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Course Objectives:  

1. To learn about Intelligent Agents and environments. 

2. To acquire knowledge about uninformed and informed search algorithms. 

3. To understand knowledge-based systems using First order logic and Uncertain Domains. 

4. To comprehend knowledge acquisition through various learning techniques. 

5. To understand the purpose and concepts of Expert Systems. 

UNIT - I 

Introduction: AI problems, Agents and Environments, Structure of Agents, Problem Solving Agents 

Basic Search Strategies: Problem Spaces, Uninformed Search (Breadth First, Depth- First Search, 

Depth-first with Iterative Deepening), Heuristic Search (Hill Climbing, Generic Best-First, A*), 

Constraint Satisfaction (Backtracking, Local Search) 

UNIT - II 

Advanced Search: Constructing Search Trees, Stochastic Search, AO* Search Implementation, Minimax 

Search, Alpha-Beta Pruning. 

Basic Knowledge Representation and Reasoning: Propositional Logic, First-Order Logic, Forward 

Chaining and Backward Chaining, Introduction to Probabilistic Reasoning, Bayes Theorem 

UNIT - III 

Advanced Knowledge Representation and Reasoning: Knowledge Representation Issues, Non- 

monotonic Reasoning, Other Knowledge Representation Schemes. 

Reasoning Under Uncertainty: Basic probability, Acting Under Uncertainty, Bayes’ Rule, Representing 

Knowledge in an Uncertain Domain, Bayesian Networks 

UNIT - IV 

Learning: What Is Learning? Rote Learning, Learning by Taking Advice, Learning in Problem Solving, 

Learning from Examples - Winston’s Learning Program, Decision Trees. 



 
 

UNIT - V 

Expert Systems: Representing and Using Domain Knowledge, Shell, Explanation, Knowledge 

Acquisition. 

TEXT BOOK: 

1.   Russell, S. and Norvig, P, Artificial Intelligence: A Modern Approach, Third Edition, Prentice- 

Hall, 2010 

REFERENCE BOOKS: 

1. Artificial Intelligence, Elaine Rich, Kevin Knight, Shivasankar B. Nair, The McGraw  

Hill publications, Third Edition, 2009. 2. George F. Luger, 

2. Artificial Intelligence: Structures and Strategies for Complex Problem Solving  

Pearson Education, 6th ed., 2009. 

COURSE OUTCOMES: 

  

At the end of the course, Students should be able to: 

 

1. Apply search strategies to solve problems. 

2. Represent real- life problems in a state space representation and devise solutions. 

3. Devise knowledge representation frameworks for systems and games. 

4.  Formulate valid solutions for problems involving uncertain inputs or outcomes. 

5. Design and evaluate expert models for perception and prediction from intelligent environment. 
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UNIT- I 
 

 

Introduction: 

 
 Artificial Intelligence is concerned with the design of intelligence in an artificial device. The 

term was coined by John McCarthy in 1956. 

 Intelligence is the ability to acquire, understand and apply the knowledge to achieve goals in 

the world. 

 AI is the study of the mental faculties through the use of computational models 

 AI is the study of intellectual/mental processes as computational processes. 

 AI program will demonstrate a high level of intelligence to a degree that equals or exceeds the 

intelligence required of a human in performing some task. 

 AI is unique, sharing borders with Mathematics, Computer Science, Philosophy, Psychology, 

Biology, Cognitive Science and many others. 

 Although there is no clear definition of AI or even Intelligence, it can be described as an 

attempt to build machines that like humans can think and act, able to learn and use 

knowledge to solve problems on their own. 

 

Sub Areas of AI: 

1) Game Playing 

Deep Blue Chess program beat world champion Gary Kasparov 

2) Speech Recognition 

PEGASUS spoken language interface to American Airlines' EAASY SABRE reservation 

system, which allows users to obtain flight information and make reservations over the 

telephone. The 1990s has seen significant advances in speech recognition so that limited 

 

 Introduction: AI problems, Agents and Environments, Structure of Agents, Problem Solving 

Agents Basic Search Strategies: Problem Spaces, Uninformed Search (Breadth First, Depth- 

First Search, Depth-first with Iterative Deepening), Heuristic Search (Hill Climbing, Generic 

Best-First, A*), Constraint Satisfaction (Backtracking, Local Search) 
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systems are now successful. 

3) Computer Vision 

Face recognition programs in use by banks, government, etc. The ALVINN system from CMU 

autonomously drove a van from Washington, D.C. to San Diego (all but 52 of 2,849 miles), averaging 63 

mph day and night, and in all weather conditions. Handwriting recognition, electronics and manufacturing 

inspection, photo interpretation, baggage inspection, reverse engineering to automatically construct a 3D 

geometric model. 

4) Expert Systems 

Application-specific systems that rely on obtaining the knowledge of human experts in an area and 

programming that knowledge into a system. 

a. Diagnostic Systems: MYCIN system for diagnosing bacterial infections of the blood 

and suggesting treatments. Intellipath pathology diagnosis system (AMA approved). 

Pathfinder medical diagnosis system, which suggests tests and makes diagnoses. Whirlpool 

customer assistance center. 

b. System Configuration 

DEC's XCON system for custom hardware configuration. Radiotherapy treatment 

planning. 

c. Financial Decision Making 

Credit card companies, mortgage companies, banks, and the U.S. government employ 

AI systems to detect fraud and expedite financial transactