine learning, uncertainty reasoning, etc.

3) Action

Biological systems interact within their environment by actuation, speech, etc. All behavior is

centered around actions in the world. Examples include controlling the steering of a Mars rover or

autonomous vehicle, or suggesting tests and making diagnoses for a medical diagnosis system.

Includes areas of robot actuation, natural language generation, and speech synthesis.

The definitions of AI:

a) "The exciting new effort to make

computers think . . . machines with minds,

in the full and literal sense" (Haugeland,

1985)

"The automation of] activities that we

associate with human thinking, activities

such as decision-making, problem solving,

learning..."(Bellman, 1978)

b) "The study of mental faculties

through the use of computational

models" (Charniak and McDermott,

1985)

"The study of the computations that

make it possible to perceive, reason,

and act" (Winston, 1992)

c) "The art of creating machines that perform

functions that require intelligence when

performed by people" (Kurzweil, 1990)

"The study of how to make computers

do things at which, at the moment,

people are better" (Rich and Knight, 1

99 1)

d) "A field of study that seeks to explain

and emulate intelligent behavior in

terms of computational processes"

(Schalkoff, 1 990)

"The branch of computer science

that is concerned with the

automation of intelligent behavior"

(Luger and Stubblefield, 1993)

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 5

The definitions on the top, (a) and (b) are concerned with reasoning, whereas those

on the bottom, (c) and (d) address behavior. The definitions on the left, (a) and (c)

measure success in terms of human performance, and those on the right, (b) and (d)

measure the ideal concept of intelligence called rationality

Intelligent Systems:

In order to design intelligent systems, it is important to categorize them into four

categories (Luger and Stubberfield 1993), (Russell and Norvig, 2003)

1. Systems that think like humans

2. Systems that think rationally

3. Systems that behave like humans

4. Systems that behave rationally

 Human-

Like

Rationall

y

Think:

Cognitive Science Approach

“Machines that think like humans”

Laws of thought Approach

“ Machines that think Rationally”

 Act:

Turing Test Approach

“Machines that behave like humans”

Rational Agent Approach

“Machines that behave Rationally”

Cognitive Science: Think Human-Like

a. Requires a model for human cognition. Precise enough models

allow simulation by computers.

b. Focus is not just on behavior and I/O, but looks like reasoning process.

c. Goal is not just to produce human-like behavior but to produce a sequence of

steps of the reasoning process, similar to the steps followed by a human in

solving the same task.

Laws of thought: Think Rationally

a. The study of mental faculties through the use of computational models; that

it is, the study of computations that make it possible to perceive reason and

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 6

act.

b. Focus is on inference mechanisms that are probably correct and guarantee an optimal

solution.

c. Goal is to formalize the reasoning process as a system of logical rules and

procedures of inference.

d. Develop systems of representation to allow inferences to be like

“Socrates is a man. All men are mortal. Therefore Socrates is mortal”

Turing Test: Act Human-Like

a. The art of creating machines that perform functions requiring intelligence

when performed by people; that it is the study of, how to make computers do

things which, at the moment, people do better.

b. Focus is on action, and not intelligent behavior centered around the representation of the

world

c. Example: Turing Test

o 3 rooms contain: a person, a computer and an interrogator.

o The interrogator can communicate with the other 2 by

teletype (to avoid the machine imitate the appearance of voice

of the person)

o The interrogator tries to determine which the person is and

which the machine is.

o The machine tries to fool the interrogator to believe that it is

the human, and the person also tries to convince the

interrogator that it is the human.

o If the machine succeeds in fooling the interrogator, then

conclude that the machine is intelligent.

Rational agent: Act Rationally

a. Tries to explain and emulate intelligent behavior in terms of computational

process; that it is concerned with the automation of the intelligence.

b. Focus is on systems that act sufficiently if not optimally in all situations.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 7

c. Goal is to develop systems that are rational and sufficient

Agents and Environments:

Fig 2.1: Agents and Environments

 Agent:

An Agent is anything that can be viewed as perceiving its environment

through sensors and acting upon that environment through actuators.

 A human agent has eyes, ears, and other organs for sensors and hands,

legs, mouth, and other body parts for actuators.

 A robotic agent might have cameras and infrared range finders for

sensors and various motors foractuators.

 A software agent receives keystrokes, file contents, and network packets

as sensory inputs and acts on the environment by displaying on the screen,

writing files, and sending network packets.

Percept:

We use the term percept to refer to the agent's perceptual inputs at any given instant.

Percept Sequence:

An agent's percept sequence is the complete history of everything the agent has ever perceived.

Agent function:

Mathematically speaking, we say that an agent's behavior is described by the

agent function that maps any given percept sequence to an action.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 8

Agent program

Internally, the agent function for an artificial agent will be implemented by an

agent program. It is important to keep these two ideas distinct. The agent

function is an abstract mathematical description; the agent program is a

concrete implementation, running on the agent architecture.

To illustrate these ideas, we will use a very simple example-the vacuum-cleaner world shown in

Fig 2.1.5. This particular world has just two locations: squares A and B. The

vacuum agent perceives which square it is in and whether there is dirt in the square.

It can choose to move left, move right, suck up the dirt, or do nothing. One very

simple agent function is the following: if the current square is dirty, then suck,

otherwise move to the other square. A partial tabulation of this agent function is

shown in Fig 2.1.6.

Fig 2.1.5: A vacuum-cleaner world with just two locations.

 Agent function

Percept Sequence Action

[A, Clean] Right

[A, Dirty] Suck

[B, Clean] Left

[B, Dirty] Suck

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 9

[A, Clean], [A, Clean] Right

[A, Clean], [A, Dirty] Suck

…

Fig 2.1.6: Partial tabulation of a simple agent function for the example: vacuum-cleaner world shown

in the Fig 2.1.5

Fig 2.1.6(i): The REFLEX-VACCUM-AGENT program is invoked for each new

percept (location, status) and returns an action each time

 A Rational agent is one that does the right thing. we say that the right action is the

one that will cause the agent to be most successful. That leaves us with the problem

of deciding how and when to evaluate the agent's success.

We use the term performance measure for the how—the criteria that determine how

successful an agent is.

 Ex-Agent cleaning the dirty floor

 Performance Measure-Amount of dirt collected

 When to measure-Weekly for better results

What is rational at any given time depends on four things:

 The performance measure defining the criterion of success

 The agent’s prior knowledge of the environment

 The actions that the agent can perform

 The agent’s percept sequence up to now.

 Omniscience ,Learning and Autonomy:

 We need to distinguish between rationality and omniscience. An Omniscient

agent knows the actual outcome of its actions and can act accordingly but

Function REFLEX-VACCUM-AGENT ([location, status]) returns an action If

status=Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 10

omniscience is impossible in reality.

 Rational agent not only gathers information but also learns as much as possible

from what it perceives.

 If an agent just relies on the prior knowledge of its designer rather than its own

percepts then the agent lacks autonomy.

 A system is autonomous to the extent that its behavior is determined its own

experience.

 A rational agent should be autonomous.

E.g., a clock(lacks autonomy)

 No input (percepts)

 Run only but its own algorithm (prior knowledge)

 No learning, no experience, etc.

ENVIRONMENTS:

 The Performance measure, the environment and the agents actuators and sensors comes

under the heading task environment. We also call this as

PEAS(Performance,Environment,Actuators,Sensors)

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 11

Environment-Types:

1. Accessible vs. inaccessible or Fully observable vs Partially

Observable:

If an agent sensor can sense or access the complete state of an environment at each

point of time then it is a fully observable environment, else it is partially observable.

2. Single agent vs. multiagent:

 An agent solving a crossword puzzle by itself is clearly in a single-agent environment,

whereas an agent playing chess is in a two agent environment or Multi Agent

environment

3. Deterministic vs. Stochastic:

 If the next state of the environment is completely determined by the current state and

the actions selected by the agents, then we say the environment is deterministic

4. Episodic vs. Sequential

 The agent's experience is divided into "episodes." Each episode consists of the

agent perceiving and then acting. The quality of its action depends just on the

episode itself, because subsequent episodes do not depend on what actions occur

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 12

in previous episodes.

 Episodic environments are much simpler because the agent does not need to think

ahead.

 In sequential environments, on the other hand, the current decision could affect all

future decisions.

 Ex: Chess is Sequential

5. Static vs. dynamic.

 If the environment can change while an agent is deliberating, then we say the

environment is dynamic for that agent; otherwise it is static.

6. Discrete vs. continuous:

If there are a limited number of distinct, clearly defined percepts and

actions we say that the environment is discrete. Otherwise, it is continuous.

STRUCTURE OF INTELLIGENT AGENTS

 The job of AI is to design the agent program: a function that implements the agent

mapping from percepts to actions. We assume this program will run on some sort

of ARCHITECTURE computing device, which we will call the architecture.

 The architecture might be a plain computer, or it might include special-purpose

hardware for certain tasks, such as processing camera images or filtering audio

input. It might also include software that provides a degree of insulation between

the raw computer and the agent program, so that we can program at a higher level.

In general, the architecture makes the percepts from the sensors available to the

program, runs the program, and feeds the program's action choices to the effectors

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 13

as they are generated.

 The relationship among agents, architectures, and programs can be summed up as

follows:

 agent = architecture + program

Agent programs:

 Intelligent agents accept percepts from an environment and generates actions. The

early versions of agent programs will have a very simple form (Figure 2.4)

 Each will use some internal data structures that will be updated as new percepts

arrive.

 These data structures are operated on by the agent's decision-making procedures to

generate an action choice, which is then passed to the architecture to be executed

Types of agents:

Agents can be grouped into four classes based on their degree of perceived intelligence and

capability :

 Simple Reflex Agents

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 14

 Model-Based Reflex Agents

 Goal-Based Agents

 Utility-Based Agents

Simple reflex agents:

 Simple reflex agents ignore the rest of the percept history and act only on the

basis of the current percept.

 The agent function is based on the condition-action rule.

 If the condition is true, then the action is taken, else not. This agent function only succeeds

when

 the environment is fully observable.

Model-based reflex agents:

 The Model-based agent can work in a partially observable environment, and track the situation.

 A model-based agent has two important factors:

 Model: It is knowledge about "how things happen in the world," so it is called a Model-based

agent.

 Internal State: It is a representation of the current state based on percept history.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 15

Goal-based agents:

 A goal-based agent has an agenda.

 It operates based on a goal in front of it and makes decisions based on how best to reach that

goal.

 A goal-based agent operates as a search and planning function, meaning it targets the goal

ahead and

finds the right action in order to reach it.

 Expansion of model-based agent.

Utility-based agents:

 A utility-based agent is an agent that acts based not only on what the goal is, but the best way to

reach that goal.

 The Utility-based agent is useful when there are multiple possible alternatives, and an

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 16

agent has to choose in order to perform the best action.

 The term utility can be used to describe how "happy" the agent is.

Learning Agent

 A learning agent in AI is the type of agent that can learn from its past experiences or it has

learning capabilities. It starts to act with basic knowledge and then is able to act and adapt

automatically through learning. A learning agent has mainly four conceptual components, which

are:

 Learning element: It is responsible for making improvements by learning from the environment.

 Critic: The learning element takes feedback from critics which describes how well the agent is

doing with respect to a fixed performance standard.

 Performance element: It is responsible for selecting external action.

 Problem Generator: This component is responsible for suggesting actions that will lead to new

and informative experiences

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 17

Problem Solving Agents:

 Problem solving agent is a goal-based agent.

 Problem solving agents decide what to do by finding sequence of actions that lead to desirable

states.

Goal Formulation:

It organizes the steps required to formulate/ prepare one goal out of multiple goals available.

Problem Formulation:

It is a process of deciding what actions and states to consider to follow goal formulation.

The process of looking for a best sequence to achieve a goal is called Search.

A search algorithm takes a problem as input and returns a solution in the form of action sequences.

Once the solution is found the action it recommends can be carried out. This is called Execution

phase.

Well Defined problems and solutions:

A problem can be defined formally by 4 components:

 The initial state of the agent is the state where the agent starts in. In this case, the initial state

can be described as In: Arad

 The possible actions available to the agent, corresponding to each of the state the

agent resides in.

For example, ACTIONS(In: Arad) = {Go: Sibiu, Go: Timisoara, Go: Zerind}.

Actions are also known as operations.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 18

 A description of what each action does.the formal name for this is Transition

model,Specified by the function Result(s,a) that returns the state that results from the action a

in state s.

We also use the term Successor to refer to any state reachable from a given state by a single

action.

For EX:Result(In(Arad),GO(Zerind))=In(Zerind)

Together the initial state,actions and transition model implicitly defines the state space of the

problem

State space: set of all states reachable from the initial state by any sequence of actions

 The goal test, determining whether the current state is a goal state. Here, the goal

state is {In: Bucharest}

 The path cost function, which determine the cost of each path, which is reflecting

in the performance measure.

 we define the cost function as c(s, a, s’), where s is the current state and a is the action

performed by the agent to reach state s’.

Example –

 8 puzzle problem

Initial State

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 19

Goal State

 States: a state description specifies the location of each of the eight tiles in one of the nine

squares. For efficiency, it is useful to include the location of the blank.

 Actions: blank moves left, right, up, or down.

 Transition Model: Given a state and action, this returns the resulting state. For example if

we apply left to the start state the resulting state has the 5 and the blank switched.

 Goal test: state matches the goal configuration shown in fig.

 Path cost: each step costs 1, so the path cost is just the length of the path.

State Space Search/Problem Space Search:

The state space representation forms the basis of most of the AI methods.

 Formulate a problem as a state space search by showing the legal problem

states, the legal operators, and the initial and goal states.

 A state is defined by the specification of the values of all attributes of interest in the world

 An operator changes one state into the other; it has a precondition which is the

value of certain attributes prior to the application of the operator, and a set of

effects, which are the attributes altered by the operator

 The initial state is where you start

 The goal state is the partial description of the solution

Formal Description of the problem:

1. Define a state space that contains all the possible configurations of the relevant

objects.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 20

2. Specify one or more states within that space that describe possible situations from

which the problem solving process may start (initial state)

3. Specify one or more states that would be acceptable as solutions to the problem. (

goal states)

Specify a set of rules that describe the actions (operations) available

State-Space Problem Formulation:

Example: A problem is defined by four items:

1. initial state e.g., "at Arad“

2. actions or successor function : S(x) = set of action–state pairs e.g., S(Arad) =

{<Arad → Zerind, Zerind>, … }

3. goal test (or set of goal states)

e.g., x = "at Bucharest”, Checkmate(x)

4. path cost (additive)

e.g., sum of distances, number of actions executed, etc.

c(x,a,y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a goal state

Example: 8-queens problem

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 21

1. Initial State: Any arrangement of 0 to 8 queens on board.

2. Operators: add a queen to any square.

3. Goal Test: 8 queens on board, none attacked.

4. Path cost: not applicable or Zero (because only the final state counts,

search cost might be of interest).

Search strategies:

Search: Searching is a step by step procedure to solve a search-problem in a given search

space. A search problem can have three main factors:

Search Space: Search space represents a set of possible solutions, which a system may

have.

Start State: It is a state from where agent begins the search.

Goal test: It is a function which observe the current state and returns whether the goal state

is achieved or not.

Properties of Search Algorithms

Which search algorithm one should use will generally depend on

the problem domain. There are four important factors to consider:

1. Completeness – Is a solution guaranteed to be found if at least one solution exists?

2. Optimality – Is the solution found guaranteed to be the best (or lowest cost)

solution if there exists more than one solution?

3. Time Complexity – The upper bound on the time required to find a solution, as a

function of the complexity of the problem.

4. Space Complexity – The upper bound on the storage space (memory) required at

any point during the search, as a function of the complexity of the problem.

State Spaces versus Search Trees:

 State Space

o Set of valid states for a problem

o Linked by operators

o e.g., 20 valid states (cities) in the Romanian travel problem

 Search Tree

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 22

– Root node = initial state

– Child nodes = states that can be visited from parent

– Note that the depth of the tree can be infinite

• E.g., via repeated states

– Partial search tree

• Portion of tree that has been expanded so far

– Fringe

• Leaves of partial search tree,

candidates for expansion Search trees = data structure to

search state-space

Searching
Many traditional search algorithms are used in AI applications. For complex problems, the traditional

algorithms are unable to find the solution within some practical time and space limits. Consequently, many

special techniques are developed; using heuristic functions. The algorithms that use heuristic functions are

called heuristic algorithms. Heuristic algorithms are not really intelligent; they appear to be intelligent

because they achieve better performance.

Heuristic algorithms are more efficient because they take advantage of feedback from the data to direct the

search path.

Uninformed search

Also called blind, exhaustive or brute-force search, uses no information about the problem to guide the

search and therefore may not be very efficient.

Informed Search:

Also called heuristic or intelligent search, uses information about the problem to guide the search, usually

guesses the distance to a goal state and therefore efficient, but the search may not be always possible.

Uninformed Search (Blind searches):

1. Breadth First Search:

 One simple search strategy is a breadth-first search. In this strategy, the root node is

expanded first, then all the nodes generated by the root node are expanded next, and then

their successors, and so on.

 In general, all the nodes at depth d in the search tree are expanded before the nodes at

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 23

depth d + 1.

BFS illustrated:

Step 1: Initially frontier contains only one node corresponding to the source state A.

Figure 1

Frontier: A

Step 2: A is removed from fringe. The node is expanded, and its children B and C

are generated. They are placed at the back of fringe.

Figure 2

Frontier: B C

Step 3: Node B is removed from fringe and is expanded. Its children D, E are

generated and put at the back of fringe.

Figure 3

Frontier: C D E

Step 4: Node C is removed from fringe and is expanded. Its children D and G are

added to the back of fringe.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 24

Figure 4

Frontier: D E D G

Step 5: Node D is removed from fringe. Its children C and F are generated and added

to the back of fringe.

Figure 5

Frontier: E D G C F

Step 6: Node E is removed from fringe. It has no children.

Figure 6

Frontier: D G C F

Step 7: D is expanded; B and F are put in OPEN.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 25

Figure 7

Frontier: G C F B F

Step 8: G is selected for expansion. It is found to be a goal node. So the

algorithm returns the path A C G by following the parent pointers of the node

corresponding to G. The algorithm terminates.

Breadth first search is:

 One of the simplest search strategies

 Complete. If there is a solution, BFS is guaranteed to find it.

 If there are multiple solutions, then a minimal solution will be found

 The algorithm is optimal (i.e., admissible) if all operators have the

same cost. Otherwise, breadth first search finds a solution with the

shortest path length.

 Time complexity : O(bd)

 Space complexity : O(bd)

 Optimality :Yes

b - branching factor(maximum no of

successors of any node), d – Depth of the

shallowest goal node

Maximum length of any path (m) in search space

Advantages:

 BFS will provide a solution if any solution exists.

 If there are more than one solutions for a given problem, then BFS will provide the

minimal solution which requires the least number of steps.

Disadvantages:

 Requires the generation and storage of a tree whose size is exponential the

depth of the shallowest goal node.

 The breadth first search algorithm cannot be effectively used unless the

search space is quite small.

Applications Of Breadth-First Search Algorithm

GPS Navigation systems: Breadth-First Search is one of the best algorithms used to find

neighboring locations by using the GPS system.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 26

Broadcasting: Networking makes use of what we call as packets for communication. These

packets follow a traversal method to reach various networking nodes. One of the most

commonly used traversal methods is Breadth-First Search. It is being used as an algorithm

that is used to communicate broadcasted packets across all the nodes in a network.

Depth- First- Search.

We may sometimes search the goal along the largest depth of the tree, and move up

only when further traversal along the depth is not possible. We then attempt to find

alternative offspring of the parent of the node (state) last visited. If we visit the

nodes of a tree using the above principles to search the goal, the traversal made is

called depth first traversal and consequently the search strategy is called depth first

search.

DFS illustrated:

A State

Space Graph Step 1: Initially fringe contains

only the node for A.

Figure 1

FRINGE: A

Step 2: A is removed from fringe. A is expanded and its children B and C are put in

front of fringe.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 27

Figure 2

FRINGE: B C

Step 3: Node B is removed from fringe, and its children D and E are pushed in front of fringe.

Figure 3

FRINGE: D E C

Step 4: Node D is removed from fringe. C and F are pushed in front of fringe.

Figure 4

FRINGE: C F E C

Step 5: Node C is removed from fringe. Its child G is pushed in front of fringe.

Figure 5

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 28

 Figure 5

FRINGE: G F E C

Step 6: Node G is expanded and found to be a goal node.

Figure 6

FRINGE: G F E C

The solution path A-B-D-C-G is returned and the algorithm terminates.

Depth first search

1. takes exponential time.

2. If N is the maximum depth of a node in the search space, in the worst case the algorithm will

d

take time O(b).

3. The space taken is linear in the depth of the search tree, O(bN).

Note that the time taken by the algorithm is related to the maximum depth of the search tree.

If the search tree has infinite depth, the algorithm may not terminate. This can happen if the

search space is infinite. It can also happen if the search space contains cycles. The latter

case can be handled by checking for cycles in the algorithm. Thus Depth First Search is

not complete.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 29

Iterative Deeping DFS

 The iterative deepening algorithm is a combination of DFS and BFS algorithms.

 This search algorithm finds out the best depth limit and does it by gradually

increasing the limit until a goal is found.

 This algorithm performs depth-first search up to a certain "depth limit", and it

keeps increasing the depth limit after each iteration until the goal node is found.

Advantages:

 It combines the benefits of BFS and DFS search algorithm in terms of fast search

and memory efficiency.

Disadvantages:

 The main drawback of IDDFS is that it repeats all the work of the previous phase.

Iterative deepening search L=0

Iterative deepening search L=1

Iterative deepening search L=2

Iterative Deepening Search L=3

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 30

M is the goal node. So we stop there.

Complete: Yes

 Time: O(bd)

 Space: O(bd)

 Optimal: Yes, if step cost = 1 or increasing function of depth.

Conclusion:

 We can conclude that IDS is a hybrid search strategy between BFS and DFS

inheriting their advantages.

 IDS is faster than BFS and DFS.

 It is said that “IDS is the preferred uniformed search method when there is a large search space

and the depth of the solution is not known

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 31

Informed search/Heuristic search

A heuristic is a method that

 might not always find the best solution but is guaranteed to find a good solution

in reasonable time. By sacrificing completeness it increases efficiency.

 Useful in solving tough problems which

o could not be solved any other way.

o solutions take an infinite time or very long time to compute.

Calculating Heuristic Value:

 1. Euclidian distance- used to calculate straight line distance.

 2.Manhatten distance-If we want to calculate vertical or horizontal

distance

For ex: 8 puzzle problem

 Source state

destination state

Then the Manhattan distance would be sum of the no of moves required to move

each number from source state to destination state.

3. No. of misplaced tiles for 8 puzzle problem

1 3 2

6 5 4

 8 7

1 2 3

4 5 6

7 8

Number in 8

puzzle

1 2 3 4 5 6 7 8

No. of moves

to reach

destination

0 2 1 2 0 2 2 0

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 32

Source state

1 3 2

6 5 4

 8 7

Destination state

Here just calculate the number of tiles that have to be changed to reach goal state

Here 1,5,8 need not be changed

2,3,4,6,7 should be changed, so the heuristic value will be 5(because 5 tiles have to be changed)

Hill Climbing Algorithm

 Hill climbing algorithm is a local search algorithm which continuously

moves in the direction of increasing elevation/value to find the peak of the

mountain or best solution to the problem. It terminates when it reaches a

peak value where no neighbor has a higher value.

 It is also called greedy local search as it only looks to its good immediate

neighbor state and not beyond that.

 Hill Climbing is mostly used when a good heuristic is available.

 In this algorithm, we don't need to maintain and handle the search tree or

graph as it only keeps a single current state.

The idea behind hill climbing is as follows.

1. Pick a random point in the search space.

2. Consider all the neighbors of the current state.

3. Choose the neighbor with the best quality and move to that state.

4. Repeat 2 thru 4 until all the neighboring states are of lower quality.

5. Return the current state as the solution state.

1 2 3

4 5 6

7 8

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 33

Different regions in the state space landscape:

Local Maximum: Local maximum is a state which is better than its neighbor states, but

there is also another state which is higher than it.

Global Maximum: Global maximum is the best possible state of state space landscape. It

has the highest value of objective function.

Current state: It is a state in a landscape diagram where an agent is currently present.

Flat local maximum: It is a flat space in the landscape where all the neighbor states of

current states have the same value.

Shoulder: It is a plateau region which has an uphill edge.

Problems in Hill Climbing Algorithm:

Simulated annealing search

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 34

A hill-climbing algorithm that never makes “downhill” moves towards states with lower

value (or higher cost) is guaranteed to be incomplete, because it can stuck on a local

maximum. In contrast, a purely random walk –that is, moving to a successor chosen

uniformly at random from the set of successors – is complete, but extremely

inefficient. Simulated annealing is an algorithm that combines hill-climbing with a

random walk in some way that yields both efficiency and completeness.

 Simulated annealing algorithm is quite similar to hill climbing. Instead of

picking the best move, however, it picks the random move. If the move improves the

situation, it is always accepted. Otherwise, the algorithm accepts the move with some

probability less than 1. The probability decreases exponentially with the “badness” of

the move – the amount E by which the evaluation is worsened. The probability also

decreases as the "temperature" T goes down: "bad moves are more likely to be allowed at the

start when temperature is high, and they become more unlikely as T decreases. One can prove

that if the schedule lowers T slowly enough, the algorithm will find a global optimum with

probability approaching.

Simulated annealing was first used extensively to solve VLSI layout problems. It has been

applied widely to factory scheduling and other large-scale optimization tasks.

Best First Search:

 A combination of depth first and breadth first searches.

 Depth first is good because a solution can be found without computing all nodes and

breadth first is good because it does not get trapped in dead ends.

 The best first search allows us to switch between paths thus gaining the benefit of both

approaches. At each step the most promising node is chosen. If one of the nodes chosen

generates nodes that are less promising it is possible to choose another at the same

level and in effect the search changes from depth to breadth. If on analysis these are no

better than this previously unexpanded node and branch is not forgotten and the search

method reverts to the

OPEN is a priority queue of nodes that have been evaluated by the heuristic function but which

have not yet been expanded into successors. The most promising nodes are at the front.

CLOSED are nodes that have already been generated and these nodes must be stored because a

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 35

graph is being used in preference to a tree.

Algorithm:

1. Start with OPEN holding the initial state

2. Until a goal is found or there are no nodes left on open do.

 Pick the best node on OPEN

 Generate its successors

 For each successor Do

• If it has not been generated before ,evaluate it ,add it to

OPEN and record its parent

• If it has been generated before change the parent if this new

path is better and in that case update the cost of getting to

any successor nodes.

3. If a goal is found or no more nodes left in OPEN, quit, else return to 2.

Example:

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 36

1. It is not optimal.

2. It is incomplete because it can start down an infinite path and never

return to try other possibilities.

3. The worst-case time complexity for greedy search is O (bm), where m is

the maximum depth of the search space.

4. Because greedy search retains all nodes in memory, its space complexity is

the same as its time complexity

A* Algorithm

The Best First algorithm is a simplified form of the A* algorithm.

The A* search algorithm (pronounced "Ay-star") is a tree search algorithm that finds a path from

a given initial node to a given goal node (or one passing a given goal test). It employs a "heuristic

estimate" which ranks each node by an estimate of the best route that goes through that node. It

visits the nodes in order of this heuristic estimate.

Similar to greedy best-first search but is more accurate because A* takes into account the nodes

that have already been traversed.

From A* we note that f = g + h where

g is a measure of the distance/cost to go from the initial node to the current node

his an estimate of the distance/cost to solution from the current node.

Thus fis an estimate of how long it takes to go from the initial node to the solution

Algorithm:

1. Initialize : Set OPEN = (S); CLOSED = () g(s)= 0, f(s)=h(s)

2. Fail : If OPEN = (), Terminate and fail.

3. Select : select the minimum cost state, n, from OPEN,

save n in CLOSED

4. Terminate : If n €G, Terminate with success and return f(n)

http://www.fact-index.com/t/tr/tree_search_algorithm.html

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 37

5. Expand : for each successor, m, of n

a) If m €

[OPEN U

CLOSED

] Set g(m)

= g(n) +

c(n , m)

Set f(m) =

g(m) +

h(m)

Insert m in OPEN

b) If m € [OPEN U CLOSED]

Set g(m) = min { g(m)

, g(n) + c(n , m)} Set

f(m) = g(m) + h(m)

If f(m) has decreased and m € CLOSED

Move m to OPEN.

Description:

 A* begins at a selected node. Applied to this node is the "cost" of entering this node

(usually zero for the initial node). A* then estimates the distance to the goal node from the

current node. This estimate and the cost added together are the heuristic which is assigned

to the path leading to this node. The node is then added to a priority queue, often called

"open".

 The algorithm then removes the next node from the priority queue (because of the way a

priority queue works, the node removed will have the lowest heuristic). If the queue is

empty, there is no path from the initial node to the goal node and the algorithm stops. If

the node is the goal node, A* constructs and outputs the successful path and stops.

 If the node is not the goal node, new nodes are created for all admissible adjoining nodes;

the exact way of doing this depends on the problem at hand. For each successive node, A*

calculates the "cost" of entering the node and saves it with the node. This cost is

calculated from the cumulative sum of costs stored with its ancestors, plus the cost of the

operation which reached this new node.

 The algorithm also maintains a 'closed' list of nodes whose adjoining nodes have been

http://www.fact-index.com/n/no/node.html
http://www.fact-index.com/p/pr/priority_queue.html

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 38

checked. If a newly generated node is already in this list with an equal or lower cost, no

further processing is done on that node or with the path associated with it. If a node in the

closed list matches the new one, but has been stored with a higher cost, it is removed from

the closed list, and processing continues on the new node.

 Next, an estimate of the new node's distance to the goal is added to the cost to form the heuristic for

that node. This is then added to the 'open' priority queue, unless an identical node is found there.

 Once the above three steps have been repeated for each new adjoining node, the original node taken

from the priority queue is added to the 'closed' list. The next node is then popped from the priority

queue and the process is repeatedThe heuristic costs from each city to Bucharest:

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 39

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 40

A* search properties:

 The algorithm A* is admissible. This means that provided a solution exists, the first solution found

by A* is an optimal solution. A* is admissible under the following conditions:

 Heuristic function: for every node n , h(n) ≤ h*(n) .

 A* is also complete.

 A* is optimally efficient for a given heuristic.

 A* is much more efficient that uninformed search.

Constraint Satisfaction Problems

Sometimes a problem is not embedded in a long set of action sequences but requires picking the

best option from available choices. A good general-purpose problem solving technique is to list

the constraints of a situation (either negative constraints, like limitations, or positive elements

that you want in the final solution). Then pick the choice that satisfies most of the constraints.

Formally speaking, a constraint satisfaction problem (or CSP) is defined by a set of

variables, X1;X2; : : :

;Xn, and a set of constraints, C1;C2; : : : ;Cm. Each variable Xi has anonempty domain Di of

possible values. Each constraint Ci involves some subset of tvariables and specifies the

allowable combinations of values for that subset. A state of theproblem is defined by an

assignment of values to some or all of the variables, {Xi = vi;Xj =vj ; : : :} An assignment that

does not violate any constraints is called a consistent or

legalassignment. A complete assignment is one in which every variable is mentioned, and a

solution to a CSP is a complete assignment that satisfies all the constraints. Some CSPs also

require a solution that maximizes an objectivefunction.

CSP can be given an incremental formulation as a standard search problem as follows:

1. Initial state: the empty assignment fg, in which all variables are unassigned.

2. Successor function: a value can be assigned to any unassigned variable, provided that it

does not conflict with previously assigned variables.

3. Goal test: the current assignment is complete.

4. Path cost: a constant cost for every step

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 41

Examples:

1. The best-known category of continuous-domain

CSPs is that of linear programming problems,

where constraints must be linear inequalities forming

a convex region.

2. Crypt arithmetic puzzles.

Example: The map coloring problem.

The task of coloring each region red, green or blue in such a way that no neighboring regions

have the same color.

We are given the task of coloring each region red, green, or blue in such a way that the

neighboring regions must not have the same color.

To formulate this as CSP, we define the variable to be the regions: WA, NT, Q, NSW, V, SA,

and

T. The domain of each variable is the set {red, green, blue}. The constraints

require

neighboring regions to have distinct colors: for example, the allowable combinations for WA

and NT are the pairs {(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}.

(The constraint can also be represented as the inequality WA ≠ NT). There are many possible

solutions,

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 42

such as {WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = red}.Map of

Australia showing each of its states and territories

Constraint Graph: A CSP is usually represented as an undirected graph, called constraint graph

where the nodes are the variables and the edges are the binaryconstraints.

The map-coloring problem represented as

a constraint graph. CSP can be viewed as a

standard search problem as follows:

> Initial state : the empty assignment {},in which all variables are unassigned.

> Successor function: a value can be assigned to any unassigned

variable, provided that it does not conflict with previously assigned

variables.

> Goal test: the current assignment is complete.

> Path cost: a constant cost(E.g.,1) for every step.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 43

UNIT II

Constructing Search Trees:

Game Playing

Adversarial search, or game-tree search, is a technique for analyzing an adversarial game in

order to try to determine who can win the game and what moves the players should make in

order to win. Adversarial search is one of the oldest topics in Artificial Intelligence. The original

ideas for adversarial search were developed by Shannon in 1950 and independently by Turing in

1951, in the context of the game of chess—and their ideas still form the basis for the techniques

used today.

2- Person Games:

o Players: We call them Max and Min.

Advanced Search: Constructing Search Trees, Stochastic Search, AO* Search Implementation, Minimax Search,
Alpha-Beta Pruning Basic Knowledge Representation and Reasoning: Propositional Logic, First-Order Logic,
Forward Chaining and Backward Chaining, Introduction to Probabilistic Reasoning, Bayes Theorem

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 44

o Initial State: Includes board position and whose turn it is.

o Operators: These correspond to legal moves.

o Terminal Test: A test applied to a board position which determines whether the

game is over. In chess, for example, this would be a checkmate or stalemate

situation.

o Utility Function: A function which assigns a numeric value to a terminalstate.

For example, in chess the outcome is win (+1), lose (-1) or draw (0). Note that by

convention, we always measure utility relative to Max.

Stochastic Search

Stochastic search refers to a class of optimization algorithms that use randomness or probability in

the search process to find an optimal solution or approximate a solution to a problem. Unlike

deterministic methods that follow a strict sequence of steps, stochastic search algorithms introduce

randomness intentionally to explore the search space more broadly and potentially find better

solutions.

Many unforeseeable external occurrences can place us in unforeseen circumstances in real life.

Many games, such as dice tossing, have a random element to reflect this unpredictability. These are

known as stochastic games. Backgammon is a classic game that mixes skill and luck. The legal

moves are determined by rolling dice at the start of each player’s turn white, for example, has

rolled a 6–5 and has four alternative moves in the backgammon scenario shown in the figure

below.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 45

o This is a standard backgammon position. The object of the game is to get all of one’s pieces off the

board as quickly as possible. White moves in a clockwise direction toward 25, while Black moves in

a counterclockwise direction toward 0. Unless there are many opponent pieces, a piece can advance

to any position; if there is only one opponent, it is caught and must start over. White has rolled a 6–5

and must pick between four valid moves: (5–10,5–11), (5–11,19–24), (5–10,10–16), and (5–11,11–

16), where the notation (5–11,11–16) denotes moving one piece from position 5 to 11 and then

another from 11 to 16.

o Stochastic game tree for a backgammon position

o White knows his or her own legal moves, but he or she has no idea how Black will roll, and thus has

no idea what Black’s legal moves will be. That means White won’t be able to build a normal game

tree-like in chess or tic-tac-toe. In backgammon, in addition to M A X and M I N nodes, a game tree

must include chance nodes. The figure below depicts chance nodes as circles. The possible dice rolls

are indicated by the branches leading from each chance node; each branch is labelled with the roll

and its probability. There are 36 different ways to roll two dice, each equally likely, yet there are

only 21 distinct rolls because a 6–5 is the same as a 5–6. P (1–1) = 1/36 because each of the six

doubles (1–1 through 6–6) has a probability of 1/36. Each of the other 15 rolls has a 1/18 chance of

happening.

o The following phase is to learn how to make good decisions. Obviously, we want to choose the

move that will put us in the best position. Positions, on the other hand, do not have specific

minimum and maximum values. Instead, we can only compute a position’s anticipated value,

which is the average of all potential outcomes of the chance nodes.

o As a result, we can generalize the deterministic minimax value to an expected-minimax value for

games with chance nodes. Terminal nodes, MAX and MIN nodes (for which the dice roll is

known), and MAX and MIN nodes (for which the dice roll is unknown) all function as before. We

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 46

compute the expected value for chance nodes, which is the sum of all outcomes, weighted by the

probability of each chance action.

where r is a possible dice roll (or other random events) and RESULT(s,r) denotes the same state as

s, but with the addition that the dice roll’s result is r.

Mini Max Algorithm:

o Mini-max algorithm is a recursive or backtracking algorithm which is used in decision-making and

game theory. It provides an optimal move for the player assuming that opponent is also playing

optimally.

o Mini-Max algorithm uses recursion to search through the game-tree.

o Min-Max algorithm is mostly used for game playing in AI. Such as Chess, Checkers, tic-tac-toe, go,

and various tow-players game. This Algorithm computes the minimax decision for the current state.

o In this algorithm two players play the game, one is called MAX and other is called MIN.

o Both the players fight it as the opponent player gets the minimum benefit while they get the

maximum benefit.

o Both Players of the game are opponent of each other, where MAX will select the maximized value

and MIN will select the minimized value.

o The minimax algorithm performs a depth-first search algorithm for the exploration of the complete

game tree.

o The minimax algorithm proceeds all the way down to the terminal node of the tree, then backtrack

the tree as the recursion.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 47

Example:

Example:

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 48

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 49

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 50

Properties of minimax:

 Complete : Yes (if tree is finite)

 Optimal : Yes (against an optimal opponent)

 Time complexity : O(bm)

 Space complexity : O(bm) (depth-first exploration)

 For chess, b ≈ 35, m ≈100 for "reasonable" games

→ exact solution completely infeasible.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 51

Limitations

– Not always feasible to traverse entire tree

– Time limitations

Alpha-Beta pruning algorithm:

• Pruning: eliminating a branch of the search tree from consideration

without exhaustive examination of each node

• - Pruning: the basic idea is to prune portions of the search tree that

cannot improve the utility value of the max or min node, by just

considering the values of nodes seen so far.

• Alpha-beta pruning is used on top of minimax search to detect paths that do

not need to be explored. The intuition is:

• The MAX player is always trying to maximize the score. Call this .

• The MIN player is always trying to minimize the score. Call this .

• Alpha cutoff: Given a Max node n, cutoff the search below n (i.e., don't

generate or examine any more of n's children) if alpha(n) >= beta(n)

(alpha increases and passes beta from below)

• Beta cutoff.: Given a Min node n, cutoff the search below n (i.e., don't

generate or examine any more of n's children) if beta(n) <= alpha(n)

(beta decreases and passes alpha from above)

• Carry alpha and beta values down during search Pruning occurs whenever alpha >= beta

Example:

1) Setup phase: Assign to each left-most (or right-most) internal node of the

tree, variables: alpha = -infinity, beta = +infinity

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 52

2) Look at first computed final configuration value. It’s a 3. Parent is a

min node, so set the beta (min) value to 3.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 53

3) Look at next value, 5. Since parent is a min node, we want the minimum of 3

and 5 which is 3. Parent min node is done – fill alpha (max) value of its parent max node.

Always set alpha for max nodes and beta for min nodes. Copy the state of the max parent node

into the second unevaluated min child.

4) Look at next value, 2. Since parent node is min with b=+inf, 2 is smaller, change b.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 54

5) Now, the min parent node has a max value of 3 and min value of 2. The value of the 2nd

child does not matter. If it is >2, 2 will be selected for min node. If it is <2, it will be selected for

min node, but since it is <3 it will not get selected for the parent max node. Thus, we prune the

right subtree of the min node. Propagate max value up the tree.

6) Max node is now done and we can set the beta value of its parent and propagate node state

to sibling subtree’s left-most path.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 55

7) The next node is 10. 10 is not smaller than 3, so state of parent does not change. We still have

to look at the 2nd child since alpha is still –inf.

8) The next node is 4. Smallest value goes to the parent min node. Min subtree is done, so the

parent max node gets the alpha (max) value from the child. Note that if the max node had a 2nd

subtree, we can prune it since a>b.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 56

9) Continue propagating value up the tree, modifying the corresponding alpha/beta values. Also

propagate the state of root node down the left-most path of the right subtree.

10) Next value is a 2. We set the beta (min) value of the min parent to 2. Since no other children

exist, we propagate the value up the tree.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 57

11) We have a value for the 3rd level max node, now we can modify the beta (min) value of the

min parent to 2. Now, we have a situation that a>b and thus the value of the rightmost subtree of

the min node does not matter, so we prune the whole subtree.

12) Finally, no more nodes remain, we propagate values up the tree. The root has a value of 3

that comes from the left-most child. Thus, the player should choose the left-most child’s move in

order to maximize his/her winnings. As you can see, the result is the same as with the mini-max

example, but we did not visit all nodes of the tree.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 58

AO* Search:

Best-first search is what the AO* algorithm does. The AO* method divides any given

difficult problem into a smaller group of problems that are then resolved using the AND-OR graph

concept. AND OR graphs are specialized graphs that are used in problems that can be divided into

smaller problems. The AND side of the graph represents a set of tasks that must be completed to

achieve the main goal, while the OR side of the graph represents different methods for accomplishing

the same main goal.

In the above figure, the buying of a car may be broken down into smaller problems or tasks that can

be accomplished to achieve the main goal in the above figure, which is an example of a simple

AND-OR graph. The other task is to either steal a car that will help us accomplish the main goal or

use your own money to purchase a car that will accomplish the main goal. The AND symbol is used

to indicate the AND part of the graphs, which refers to the need that all subproblems containing the

AND to be resolved before the preceding node or issue may be finished

The start state and the target state are already known in the knowledge-based search strategy known

as the AO* algorithm, and the best path is identified by heuristics. The informed search technique

considerably reduces the algorithm’s time complexity. The AO* algorithm is far more effective in

searching AND-OR trees than the A* algorithm.

Working of AO* algorithm:

The evaluation function in AO* looks like this:

f(n) = g(n) + h(n)

f(n) = Actual cost + Estimated cost
here,

 f(n) = The actual cost of traversal.

 g(n) = the cost from the initial node to the current node.
 h(n) = estimated cost from the current node to the goal state.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 59

Here in the above example below the Node which is given is the heuristic value i.e h(n). Edge length

is considered as 1.

Step 1

With help of f(n) = g(n) + h(n) evaluation function,

Start from node A,

f(A⇢B) = g(B) + h(B)

 = 1 + 5 ……here g(n)=1 is taken by default for path cost

 = 6

 f(A⇢C+D) = g(c) + h(c) + g(d) + h(d)

 = 1 + 2 + 1 + 4 ……here we have added C & D because they are in AND

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 60

 = 8

 So, by calculation A⇢B path is chosen which is the minimum path, i.e f(A⇢B)

Step 2

According to the answer of step 1, explore node B

Here the value of E & F are calculated as follows,

f(B⇢E) = g(e) + h(e)

f(B⇢E) = 1 + 7

 = 8

 f(B⇢f) = g(f) + h(f)

f(B⇢f) = 1 + 9

 = 10

 So, by above calculation B⇢E path is chosen which is minimum path, i.e f(B⇢E)

 because B's heuristic value is different from its actual value The heuristic is updated and the minimum

cost path is selected. The minimum value in our situation is 8.

 Therefore, the heuristic for A must be updated due to the change in B's heuristic.So we need to calculate

it again

 f(A⇢B) = g(B) + updated h(B)

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 61

 = 1 + 8 = 9

 We have Updated all values in the above tree.gain.

Step 3

By comparing f(A⇢B) & f(A⇢C+D)

f(A⇢C+D) is shown to be smaller. i.e 8 < 9

Now explore f(A⇢C+D)

So, the current node is C

f(C⇢G) = g(g) + h(g)

f(C⇢G) = 1 + 3

 = 4

f(C⇢H+I) = g(h) + h(h) + g(i) + h(i)

f(C⇢H+I) = 1 + 0 + 1 + 0 ……here we have added H & I because they are in AND

 = 2

 f(C⇢H+I) is selected as the path with the lowest cost and the heuristic is also left unchanged

because it matches the actual cost. Paths H & I are solved because the heuristic for those paths is 0,

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 62

but Path A⇢D needs to be calculated because it has an AND.

f(D⇢J) = g(j) + h(j)

f(D⇢J) = 1 + 0

 = 1

the heuristic of node D needs to be updated to 1.

f(A⇢C+D) = g(c) + h(c) + g(d) + h(d)

 = 1 + 2 + 1 + 1

 = 5

 as we can see that path f(A⇢C+D) is get solved and this tree has become a solved tree now.

In simple words, the main flow of this algorithm is that we have to find firstly level 1st heuristic

value and then level 2nd and after that update the values with going upward means towards the root

node.

In the above tree diagram, we have updated all the values.

 BASIC KNOWLEDGE REPRESENTATION AND REASONING:

• Humans are best at understanding, reasoning, and interpreting knowledge. Human knows things,

which is knowledge and as per their knowledge they perform various actions in the real world.

• But how machines do all these things comes under knowledge representation

• There are three factors which are put into the machine, which makes it valuable:

• Knowledge: The information related to the environment is stored in the machine.

• Reasoning: The ability of the machine to understand the stored knowledge.

• Intelligence: The ability of the machine to make decisions on the basis of the stored

information.

• A knowledge representation language is defined by two aspects:

• The syntax of a language describes the possible configurations that can constitute sentences.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 63

• The semantics determines the facts in the world to which the sentences refer.

• For example, the syntax of the language of arithmetic expressions says that if x and y are

expressions denoting numbers, then x > y is a sentence about numbers. The semantics of the

language says that x > y is false when y is a bigger number than x, and true otherwise From the

syntax and semantics, we can derive an inference mechanism for an agent that uses the language.

• Recall that the semantics of the language determine the fact to which a given sentence

refers. Facts are part of the world,

• whereas their representations must be encoded in some way that can be physically stored within

an agent. We cannot put the world inside a computer (nor can we put it inside a human), so all

reasoning mechanisms must operate on representations of facts, rather than on the facts

themselves. Because sentences are physical configurations of parts of the agent,

Reasoning must be a process of constructing new physical configurations from old ones. Proper

reasoning should ensure that the new configurations represent facts that actually follow from the

facts that the old configurations represent.

• We want to generate new sentences that are necessarily true, given that the old sentences are

true. This relation between sentences is called entailment.

• In mathematical notation, the relation of entailment between a knowledge base KB and a

sentence a is pronounced "KB entails a" and written as

• An inference procedure can do one of two things:

• given a knowledge base KB, it can generate new sentences a that purport to be

entailed by KB.

• E.g., x + y = 4 entails 4 = x + y

• Entailment is a relationship between sentences (i.e., syntax) that is based on

semantics

 PROPOSITIONAL LOGIC:

• Propositional logic (PL) is the simplest form of logic where all the statements are

made by propositions.

• A proposition is a declarative statement which is either true or false.

It is a technique of knowledge representation in logical and mathematical form

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 64

Syntax of propositional logic:

• The symbols of prepositional logic are the logical constants True and False, proposition

symbols such as P and Q, the logical connectives A, V, <=>, =>and and parentheses,

• All sentences are made by putting these symbols together using the following rules:

• The logical constants True and False are sentences by themselves.

• A prepositional symbol such as P or Q is a sentence by itself.

• Wrapping parentheses around a sentence yields a sentence, for example, (P A Q).

A sentence can be formed by combining simpler sentences with one of the five logical connectives::

1. Negation: A sentence such as ¬ P is called negation of P. A literal can be either Positive

literal or negative literal.

Example:P=Today is not Sunday -> ¬ p

1. Conjunction: A sentence which has ∧ connective such as, P ∧ Q is called a conjunction.

Example: Rohan is intelligent and hardworking. It can be written as,

P= Rohan is intelligent,

Q= Rohan is hardworking. → P∧ Q.

2. Disjunction: A sentence which has ∨ connective, such as P ∨ Q. is called

disjunction, where P and Q are the propositions.

3. Example: "Ritika is a doctor or Engineer",

Here P= Ritika is Doctor. Q= Ritika is Doctor, so we can write it as P ∨ Q.

4. 4. Implication: A sentence such as P → Q, is called an implication. Implications are also

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 65

known as if-then rules. It can be represented as

 If it is raining, then the street is wet.

 Let P= It is raining, and Q= Street is wet, so it is represented as P → Q

5. 5. Biconditional: A sentence such as P⇔ Q is a Biconditional sentence, example If I am

breathing, then I am alive

 P= I am breathing, Q= I am alive, it can be represented as P ⇔ Q.

Precedence of connectives:

Precedence Operators

First Precedence Parenthesis

Second Precedence Negation

Third Precedence Conjunction(AND)

Fourth Precedence Disjunction(OR)

Fifth Precedence Implication

Six Precedence Biconditional

Precedence of connectives:

 Semantics

• The semantics of prepositional logic is also quite straightforward. We define it by specifying

the interpretation of the proposition symbols and constants, and specifying the meanings of the

logical connectives.

 Validity

• Truth tables can be used not only to define the connectives, but also to test for valid

sentences.

• Given a sentence, we make a truth table with one row for each of the possible combinations

of truth values for the proposition symbols in the sentence.

• If the sentence is true in every row, then the sentence is valid. For example, the sentence ((P

V H) A ¬H) => P

 Translating English into logic:

• User defines semantics of each propositional symbol

• P: It is Hot

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 66

• Q: It is Humid

• R:It is raining

1. If it is humid then it is hot

Q->P

.If it is hot and humid , then it is raining

(P A Q)->R

Limitations of Propositional logic:

• In propositional logic, we can only represent the facts, which are either true or false.

• PL is not sufficient to represent the complex sentences or natural language

statements.

• The propositional logic has very limited expressive power.

• Consider the following sentence, which we cannot represent using PL logic.

• "Some humans are intelligent", or "Sachin likes cricket

Advantages of Propositional Logic

 The declarative nature of propositional logic, specify that knowledge and inference

are separate, and inference is entirely domain-independent. Propositional

logic is a declarative language because its semantics is based on a truth relation

between sentences and possible worlds.

 It also has sufficient expressive power to deal with partial information, using

disjunction and negation.

 Propositional logic has a third COMPOSITIONALITY property that is desirable in

representation languages, namely, compositionality. In a compositional language,

the meaning of a sentence is a function of the meaning of its parts. For example, the

meaning of “S1,4∧ S1,2” is related to the meanings of “S1,4” and “S1,2.

Drawbacks of Propositional Logic

 Propositional logic lacks the expressive power to concisely describe an environment with

many objects.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 67

For example, we were forced to write a separate rule about breezes and pits for each square,

such as B1,1⇔ (P1,2 ∨ P2,1) .

In English, it seems easy enough to say, “Squares adjacent to pits are breezy.”

The syntax and semantics of English somehow make it possible to describe the

environment concisely

First-order logic:

Syntax And Semantics Of First-Order Logic

Models for first-order logic :

The models of a logical language are the formal structures that constitute the possible

worlds under consideration. Each model links the vocabulary of the logical sentences to

elements of the possible world, so that the truth of any sentence can be determined. Thus,

models for propositional logic link proposition symbols to predefined truth values. Models

for first-order logic have objects. The domain of a model is the set of objects or domain

elements it contains. The domain is required to be nonempty—every possible world must

contain at least one object.

A relation is just the set of tuples of objects that are related.

 Unary Relation: Relations relates to single Object Binary Relation: Relation Relates

to multiple objects Certain kinds of relationships are best considered as functions, in that a

given object must be related to exactly one object.

For Example:

Richard the Lionheart, King of England from 1189 to 1199; His younger brother, the evil

King John, who ruled from 1199 to 1215; the left legs of Richard and John; crown

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 68

Unary Relation : John is a king Binary Relation :crown is on head of john , Richard is brother

ofjohn The unary "left leg" function includes the following mappings: (Richard the Lionheart) -

>Richard's left leg (King John) ->Johns left Leg

Symbols and interpretations

Symbols are the basic syntactic elements of first-order logic. Symbols stand for objects, relations,

and functions.

The symbols are of three kinds: Constant symbols which stand for objects; Example: John,

Richard Predicate symbols, which stand for relations; Example: OnHead, Person, King, and Crown

Function symbols, which stand for functions. Example: left leg Symbols will begin with uppercase

letters.

Interpretation The semantics must relate sentences to models in order to determine truth. For this to

happen, we need an interpretation that specifies exactly which objects, relations and functions are

referred to by the constant, predicate, and function symbols.

For Example:

Richard refers to Richard the Lionheart and John refers to the evil king John. Brother refers to the

brotherhood relation OnHead refers to the "on head relation that holds between the crown and King

John; Person, King, and Crown refer to the sets of objects that are persons, kings, and crowns.

LeftLeg refers to the "left leg" function,

The truth of any sentence is determined by a model and an interpretation for the sentence's

symbols. Therefore, entailment, validity, and so on are defined in terms of all possiblemodels and all

possible interpretations. The number of domain elements in each model may be unbounded-for

example, the domain elements may be integers or real numbers. Hence, the number of possible

models is anbounded, as is the number of interpretations.

Term

A term is a logical expression that refers to an object. Constant symbols are therefore terms.

Complex Terms A complex term is just a complicated kind of name. A complex term is formed by a

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 69

function symbol followed by a parenthesized list of terms as arguments to the function symbol For

example: "King John's left leg" Instead of using a constant symbol, we use LeftLeg(John). The

formal semantics of terms

Consider a term f (tl,. . . , t,). The function symbol frefers to some function in the model (F); the

argument terms refer to objects in the domain (call them d1….dn); and the term as a whole refers to the

object that is the value of the function Fapplied to dl, . . . , d,. For example,: the LeftLeg function

symbol refers to the function “ (King John) -+ John's left leg” and John refers to King John, then

LeftLeg(John) refers to King John's left leg. In this way, the interpretation fixes the referent of every

term.

Atomic sentences

An atomic sentence is formed from a predicate symbol followed by a parenthesized list of terms:

For Example: Brother(Richard, John).

Atomic sentences can have complex terms as arguments. For Example: Married (Father(Richard),

Mother(John)).

An atomic sentence is true in a given model, under a given interpretation, if the relation referred to by the

predicate symbol holds among the objects referred to by the arguments

Complex sentences Complex sentences can be constructed using logical Connectives, just as in

propositional calculus. For Example:

Thus, the sentence says, “For all x, if x is a king, then x is a person.” The symbol x is called a

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 70

variable. Variables are lowercase letters. A variable is a term all by itself, and can also serve as the

argument of a function A term with no variables is called a ground term.

Assume we can extend the interpretation in different ways: x→ Richard the Lionheart, x→ King John,

x→ Richard’s left leg, x→ John’s left leg, x→ the crown

The universally quantified sentence ∀x King(x) ⇒Person(x) is true in the original model if the

sentence King(x) ⇒Person(x) is true under each of the five extended interpretations. That is, the

universally quantified sentence is equivalent to asserting the following five sentences:

Richard the Lionheart is a king ⇒Richard the Lionheart is a person. King John is a king ⇒King John

is a person. Richard’s left leg is a king ⇒Richard’s left leg is a person. John’s left leg is a king ⇒John’s left

leg is a person. The crown is a king ⇒the crown is a person.

Existential quantification (∃)

Universal quantification makes statements about every object. Similarly, we can make a

statement about some object in the universe without naming it, by using an existential

quantifier.

“The sentence ∃x P says that P is true for at least one object x. More precisely, ∃x P is true in a

given model if P is true in at least one extended interpretationthat assigns x to a domain element.”

∃x is pronounced “There exists an x such that . . .” or “For some x . . .”.

For example, that King John has a crown on his head, we write ∃xCrown(x) ∧OnHead(x, John)

Given assertions:

Richard the Lionheart is a crown ∧Richard the Lionheart is on John’s head; King John is a crown

∧King John is on John’s head; Richard’s left leg is a crown ∧Richard’s left leg is on John’s head; John’s left leg

is a crown ∧John’s left leg is on John’s head; The crown is a crown ∧the crown is on John’s head. The

fifth assertion is true in the model, so the original existentially quantified sentence is true in the

model. Just as ⇒appears to be the natural connective to use with ∀, ∧is the natural connective to use

with ∃.

Nested quantifiers

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 71

One can express more complex sentences using multiple quantifiers.

For example, “Brothers are siblings” can be written as ∀x∀y Brother (x, y) ⇒Sibling(x, y).

Consecutive quantifiers of the same type can be written as one quantifier with several variables.

For example, to say that siblinghood is a symmetric relationship, we can write∀x, y Sibling(x, y)

⇔Sibling(y, x).

In other cases we will have mixtures.

For example: 1. “Everybody loves somebody” means that for every person, there is someone that person

loves: ∀x∃y Loves(x, y) . 2. On the other hand, to say “There is someone who is loved by everyone,” we

write ∃y∀x Loves(x, y) .

Connections between ∀and ∃

Universal and Existential quantifiers are actually intimately connected with each other, through

negation.

Example assertions:

1. “ Everyone dislikes medicine” is the same as asserting “ there does not exist someone who likes medicine” ,

and vice versa: “∀x ￢Likes(x, medicine)” is equivalent to “￢∃x Likes(x, medicine)”.

2. “Everyone likes ice cream” means that “ there is no one who does not like ice cream” : ∀xLikes(x,

IceCream) is equivalent to ￢∃x ￢Likes(x, IceCream) .

Because ∀is really a conjunction over the universe of objects and ∃is a disjunction that they obey De

Morgan’s rules. The De Morgan rules for quantified and unquantified sentences are as follows:

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 72

Equality

First-order logic includes one more way to make atomic sentences, other than using a predicateand terms .We

can use the equality symbol to signify that two terms refer to the same object.

For example,

“Father(John) =Henry” says that the object referred to by Father (John) and the object referred to by

Henry are the same.

Because an interpretation fixes the referent of any term, determining the truth of an equality sentence is

simply a matter of seeing that the referents of the two terms are the same object.The equality symbol can be

used to state facts about a given function.It can also be used with negation to insist that two terms are not the

same object.

For example,

“Richard has at least two brothers” can be written as, ∃x, y Brother (x,Richard) ∧Brother (y,Richard

) ∧￢(x=y) .

The sentence

∃x, y Brother (x,Richard) ∧Brother (y,Richard) does not have the intended meaning.

In particular, it is true only in the model where Richard has only one brother considering the extended

interpretation in which both x and y are assigned to King John. The addition of ￢(x=y) rules out such

models.

USING FIRST ORDER LOGIC Assertions and queries in first-order logic Assertions:

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 73

Sentences are added to a knowledge base using TELL, exactly as in propositional logic. Such sentences are

called assertions.

For example,

John is a king, TELL (KB, King (John)). Richard is a person. TELL (KB, Person (Richard)). All kings are

persons: TELL (KB, ∀x King(x) ⇒Person(x)).

Asking Queries:

We can ask questions of the knowledge base using ASK. Questions asked with ASK are called queries or

goals.

For example,

ASK (KB, King (John)) returns true.

Any query that is logically entailed by the knowledge base should be answered affirmatively. Fo

rexample, given the two preceding assertions, the query:

“ASK (KB, Person (John))” should also return true.

Substitution or binding list

We can ask quantified queries, such as ASK (KB, ∃x Person(x)) .

The answer is true, but this is perhaps not as helpful as we would like. It is rather like answering

“Can you tell me the time?” with “Yes.”

If we want to know what value of x makes the sentence true, we will need a different function,

ASKVARS, which we call with ASKVARS (KB, Person(x)) and which yields a stream of answers.

In this case there will be two answers: {x/John} and {x/Richard}. Such an answer is called a

substitution or binding list.

ASKVARS is usually reserved for knowledge bases consisting solely of Horn clauses, because in

such knowledge bases every way of making the query true will bind the variables to specific values.

The kinship domain

The objects in Kinship domain are people.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 74

We have two unary predicates, Male and Female.

Kinship relations—parenthood, brotherhood, marriage, and so on—are represented by binary

predicates: Parent, Sibling, Brother,Sister,Child, Daughter, Son, Spouse, Wife, Husband,

Grandparent,Grandchild, Cousin, Aunt, and Uncle.

We use functions for Mother and Father, because every person has exactly one of each of these.

We can represent each function and predicate, writing down what we know in termsof the other

symbols.

For example:-

 1. one’s mother is one’s female parent: ∀m, c Mother (c)=m ⇔Female(m) ∧Parent(m,

.

2. One’s husband is one’s male spouse: ∀w, h Husband(h,w) ⇔Male(h) ∧Spouse(h,w) .

3. Male and female are disjoint categories: ∀xMale(x) ⇔￢Female(x) .

4. Parent and child are inverse relations: ∀p, c Parent(p, c) ⇔Child (c, p) .

5. A grandparent is a parent of one’s parent: ∀g, c Grandparent (g, c) ⇔∃p Parent(g,

p) ∧Parent(p, c)

6. A sibling is another child of one’s parents: ∀x, y Sibling(x, y) ⇔x _= y ∧∃p

Parent(p, x) ∧Parent(p,

Axioms:

Each of these sentences can be viewed as an axiom of the kinship domain. Axioms are commonly

associated with purely mathematical domains. They provide the basic factual information from

which useful conclusions can be derived.

Kinship axioms are also definitions; they have the form ∀x, y P(x, y) ⇔. . ..

The axioms define the Mother function, Husband, Male, Parent, Grandparent, and Sibling predicates in

terms of other predicates.

Our definitions “bottom out” at a basic set of predicates (Child, Spouse, and Female) in terms of which

the others are ultimately defined. This is a natural way in which to build up the

representation of a domain, and it is analogous to the way in which software packages are

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 75

built up by successive definitions of subroutines from primitive library functions.

Theorems:

Not all logical sentences about a domain are axioms. Some are theorems—that is, they are entailed by

the axioms.

For example, consider the assertion that siblinghood is symmetric: ∀x, y Sibling(x, y) ⇔Sibling(y, x) .

It is a theorem that follows logically from the axiom that defines siblinghood. If we ASK the knowledge

base this sentence, it should return true. From a purely logical point of view, a knowledge base need

contain only axioms and no theorems, because the theorems do not increase the set of conclusions that

follow from the knowledge base. From a practical point of view, theorems are essential to reduce the

computational cost of deriving new sentences. Without them, a reasoning system has to start from first

principles every time.

Axioms :Axioms without Definition

Not all axioms are definitions. Some provide more general information about certain predicates

without constituting a definition. Indeed, some predicates have no complete definition because we do

not know enough to characterize them fully.

For example, there is no obvious definitive way to complete the sentence

∀xPerson(x) ⇔. . .

Fortunately, first-order logic allows us to make use of the Person predicate without completely

defining it. Instead, we can write partial specifications of properties that every person has and

properties that make something a person:

∀xPerson(x) ⇒. . . ∀x . . . ⇒Person(x) .

Axioms can also be “just plain facts,” such as Male (Jim) and Spouse (Jim, Laura).Such facts form the

descriptions of specific problem instances, enabling specific questions to be answered. The answers

to these questions will then be theorems that follow from the axioms

Numbers, sets, and lists Number theory

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 76

Numbers are perhaps the most vivid example of how a large theory can be built up from NATURAL

NUMBERS a tiny kernel of axioms. We describe here the theory of natural numbers or non-negative

integers. We need:

predicate NatNum that will be true of natural numbers;

 PEANO AXIOMS constant symbol, 0; One function symbol, S (successor). The Peano axioms

define natural numbers and addition.

Natural numbers are defined recursively: NatNum(0) . ∀n NatNum(n) ⇒ NatNum(S(n)) .

That is, 0 is a natural number, and for every object n, if n is a natural number, then S(n) is a natural

number.

So the natural numbers are 0, S(0), S(S(0)), and so on. We also need axioms to constrain the successor

function: ∀n 0 != S(n) . ∀m, n m != n ⇒ S(m) != S(n) .

Now we can define addition in terms of the successor function: ∀m NatNum(m) ⇒ + (0, m) =

m .

∀m, n NatNum(m) ∧ NatNum(n) ⇒ + (S(m), n) = S(+(m, n))

The first of these axioms says that adding 0 to any natural number m gives m itself. Addition is

represented using the binary function symbol “+” in the term + (m, 0);

To make our sentences about numbers easier to read, we allow the use of infix notation. We

can also write S(n) as n + 1, so the second axiom becomes :

∀m, n NatNum (m) ∧ NatNum(n) ⇒ (m + 1) + n = (m + n)+1 .

This axiom reduces addition to repeated application of the successor function. Once we have

addition, it is straightforward to define multiplication as repeated addition, exponentiation as

repeated multiplication, integer division and remainders, prime numbers, and so on. Thus, the

whole of number theory (including cryptography) can be built up from one constant, one

function, one predicate and four axioms.

Sets

The domain of sets is also fundamental to mathematics as well as to commonsense reasoning.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 77

Sets can be represented as individualsets, including empty sets.

Sets can be built up by:

adding an element to a set or

Taking the union or intersection of two sets.

Operations that can be performed on sets are:

To know whether an element is a member of a set Distinguish sets from objects that are not

sets.

Vocabulary of set theory:

The empty set is a constant written as { }. There is one unary predicate, Set, which is true of

sets. The binary predicates are

x∈ s (x is a member of set s) s1 ⊆ s2 (set s1 is a subset, not necessarily proper, of set

s2).

The binary functions are

s1 ∩ s2 (the intersection of two sets), s1 ∪ s2 (the union of two sets), and {x|s} (the set

resulting from adjoining element x to set s).

Forward Chaining and backward chaining in AI

Inference engine:

The inference engine is the component of the intelligent system in artificial

intelligence, which applies logical rules to the knowledge base to infer new information

from known facts. The first inference engine was part of the expert system. Inference

engine commonly proceeds in two modes, which are:

a. Forward chaining

b. Backward chaining

Horn Clause and Definite clause:

Horn clause and definite clause are the forms of sentences, which enables knowledge base

to use a more restricted and efficient inference algorithm. Logical inference algorithms use

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 78

forward and backward chaining approaches, which require KB in the form of the first-

order definite clause.

Definite clause: A clause which is a disjunction of literals with exactly one positive

literal is known as a definite clause or strict horn clause.

Horn clause: A clause which is a disjunction of literals with at most one positive

literal is known as horn clause. Hence all the definite clauses are horn clauses.

Example: (¬ p V ¬ q V k). It has only one positive literal k.

It is equivalent to p ∧ q → k.

A. Forward Chaining

Forward chaining is also known as a forward deduction or forward reasoning method when

using an inference engine. Forward chaining is a form of reasoning which start with atomic

sentences in the knowledge base and applies inference rules (Modus Ponens) in the forward

direction to extract more data until a goal is reached.

The Forward-chaining algorithm starts from known facts, triggers all rules whose premises

are satisfied, and add their conclusion to the known facts. This process repeats until the

problem is solved.

Properties of Forward-Chaining:

o It is a down-up approach, as it moves from bottom to top.

o It is a process of making a conclusion based on known facts or data, by starting

from the initial state and reaches the goal state.

o Forward-chaining approach is also called as data-driven as we reach to the goal

using available data.

o Forward -chaining approach is commonly used in the expert system, such as

CLIPS, business, and production rule systems.

Consider the following famous example which we will use in both approaches:

Facts Conversion into FOL:

o It is a crime for an American to sell weapons to hostile nations. (Let's say p, q, and

r are variables)

American (p) ∧ weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → Criminal(p) ...(1)

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 79

o Country A has some missiles. ?p Owns(A, p) ∧ Missile(p). It can be written in

two definite clauses by using Existential Instantiation, introducing new Constant T1.

Owns(A, T1) (2)

Missile(T1) (3)

o All of the missiles were sold to country A by Robert.

?p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A) (4)

o Missiles are weapons.

Missile(p) → Weapons (p) (5)

o Enemy of America is known as hostile.

Enemy(p, America) →Hostile(p) (6)

o CountryA is an enemy of America.

Enemy (A, America) (7)

o RobertisAmerican

American(Robert). (8)

Forward chaining proof:

Step-1:

In the first step we will start with the known facts and will choose the sentences which do

not have implications, such as: American(Robert), Enemy(A, America), Owns(A, T1),

and Missile(T1). All these facts will be represented as below.

Step-2:

At the second step, we will see those facts which infer from available facts and with

satisfied premises.

Rule-(1) does not satisfy premises, so it will not be added in the first iteration.

Rule-(2) and (3) are already added.

Rule-(4) satisfy with the substitution {p/T1}, so Sells (Robert, T1, A) is added, which

infers from the conjunction of Rule (2) and (3).

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 80

Rule-(6) is satisfied with the substitution(p/A), so Hostile(A) is added and which infers

from Rule-(7).

Step-3:

At step-3, as we can check Rule-(1) is satisfied with the substitution {p/Robert, q/T1, r/A},

so we can add Criminal(Robert) which infers all the available facts. And hence we

reached our goal statement.

Hence it is proved that Robert is Criminal using forward chaining approach.

Backward Chaining:

Backward-chaining is also known as a backward deduction or backward reasoning method

when using an inference engine. A backward chaining algorithm is a form of reasoning,

which starts with the goal and works backward, chaining through rules to find known facts

that support the goal.

Properties of backward chaining:

o It is known as a top-down approach.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 81

o Backward-chaining is based on modus ponens inference rule.

o In backward chaining, the goal is broken into sub-goal or sub-goals to prove the

facts true.

o It is called a goal-driven approach, as a list of goals decides which rules are

selected and used.

o Backward -chaining algorithm is used in game theory, automated theorem proving

tools, inference engines, proof assistants, and various AI applications.

o The backward-chaining method mostly used a depth-first search strategy for

proof.

Example:

In backward-chaining, we will use the same above example, and will rewrite all the rules.

o American (p) ∧ weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → Criminal(p) ...(1)

Owns(A, T1) (2)

o Missile(T1)

o ?p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A) (4)

o Missile(p) → Weapons (p) (5)

o Enemy(p, America) →Hostile(p) (6)

o Enemy (A, America) (7)

o American(Robert). (8)

Backward-Chaining proof:

In Backward chaining, we will start with our goal predicate, which is Criminal(Robert),

and then infer further rules.

Step-1:

At the first step, we will take the goal fact. And from the goal fact, we will infer other facts,

and at last, we will prove those facts true. So our goal fact is "Robert is Criminal," so

following is the predicate of it.

 Step-2:

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 82

At the second step, we will infer other facts form goal fact which satisfies the rules. So as

we can see in Rule-1, the goal predicate Criminal (Robert) is present with substitution

{Robert/P}. So we will add all the conjunctive facts below the first level and will replace p

with Robert.

Here we can see American (Robert) is a fact, so it is proved here.

Step-3:t At step-3, we will extract further fact Missile(q) which infer from Weapon(q),

as it satisfies Rule-(5). Weapon (q) is also true with the substitution of a constant T1 at q.

Step-4:

At step-4, we can infer facts Missile(T1) and Owns(A, T1) form Sells(Robert, T1, r)

which satisfies the Rule- 4, with the substitution of A in place of r. So these two statements

are proved here.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 83

Step-5:

At step-5, we can infer the fact Enemy(A, America) from Hostile(A) which satisfies

Rule- 6. And hence all the statements are proved true using backward chaining.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 84

Difference between backward chaining and forward chaining

No.

Forward Chaining Backward Chaining

1

.

Forward chaining

starts from known facts

and applies inference rule

to extract more data unit it

reaches to the goal.

Backward chaining

starts from the goal and

works backward through

inference rules to find the

required facts that support

the goal.

2

.

It is a bottom-up

approach

It is a top-down

approach

3

.

Forward chaining is

known as data-driven

inference technique as we

reach to the goal using the

available data.

Backward chaining is

known as goal-driven

technique as we start from

the goal and divide into

sub-goal to extract the

facts.

4

.

Forward chaining

reasoning applies a

breadth-first search

strategy.

Backward chaining

reasoning applies a depth-

first search strategy.

5

.

Forward chaining

tests for all the available

rules

Backward chaining

only tests for few required

rules.

6

.

Forward chaining is

suitable for the planning,

monitoring, control, and

interpretation application.

Backward chaining is

suitable for diagnostic,

prescription, and

debugging application.

7

.

Forward chaining can

generate an infinite

number of possible

conclusions.

Backward chaining

generates a finite number

of possible conclusions.

8

.

It operates in the

forward direction.

It operates in the

backward direction.

9

.

Forward chaining is

aimed for any conclusion.

Backward chaining is

only aimed for the required

data.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 85

 Basic probability notation
• Prior probability :We will use the notation P(A) for the unconditional or prior probability

that the proposition A is true.

• For example, if Cavity denotes the proposition that a particular patient has a cavity,

P(Cavity) = 0.1 means that in the absence of any other information, the agent will assign a

probability of 0.1(a 10% chance)

• It is important to remember that P(A) can only be used when there is no other information.

As soon as some new information B is known, we have to reason with the conditional probability

of A given B instead of P(A) to the event of the patient's having a cavity.

• Propositions can also include equalities involving so-called random variables.

• For example, if we are concerned about the random variable Weather,

we might have P(Weather = Sunny) = 0.7

P(Weather = Rain) = 0.2

P(Weather= Cloudy) = 0.08

P(Weather = Snow) = 0.02

Each random variable X has a domain of possible values (x1,...,xn) that it can take on.

• We can view proposition symbols as random variables as well, if we assume that they have

a domain [true,false).

• Thus, the expression P(Cavity) can be viewed as shorthand for P(Cavity = true).

• Similarly, P(->Cavity) is shorthand for P(Cavity =false).

• Sometimes, we will want to talk about the probabilities of all the possible values of a

random variable. In this case, we will use an expression such as P(Weather)

• for example, we would write P(Weather) = (0.7,0.2,0.08,0.02)

This statement defines a probability distribution

• We can also use logical connectives to make more complex sentences and assign

probabilities to them.

For example, P(Cavity A ¬Insured)

Conditional probability:

• Once the agent has obtained some evidence concerning the previously unknown

propositions making up the domain, prior probabilities are no longer applicable.

Instead, we use conditional or posterior probabilities, with the notation P(A|B)

• This is read as "the probability of A given that all we know is B."

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 86

• P(B|A) means "Event B given Event A"

• In other words, event A has already happened, now what is the chance of event B?

• P(B|A) is also called the "Conditional Probability" of B given A.

Ex:Drawing 2 Kings from a Deck

• Event A is drawing a King first, and Event B is drawing a King second.

• For the first card the chance of drawing a King is 4 out of 52 (there are 4 Kings in a deck of

52 cards):

• P(A) = 4/52

• But after removing a King from the deck the probability of the 2nd card drawn is less likely

to be a King (only 3 of the 51 cards left are Kings):

• P(B|A) = 3/51

And so: P(A and B) = P(A) x P(B|A) = (4/52) x (3/51) = 12/2652 = 1/221

• So the chance of getting 2 Kings is 1 in 221, or about 0.5

BAYES Theorem:

• Bayes' Theorem is a way of finding a probability when we know certain other probabilities.

The formula is

• Which tells us: how often A happens given that B happens, written P(A|B),

• When we know: How often B happens given that A happens, written P(B|A)

• and how likely A is on its own, written P(A)

• and how likely B is on its own, written P(B)

Example:

• Dangerous fires are rare (1%)

• But smoke is fairly common (10%) due to barbecues,and 90% of dangerous fires

make smoke

We can then discover the probability of dangerous Fire when there is Smoke:

P(Fire|Smoke) =P(Fire) P(Smoke|Fire)/P(Smoke)

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 87

=1% x 90/10%

=9%

So it is still worth checking out any smoke to be sure.

Example 2:

You are planning a picnic today, but the morning is cloudy

Oh no! 50% of all rainy days start off cloudy!

But cloudy mornings are common (about 40% of days start cloudy)

And this is usually a dry month (only 3 of 30 days tend to be rainy, or 10%)

What is the chance of rain during the day?

We will use Rain to mean rain during the day, and Cloud to mean cloudy morning.

The chance of Rain given Cloud is written P(Rain|Cloud)

So let's put that in the formula:

P(Rain|Cloud) = P(Rain) P(Cloud|Rain)/P(Cloud)

P(Rain) is Probability of Rain = 10%

P(Cloud|Rain) is Probability of Cloud, given that Rain happens = 50%

P(Cloud) is Probability of Cloud = 40%

P(Rain|Cloud) = 0.1 x 0.5/0.4 = .125

Or a 12.5% chance of rain. Not too bad, let's have a picnic!

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 88

UNIT-III

Artificial intelligence is a system that is concerned with the study of understanding, designing and

implementing the ways, associated with knowledge representation to computers.

In any intelligent system, representing the knowledge is supposed to be an important technique to

encode the knowledge.

The main objective of AI system is to design the programs that provide information to the computer,

which can be helpful to interact with humans and solve problems in various fields which require

human intelligence.

What is Knowledge?

Knowledge is an useful term to judge the understanding of an individual on a given subject.

In intelligent systems, domain is the main focused subject area. So, the system specifically focuses on

acquiring the domain knowledge.

Issues in knowledge representation

The main objective of knowledge representation is to draw the conclusions from the knowledge, but

there are many issues associated with the use of knowledge representation techniques.

Refer to the above diagram to refer to the following issues.

Advanced Knowledge Representation and Reasoning: Knowledge Representation Issues,
Nonmonotonic Reasoning, Other Knowledge Representation Schemes Reasoning Under
Uncertainty: Basic probability, Acting Under Uncertainty, Bayes’ Rule, Representing Knowledge in
an Uncertain Domain, Bayesian Networks

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 89

1. Important attributes

There are two attributes shown in the diagram, instance and isa. Since these attributes support

property of inheritance, they are of prime importance.

2. Relationships among attributes

Basically, the attributes used to describe objects are nothing but the entities. However, the attributes

of an object do not depend on the encoded specific knowledge.

3. Choosing the granularity of representation

While deciding the granularity of representation, it is necessary to know the following:

i. What are the primitives and at what level should the knowledge be represented?

 ii. What should be the number (small or large) of low-level primitives or high-level facts?

 High-level facts may be insufficient to draw the conclusion while Low-level primitives may

require a lot of storage.

For example: Suppose that we are interested in following facts:

John spotted Alex.

Now, this could be represented as "Spotted (agent(John), object (Alex))"

Such a representation can make it easy to answer questions such as: Who spotted Alex?

Suppose we want to know : "Did John see Sue?"

Given only one fact, user cannot discover that answer.

Hence, the user can add other facts, such as "Spotted (x, y) → saw (x, y)"

4. Representing sets of objects.

There are some properties of objects which satisfy the condition of a set together but not as

individual;

Example: Consider the assertion made in the sentences:

"There are more sheep than people in Australia", and "English speakers can be found all over the

world."

These facts can be described by including an assertion to the sets representing people, sheep, and

English.

5. Finding the right structure as needed

To describe a particular situation, it is always important to find the access of right structure. This can

be done by selecting an initial structure and then revising the choice.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 90

While selecting and reversing the right structure, it is necessary to solve following problem

statements. They include the process on how to:

 Select an initial appropriate structure.

 Fill the necessary details from the current situations.

 Determine a better structure if the initially selected structure is not appropriate to fulfill other

conditions.

 Find the solution if none of the available structures is appropriate.

 Create and remember a new structure for the given condition.

 There is no specific way to solve these problems, but some of the effective knowledge

representation techniques have the potential to solve them.

Non Monotonic reasoning:

● In Non-monotonic reasoning, some conclusions may be invalidated if we add some more

information to our knowledge base.

● Logic will be said as non-monotonic if some conclusions can be invalidated by adding more

knowledge into our knowledge base.

● Non-monotonic reasoning deals with incomplete and uncertain models.

● "Human perceptions for various things in daily life, "is a general example of non-monotonic

reasoning.

Example: Let suppose the knowledge base contains the following knowledge:

● Birds can fly

● Penguins cannot fly

● Pitty is a bird

So from the above sentences, we can conclude that Pitty can fly.

However, if we add one another sentence into knowledge base "Pitty is a penguin", which concludes

"Pitty cannot fly", so it invalidates the above conclusion.

ACTING UNDER UNCERTAINTY

Agents may need to handle uncertainity ,whether due to partial observability,non determininsm or

combination of two.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 91

Summarizing Uncertainity:

Consider the following Simple rule:

Toothache=> Cavity

Not all the patients with toothaches have cavities ,some of them may have gum disease ,an abscess or

some other problems

Toothache=>cavity V Gum Problem V Abscess…..

Unfortunately in order to make the rule true we have to add an almost unlimited list of possible

problems

Trying to use first-order logic to cope with a domain like medical diagnosis thus fails for three main

reasons:

Laziness: It is too much work to list the complete set of antecedents or consequents needed to ensure

an exceptionless rule, and too hard to use the enormous rules that result.

Theoretical ignorance: Medical science has no complete theory for the domain.

Practical ignorance: Even if we know all the rules, we may be uncertain about a particular patient

because all the necessary tests have not or cannot be run.

The agent's knowledge can at best provide only a degree of belief in the relevant sentences. Our main

tool for dealing with degrees of belief will be probability theory, which assigns a numerical degree of

belief between 0 and 1 to sentences.

Probability provides a way of summarizing the uncertainty that comes from our laziness and

ignorance. We may not know for sure what afflicts a particular patient, but we believe that there is,

say, an 80% chance—that is, a probability of 0.8—that the patient has a cavity if he or she has a

toothache

BASIC PROBABILITY NOTATION

Prior probability We will use the notation P(A) for the unconditional or prior probability that the

proposition A is true.

For example, if Cavity denotes the proposition that a particular patient has a cavity,

 P(Cavity) = 0

means that in the absence of any other information, the agent will assign a probability of 0.1 (a 10%

chance) to the event of the patient's having a cavity.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 92

It is important to remember that P(A) can only be used when there is no other information. As soon

as some new information B is known, we have to reason with the conditional probability of A given

B instead of P(A).

 The proposition that is the subject of a probability statement can be represented by a proposition

symbol, as in the P(A) example. Propositions can also include equalities involving so-called random

variables. For example, if we are concerned about the random variable Weather, we might have

 P(Weather = Sunny) = 0.7

P(Weather = Rain) = 0.2

 P(Weather= Cloudy) = 0.08

P(Weather = Snow) = 0.02

Each random variable X has a domain of possible values (x\,...,xn) that it can take on

We can view proposition symbols as random variables as well, if we assume that they have a domain

[true,false). Thus, the expression P(Cavity) can be viewed as shorthand for P(Cavity = true).

Similarly, P(->Cavity) is shorthand for P(Cavity =false). Usually, we will use the letters A, B, and so

on for Boolean random variables, and the letters X, Y, and so on for multivalued variables.

Sometimes, we will want to talk about the probabilities of all the possible values of a random

variable.

 In this case, we will use an expression such as P(Weather), which denotes vector of values for the

probabilities of each individual state of the weather.

Given the preceding values, for example, we would write P(Weather) = (0.7,0.2,0.08,0.02)

 This statement defines a probability distribution for the random variable Weather.

We will also use expressions' such as P(Weather, Cavity) to denote the probabilities of all

combinations of the values of a set of random variables.

In this case, P(Weather, Cavity) denotes a 4 x 2 table of probabilities. We will see that this notation

simplifies many equations. We can also use logical connectives to make more complex sentences and

assign probabilities to them. For example, P(Cavity A -^Insured) - 0.06 says there is an 6% chance

that a patient has a cavity and has no insurance

Conditional probability:

 Once the agent has obtained some evidence concerning the previously unknown propositions

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 93

making up the domain, prior probabilities are no longer applicable. Instead, we use

conditional or posterior probabilities, with the notation P(A|B).

 This is read as "the probability of A given that all we know is B."

For example, indicates that if a patient is observed to have a toothache, and no other information is

yet available,

then the probability of the patient having a cavity will be 0.8.

 It is important to remember that P(A|B) can only be used when all we know is B. As soon as

we know C, then we must compute

 P(A|B A C) instead of P(A|B). A prior probability P(A) can be thought of as a special case of

conditional probability P(A\), where the probability is conditioned on no evidence.

 We can also use the P notation with conditional probabilities. P(X| Y) is a two-dimensional

table giving the values of P(X=x,|Y = yj) for each possible I, j. Conditional probabilities can be

defined in terms of unconditional probabilities. The equation

Axioms of Probability:

 All probabilities are between 0 and 1.

0 < P(A) < 1

 Necessarily true (i.e., valid) propositions have probability 1, and necessarily false (i.e.,

unsatisfiable) propositions have probability 0. P(True) = 1 P(False) = 0

 The probability of a disjunction is given by P(A V 5) = P(A) + P(B) - P(A A B)

The joint probability distribution

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 94

The joint probability distribution (or "joint" for short), which completely specifies an agent's

probability assignments to all propositions in the domain (both simple and complex).

A probabilistic model of a'domain consists of a set of random variables that can take on particular

values with certain probabilities. Let the variables be X\ ... Xn.

 An atomic event is an assignment of particular values to all the variables—in other words, a

complete specification of the state of the domain

The joint probability distribution P(X],.. . ,Xn) assigns probabilities to all possible atomic events.

Recall that P(X,) is a one-dimensional vector of probabilities for the possible values of the variable

X,-. Then the joint is an w-dimensional table with a value in every cell giving the probability of that

specific state occurring. Here is a joint probability distribution for the trivial medical domain

consisting of the two Boolean variables Toothache and Cavity:

Adding across a row or column gives the unconditional probability of a variable, for example,

P(Cavity) = 0.06 + 0.04 = 0.10.

P(Cavity V Toothache) = 0.04 + 0.01 + 0.06 = 0.11

Bayes Rule:

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 95

Representing knowledge in uncertain domain

In the context of using Bayes' rule, conditional independence relationships among variables can simplify the

computation of query results and greatly reduce the number of conditional probabilities that need to be

specified. We use a data structure called a belief BELIEF NETWORK network' to represent the dependence

between variables and to give a concise specification of the joint probability distribution.

A Bayesian Network Is a directed graph in which each node is annotated with quantitative probability

information.

The full specification is as follows:

1. Each node corresponds to a random variable , which can be discrete or continuous.

2. f A set of directed links or arrows connects pairs of nodes. If there is an arrow from node X to node Y ,X I s

said to be parent of Y.The graph has no directed cycles and hence it is called directed acyclic graph(DAG)

3. Each node Xi has a conditional probability distribution P(Xi|Parents(Xi)) that quantifies the effect of the

parents on the node.

The intuitive meaning of an arrow from node X to node Y is that X has a direct influence on Y

Consider the following situation. You have a new burglar alarm installed at home. It is fairly reliable

at detecting a burglary, but also responds on occasion to minor earthquakes. (This example is due to

Judea Pearl, a resident of Los Angeles; hence the acute interest in earthquakes.) You also have two

neighbors, John and Mary, who have promised to call you at work when they hear the alarm. John

always calls when he hears the alarm, but sometimes confuses the telephone ringing with the alarm

and calls then, too. Mary, on the other hand, likes rather loud music and sometimes misses the alarm

altogether. Given the evidence of who has or has not called, we would like to estimate the probability

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 96

of a burglary.

This simple domain is described by the belief network in Figure 15.2

Notice that the network does not have nodes corresponding to Mary currently listening to loud music,

or to the telephone ringing and confusing John. These factors are summarized in the uncertainty

associated with the links from Alarm to JohnCalls and MaryCalls.

This shows both laziness and ignorance in operation: it would be a lot of work to determine any

reason why those factors would be more or less likely in any particular case, and we have no

reasonable way to obtain the relevant information anyway.

The probabilities actually summarize a potentially infinite set of possible circumstances in which the

alarm might fail to go off (high humidity, power failure, dead battery, cut wires, dead mouse stuck

inside bell,...) or John or Mary might fail to call and report it (out to lunch, on vacation, temporarily

deaf, passing helicopter, ...). In this way, a small agent can cope with a very large world, at least

approximately. The degree of approximation can be improved if we introduce additional relevant

information.

Bayesian belief network
Bayesian belief network is key computer technology for dealing with probabilistic events and to

solve a problem which has uncertainty. We can define a Bayesian network as:

"A Bayesian network is a probabilistic graphical model which represents a set of variables and their

conditional dependencies using a directed acyclic graph."

It is also called a Bayes network, belief network, decision network, or Bayesian model.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 97

Bayesian networks are probabilistic, because these networks are built from a probability distribution,

and also use probability theory for prediction and anomaly detection

Bayesian Network can be used for building models from data and experts opinions, and it consists of

two parts:

Directed Acyclic Graph

Table of conditional probabilities.

The generalized form of Bayesian network that represents and solve decision problems under

uncertain knowledge is known as an Influence diagram.

A Bayesian network graph is made up of nodes and Arcs (directed links), where:

o Each node corresponds to the random variables, and a variable can be continuous or discrete.

o Arc or directed arrows represent the causal relationship or conditional probabilities between random

variables. These directed links or arrows connect the pair of nodes in the graph.

These links represent that one node directly influence the other node, and if there is no directed link

that means that nodes are independent with each other

o In the above diagram, A, B, C, and D are random variables represented by the nodes of the network

graph.

o If we are considering node B, which is connected with node A by a directed arrow, then node A is

called the parent of Node B.

o Node C is independent of node A.

Each node in the Bayesian network has condition probability distribution P(Xi |Parent(Xi)), which

determines the effect of the parent on that node.

Bayesian network is based on Joint probability distribution and conditional probability. So let's first

understand the joint probability distribution:

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 98

Joint probability distribution:

If we have variables x1, x2, x3,....., xn, then the probabilities of a different combination of x1, x2, x3..

xn, are known as Joint probability distribution.

P[x1, x2, x3,....., xn], it can be written as the following way in terms of the joint probability

distribution.

= P[x1| x2, x3,....., xn]P[x2, x3,....., xn]

= P[x1| x2, x3,....., xn]P[x2|x3,....., xn]....P[xn-1|xn]P[xn].

In general for each variable Xi, we can write the equation as:

P(Xi|Xi-1,........., X1) = P(Xi |Parents(Xi))

Explanation of Bayesian network:

Let's understand the Bayesian network through an example by creating a directed acyclic graph:

Example: Harry installed a new burglar alarm at his home to detect burglary. The alarm reliably

responds at detecting a burglary but also responds for minor earthquakes. Harry has two neighbors

David and Sophia, who have taken a responsibility to inform Harry at work when they hear the alarm.

David always calls Harry when he hears the alarm, but sometimes he got confused with the phone

ringing and calls at that time too. On the other hand, Sophia likes to listen to high music, so sometimes

she misses to hear the alarm. Here we would like to compute the probability of Burglary Alarm.

 Problem:

Calculate the probability that alarm has sounded, but there is neither a burglary, nor an

earthquake occurred, and David and Sophia both called the Harry.

Solution:

The Bayesian network for the above problem is given below. The network structure is showing that

burglary and earthquake is the parent node of the alarm and directly affecting the probability of

alarm's going off, but David and Sophia's calls depend on alarm probability.

The network is representing that our assumptions do not directly perceive the burglary and also do not

notice the minor earthquake, and they also not confer before calling.

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 99

The conditional distributions for each node are given as conditional probabilities table or CPT.

Each row in the CPT must be sum to 1 because all the entries in the table represent an exhaustive set

of cases for the variable.

In CPT, a boolean variable with k boolean parents contains 2K probabilities. Hence, if there are two

parents, then CPT will contain 4 probability values

List of all events occurring in this network:

Burglary (B)

Earthquake(E)

Alarm(A)

David Calls(D)

Sophia calls(S)

We can write the events of problem statement in the form of probability: P[D, S, A, B, E], can

rewrite the above probability statement using joint probability distribution:

P[D, S, A, B, E]= P[D | S, A, B, E]. P[S, A, B, E]

=P[D | S, A, B, E]. P[S | A, B, E]. P[A, B, E]

P [D| A]. P [S| A, B, E]. P[A, B, E]

= P[D | A]. P[S | A]. P[A| B, E]. P[B, E]

= P[D | A]. P[S | A]. P[A| B, E]. P[B |E]. P[E]

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 100

Let's take the observed probability for the Burglary and earthquake component:

P(B= True) = 0.002, which is the probability of burglary.

P(B= False)= 0.998, which is the probability of no burglary.

P(E= True)= 0.001, which is the probability of a minor earthquake

P(E= False)= 0.999, Which is the probability that an earthquake not occurred.

Conditional probability table for Alarm A:

The Conditional probability of Alarm A depends on Burglar and earthquake:

B E P(A= True) P(A= False)

True True 0.94 0.06

True False 0.95 0.04

False True 0.31 0.69

False False 0.001 0.999

Conditional probability table for David Calls:

The Conditional probability of David that he will call depends on the probability of Alarm.

A P(D= True) P(D= False)

True 0.91 0.09

False 0.05 0.95

Conditional probability table for Sophia Calls:

The Conditional probability of Sophia that she calls is depending on its Parent Node "Alarm."

A P(S= True) P(S= False)

True 0.75 0.25

False 0.02 0.98

From the formula of joint distribution, we can write the problem statement in the form of

probability distribution:

P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A)*P (A|¬B ^ ¬E) *P (¬B) *P (¬E).

= 0.75* 0.91* 0.001* 0.998*0.999

MRCET-IT-ARTIFICIAL INTELLIGENCE Page 101

from the formula of joint distribution, we can write the problem statement in the form of

probability distribution:

P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A)*P (A|¬B ^ ¬E) *P (¬B) *P (¬E).

= 0.75* 0.91* 0.001* 0.998*0.999

.

Artificial Intelligence Page 102

 UNIT-IV

What is learning?

Most often heard criticisms of AI is that machines cannot be called intelligent until theyare able to learn to

do new things and adapt to new situations, rather than simply doing asthey are told to do.

Some critics of AI have been saying that computers cannot learn!

Definitions of Learning: changes in the system that are adaptive in the sense that they enable the system to

do the same task or tasks drawn from the same population more efficiently and more effectively the next

time.

 Learning covers a wide range of phenomenon:

 Skill refinement: Practice makes skills improve. More you play tennis, better you get

 Knowledge acquisition: Knowledge is generally acquired through experience

Various learning mechanisms:

Rote learning:
 Rote Learning is basically memorisation.

• Saving knowledge so it can be used again.

• Retrieval is the only problem.

Learning: What Is Learning? Rote Learning, Learning by Taking Advice, Learning in Problem

Solving,

Learning from Examples: Winston’s Learning Program, Decision Trees.

Artificial Intelligence Page 103

• No repeated computation, inference or query is necessary.

• A simple example of rote learning is caching

• Store computed values (or large piece of data)

• Recall this information when required by computation.

• Significant time savings can be achieved.

• Many AI programs (as well as more general ones) have used caching very effectively.

Checkers game:

 Samuel's Checkers program employed rote learning (it also used parameter adjustment

which will be discussed shortly).

 A minimax search was used to explore the game tree.

 Time constraints do not permit complete searches.

 It records board positions and scores at search ends.

 Now if the same board position arises later in the game the stored value can be recalled

and the end effect is that deeper searched have occurred.

Artificial Intelligence Page 104

 Rote learning is basically a simple process. However it does illustrate some issues

that are relevant to more complex learning issues.

Organisation

 -- access of the stored value must be faster than it would be to recompute it. Methods

such as hashing, indexing and sorting can be employed to enable this.

 E.g Samuel's program indexed board positions by noting the number of pieces.

Generalisation

 -- The number of potentially stored objects can be very large. We may need to

generalise some information to make the problem manageable.

E.g Samuel's program stored game positions only for white to move. Also rotations along

diagonals are combined

Learning by taking advice:

This is a simple form of learning. Suppose a programmer writes a set of instructions to instruct the

computer what to do, the programmer is a teacher and the computer is a student.

 Once learned (i.e. programmed), the system will be in a position to do new things.

The advice may come from many sources: human experts, internet to name a few. This type of learning

requires more inference than rote learning.

Artificial Intelligence Page 105

The knowledge must be transformed into an operational form before stored in the knowledge base.

 FOO (First Operational Operationaliser), for example, is a learning system which is used to learn

the game of Hearts.

 It converts the advice which is in the form of principles, problems, and methods into effective

executable (LISP) procedures (or knowledge). Now this knowledge is ready to use.

 A human user first translates the advice from English into a representation

That foo can understand

For eg: “Avoid taking points”

Avoid(take points me)(trick)

Achieve (not(during (trick)(take point-me)))))

Learning in Problem Solving- learning by Parameter Adjustment

Many programs rely on an evaluation procedure to summarise the state of search etc. Game playing

programs provide many examples of this.

However, many programs have a static evaluation function to get a score that achieves the desirable board

position.

In learning a slight modification of the formulation of the evaluation of the problem is required.

Here the problem has an evaluation function that is represented as a polynomial of the form such as:

The ‘t’ terms are the values that contribute to the evaluation. The ‘C’ terms are the coefficients

(weights) that are attached to these values.

 But many moves must have contributed to that final outcome, Even if the program wins it

may have made some wrong moves along the way

 Because of the limitations Samuel program did two things:

 When the program is in learning mode paly against the copy of itself, At the end of the

game if the modified function won then the modified version is accepted otherwise the old one is

retained.

 Periodically,one term in the scoring function was eliminated and replaced by another.

Artificial Intelligence Page 106

Learning in Problem Solving-Learning with macro operators:

 The basic idea here is similar to Rote Learning:Avoid expensive recomputation

 Macro-operators can be used to group a whole series of actions into one.

 For example: Making dinner can be described a lay the table, cook dinner, serve dinner. We

could treat laying the table as on action even though it involves a sequence of actions.

 The STRIPS problem-solving employed macro-operators in it's learning phase.

 Consider a blocks world example in which ON(C,B) and ON(A,TABLE) are true.

 STRIPS can achieve ON(A,B) in four steps:

UNSTACK(C,B), PUTDOWN(C), PICKUP(A),

 STACK(A,B)

STRIPS now builds a macro-operator MACROP with preconditions ON(C,B), ON(A,TABLE),

postconditions ON(A,B), ON(C,TABLE) and the four steps as its body.

MACROP can now be used in future operation.

But it is not very general. The above can be easily generalised with variables used in place of the blocks.

However generalisation is not always that easy

Non Serializable subgoals:

 Non serializability means that working on one subgoal will necessarily interfere with

previous solution to another subgoal

 Macro operators can be used for games like 8-Puzzle(foe ex we have correctly placed 4 tiles

and our job is to put fifth without disturbing the earlier tiles.

 A macro will not disturb 4 files externally (but within the macro tiles are disturbed).

Learning in Problem Solving-Learning from chunking:

 Chunking is similar to learnig with macro-operators. Generally, it is used by problem

solver systems that make use of production systems.

 A production system consists of a set of rules that are in if-then form. That is given a particular

situation, what are the actions to be performed. For example, if it is raining then take umbrella

 To solve a problem, a system will compare the present situation with the left hand side of the

rules. If there is a match then the system will perform the actions described in the right hand

side of the corresponding rule.

Artificial Intelligence Page 107

 Problem solvers solve problems by applying the rules. Some of these rules may be more useful

than others and the results are stored as a chunk. Chunking can be used to learn general search

control knowledge

 Several chunks may encode a single macro-operator and one chunk may participate in a number

of macro sequences. Chunks learned in the beginning of problem solving, may be used in the

later stage. The system keeps the chunk to use it in solving other problems.

 Soar is a general cognitive architecture for developing intelligent systems. Soar requires

knowledge to solve various problems. It acquires knowledge using chunking mechanism

 An impasse arises when the system does not have sufficient knowledge. Consequently, Soar

chooses a new problem space (set of states and the operators that manipulate the states) in a bid

to resolve the impasse.

 While resolving the impasse, the individual steps of the task plan are grouped into larger steps

known as chunks.

 The chunks decrease the problem space search and so increase the efficiency of performing the

task.

 in Soar, the knowledge is stored in long-term memory. Soar uses the chunking mechanism to

create productions that are stored in long-term memory.

 A chunk is nothing but a large production that does the work of an entire sequence of smaller

ones.

 The productions have a set of conditions or patterns to be matched to working memory which

consists of current goals, problem spaces, states and operators and a set of actions to perform

when the production fires

 Chunks are generalized before storing. When the same impasse occurs again, the chunks so

collected can be used to resolve it.

Learning from Examples-Induction:

 Classification is a process of assigning to a particular input, to tha name of the class to which it belongs

to. Classification is important component in many problem solving tasks.

 But often classification is embedded inside another operation.

For eg:

 If:the current goal is to get from place A to place B and there is a wall seperating two places

Then look for a Doorway in the wall and through it.

Artificial Intelligence Page 108

 To use this rule successfully, the system’s matching routine must be able to identify an object as a

wall. Without this the rule can never be invoked.

 Then to apply the rule,the system must be able to recognize the a doorway.

 Before classification is done , the classes it will use must be defined . This can be done in variety

of ways:

 Isolate a set of features that are relevent to task domain.Define each class by some values of these

features.

Eg: for weather predictions the parameters can be of rainfall,sunny,cloudy

 Isolate a set of features that are relevant to the task domain.Define a class as a structure composed

of those features.

For example if the task is to identify animals,the body of each type of animal can be stored as structure

and various features like color, length of a neck can be represented.The task of constructing class

definitions is called concept learning or Induction.

Let us the learn the techniques to define classes structurally.

Winston’s Learning Program:

 Winston describes an early structural concept learning program.

Its goal is to construct representations of the definitions of concepts in the blocks domain.

For eg : it learned the concepts, House tent and Arch

Artificial Intelligence Page 109

To objects marry if they have faces that touch each and they have a common edge.

The marry relation is critical in the definition of arch . It is the difference between the first arch and near

miss arch structure. In fig 17.2

Artificial Intelligence Page 110

Artificial Intelligence Page 111

Decision Trees:

Artificial Intelligence Page 112

UNIT-V

What is an Expert System?

An expert system is a computer program that is designed to solve complex problems and to provide

decision-making ability like a human expert..

It performs this by extracting knowledge from its knowledge base using the reasoning and inference rules

according to the user queries.

The system helps in decision making for complex problems using both facts and heuristics like a human

expert.

It is called so because it contains the expert knowledge of a specific domain and can solve any complex

problem of that particular domain.

These systems are designed for a specific domain, such as medicine, science, etc.

The performance of an expert system is based on the expert's knowledge stored in its knowledge base.

 The more knowledge stored in the KB, the more that system improves its performance.

One of the common examples of an ES is a suggestion of spelling errors while typing in the Google search

box.

Examples of the Expert System:

MYCIN: It was one of the earliest backward chaining expert systems that was designed to find the

bacteria causing infections like bacteraemia and meningitis. It was also used for the recommendation of

antibiotics and the diagnosis of blood clotting diseases.

PXDES: It is an expert system that is used to determine the type and level of lung cancer. To determine

the disease, it takes a picture from the upper body, which looks like the shadow. This shadow identifies

the type and degree of harm.

CaDeT: The CaDet expert system is a diagnostic support system that can detect cancer at early stages

Representing and using Domain knowledge:

The R1 program internally called XCON, for eXpert CONfigurer was a production-rule-based system to

Expert Systems: Representing and Using Domain Knowledge, Shell, Explanation, Knowledge

Acquisition.

Artificial Intelligence Page 113

assist in the ordering of DEC's VAX computer systems by automatically selecting the computer system

components based on the customer's requirements.

It eventually had about 2500 rules.

Rule of Xcon that configures DEC VAX system

If: the most current active context is distributing mass bus devices and

 There is a single-port disk drive that has not been assigned to a massbus and

 There are no unassigned dual port disk drives and the number of devices that each mass bus should

support is known and,

 There is a mass bus that has been assigned at least one disk drive and that should support additional

disk drives,

 And the type of the cable needed to connect the disk drive to the previous device on the mass bus is

known

 Then: assign the disk drive to the massbus

 As RI is doing a design task (in contrast to the diagnosis task performed by MYCIN)it is not necessary

to consider all the possible alternatives one good one is enough. As a result probabilistic information is not

necessary in R1;

PROSPECTOR is a program that provides advice on mineral exploration. It’s rule looks like this:

IF: magnetite and pyrite is disseminated or veinlet form is present

Then(2,-4) there is a favourable mineralization and texture for the propylitic stage

Here each rule contains two estimates.

The first indicates that the presence of evidence described in the condition part of the rule suggests the

validity of the rules conclusion

The second measures the extent to which the evidence is necessary to the validity of the conclusion.

2 indicates the presence of the evidence is encouraging..

-4 indicates that the absence of the evidence is slightly discouraging

Reasoning with knowledge

■ Expert systems exploit many of the representation and reasoning mechanisms that we have discussed.

■ Because these programs are usually written primarily as rule based systems, forward chaining and

backward chaining are usually used .

Artificial Intelligence Page 114

■ For ex: MYCIN used backward chaining to discover what organisms are present. And then uses forward

chaining to reason from the organisms to a treatment regime..

■ RI on the other hand uses Forward chaining.

Expert system Shells

A new expert system can be developed by adding domain knowledge to the shell. The figure depicts

generic components of expert system.

 Knowledge acquisition system: It is the first and fundamental step. It helps to collect the experts

knowledge required to solve the Problems and build the knowledge base.

 Knowledge Base: This component is the heart of expert systems. It stores all factual and heuristic

knowledge about the application domain. It provides with the various representation techniques for all the

data.

 Inference mechanism: Inference engine is the brain of the expert system. This component is mainly

responsible for generating inference from the given knowledge from the knowledge base and produce line

of reasoning in turn the result of the user's query.

 Explanation subsystem: This part of shell is responsible for explaining or justifying the final or

intermediate result of user query. It is also responsible to justify need of additional knowledge

 User interface: It is the means of communication with the user. It decides the utility of expert system.

Artificial Intelligence Page 115

 Building expert systems by using shells has significant advantages. It is always advisable to use shell to

develop expert system as it avoids building the system from scratch.

 To build an expert system using system shell, one needs to enter all necessary knowledge about a task

domain into the shell.

Explanation:

An expert system is said to be effective when people can interact with it easily.

To facilitate the interaction ,the expert system must have the following two properties:

1. Explain its reasoning: In many of the domains in which experts system operate ,people will not

accept results unless they have been convinced of the accuracy of the of the reasoning process that

produced those results.

An expert system is said to be effective when people can interact with it easily.

2. Acquire new knowledge and modifications of old knowledge: since expert systems derive their

power from the richness of the knowledge bases they is exploit it ,it is extremely important that those

knowledge bases be complete and as accurate as possible

One way to get the knowledge into a program is through interaction with the human expert. Or to have a

program that learns the expert behaviour from raw data.

 TEIRESIAS was the first program to support explanation and knowledge acquisition.

TEIRESIAS served as a front end for the MYCIN expert system.

The program asks for a piece information that it needs in order to continue its reasoning

The doctor wants to know why the program wants the information and later asks the how the program

arrived at a conclusion that it claimed had reached

 Mycirn attempts to solve its goal of recommending a therapy for a particular patient by first finding the

cause of the patient’s illness.

 It uses its production rules to reason backward from goals to clinical observations.

 To solve the top level diagnostic goal, it looks for rules whose right side suggests diseases.

 It then uses left sides of those rules(preconditions) to set up subgoals .

 These subgoals are again matched against rules and their preconditions are used to set up additional

goals.

 Whenever a precondition specifies a specific piece of clinical evidence ,mycin uses that evidence,

Artificial Intelligence Page 116

otherwise it asks the user to provide the information.

 The actual goal that MYCIN set up are more general than the they need to specify the preconditions

of a individual rule.

For ex:

 If a precondition satisfies that the identity of a organism X , MYCIN will set up the goal “infer

identity”

 The first Question that the user asks is WHY? Why do you need to know that?

 Because the clinical tests are either expensive or dangerous..

 It is important for the doctor to be convinced that the information is really needed before ordering

the test.

Because MYCIN is reasoning backward the question can be easily answered by examining the goal tree.

● The user can ask the question How did you know that?

● The question can be answered by looking at the goal tree and chaining backward from the stated fact to

the evidence that allowed a rule that determined the fact to fire.

Knowledge Acquisition:

● How are experts system built?

 Knowledge Engineer Interviews domain experts and to get the clear knowledge and the they are

translated into rules- This process is expensive and time consuming.

● Look for Automatic ways of constructing expert knowledge bases, but no automatic knowledge

acquisition systems exist yet.

● But there are programs that interact with domain experts to extract knowledge efficiently.

● These programs provides supports for the following activities:

 1. Entering knowledge

 2. maintaining Knowledge base consistency

 3. Ensuring Knowledge base completeness.

● The most useful knowledge acquisition programs are those that are restricted to a particular problem

solving paradigm eg: diagnosis or design.

● If the paradigm is diagnosis then the program can structure its knowledge base around symptoms,

hypothesis and causes.

Artificial Intelligence Page 117

● It can identify symptoms for which the expert system has not yet provided causes.

● Since one system have many multiple causes the program can ask for knowledge about how to decide

when one hypothesis is better than another.

● MOLE is a knowledge acquisition system for heuristic classification problems, such as diagnosing

diseases.

● It used in conjunction with COVER AND DIFFERENTIATE problem solving method.

● An Expert system produced by MOLE accepts input data ,comes up with a set of candidate

explanations or classifications that cover(explain) the data., the uses differentiating knowledge to

determine which one is best.

● MOLE interacts with the human expert to produce a knowledge base that a system called MOLE-

p(performance) uses to solve problems

The acquisition proceeds through several steps:

1. Initial knowledge base construction. MOLE asks the expert to list common symptoms or

complaints that might require diagnosis.

For each symptom ,MOLE prompts for a list of possible explanations.

Whenever an event has multiple explanations, MOLE tries to determine the conditions under which the

explanation is correct.

The expert provides COVERING knowledge ,that is the knowledge that a hypothesized event does occur,

then the symptom will definitely appear.

2. Refinement of knowledge Base:

MOLE now tries to identify the weaknesses of knowledge base.One approach is to find holes and prompt

the expert to fill them.

MoLE lets the expert watch MOLE-P solving sample problems.

When ever MOLE-p makes an incorrect diagnosis ,the expert adds new knowledge.

 For Ex: suppose we have a patient with Symptoms A and B. Futher suppose that symptom A could be

caused by the events X and Y, and that symptom B can be caused by Y and Z.

MOLE-p may conclude Y, since it explains both A and B.

If the expert indicates that this decision was incorrect,then MOLE will ask what evidence should be used

tp prefer X and/or Z over Y

Artificial Intelligence Page 118

● Suppose if our task is to design an artifact for eg: an elevator system, then we must assign values to large

number of parameters such as width of the platform, the type of door,the cable weight, cable strength.

● These parameters must be consistent with each other and they must result in the design that satisfies

external constraints imposed by cost factors, the type of building involved and the expected payloads.

● One problem solving method useful for design tasks is called propose and Revise.

● Here the system first proposes an extension to the current design. Then it checks whether the extension

violates any global or local constraints.

● Constraints violations are fixed and the process repeats.

● It turns out that domain experts are good at listing overall design constraints and providing local

constraints on the individual parameters ,but not so good at explaining how to arrive at global solutions.

● The SALT program provides mechanisms for elucidating this knowledge from the expert.

● SALT builds a dependency network as it converses with the expert.

● Each node stands for a value of a parameter that must be acquired or generated.

● There are three kinds of links:

● Contributes–to ,constrains, suggests-revision-of

● Contributes- to link are are procedures that allows SALT to generate a value for one parameter based on

the value of another..

● Constrains rules out certain parameter values.

● Suggests -revision- of linkpoints to ways in which a constrain violation can be fixed.

SALT uses the following heuristics to guide the acquisition process:

1. Every non-input node in the network needs atleast one link coming into it.If links are missing

the expert is asked to fill it.

2. No contribute-to loops are allowed in the network.If a loop exists ,SALT tries to transform one of

the contributes to links into constrains links.

3. Constrains links should have Suggests-revision-of links associated with them.

Artificial Intelligence Page 119

● These includes constrain links that are created when dependency loops are broken.

● SALT compiles its dependency network into set of production rules..

● Consider a bank’s problem in deciding whether to approve a loan a loan.

● One approach to automate this task is to interview loan officers in an attempt to extract domain

knowledge.

● Another approach is to inspect the records of loans the bank has made in the past and try to generate

rules automatically that will maximize the number of good loans and minimize the number of bad ones in

the future.

● META DENDRAL was the first program to use learning techniques to construct rules for the

expert system automatically

	(Autonomous Institution – UGC, Govt. of India)
	MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
	III Year B.Tech. IT – I Sem LT/P/D C
	Sub Areas of AI:
	2) Speech Recognition
	3) Computer Vision
	4) Expert Systems
	b. System Configuration
	c. Financial Decision Making
	d. Classification Systems
	5) Mathematical Theorem Proving
	6) Natural Language Understanding
	7) Scheduling and Planning
	8) Artificial Neural Networks:

	Building AI Systems:
	1) Perception
	2) Reasoning
	3) Action
	The definitions of AI:
	Intelligent Systems:
	Cognitive Science: Think Human-Like
	Laws of thought: Think Rationally
	Turing Test: Act Human-Like
	Rational agent: Act Rationally
	Percept:
	Percept Sequence:
	Agent function:
	Agent program

	Learning Agent
	State Space Search/Problem Space Search:
	Formal Description of the problem:
	State-Space Problem Formulation:
	3. goal test (or set of goal states)
	4. path cost (additive)
	Properties of Search Algorithms
	State Spaces versus Search Trees:
	Searching
	Uninformed search
	Informed Search:
	Uninformed Search (Blind searches):
	BFS illustrated:

	Figure 1
	Breadth first search is:
	b - branching factor(maximum no of successors of any node), d – Depth of the shallowest goal node

	Disadvantages:
	Depth- First- Search.

	DFS illustrated:
	Figure 1 (1)
	Depth first search
	Iterative Deeping DFS
	Hill Climbing Algorithm

	Different regions in the state space landscape:
	Simulated annealing search
	Best First Search:
	Algorithm:
	Example:
	A* Algorithm
	Algorithm:
	A* search properties:

	Constraint Satisfaction Problems
	Examples:
	Example: The map coloring problem.
	Game Playing
	2- Person Games:
	where r is a possible dice roll (or other random events) and RESULT(s,r) denotes the same state as s, but with the addition that the dice roll’s result is r.
	Mini Max Algorithm:

	Example: (1)
	Limitations
	Alpha-Beta pruning algorithm:

	Working of AO* algorithm:
	Step 1
	Step 2
	Step 3
	Syntax And Semantics Of First-Order Logic
	Existential quantification (∃)

	Forward Chaining and backward chaining in AI
	Inference engine:
	A. Forward Chaining
	Facts Conversion into FOL:
	Forward chaining proof:
	Backward Chaining:
	Backward-chaining is also known as a backward deduction or backward reasoning method when using an inference engine. A backward chaining algorithm is a form of reasoning, which starts with the goal and works backward, chaining through rules to find kn...
	Example:
	Backward-Chaining proof:
	Difference between backward chaining and forward chaining

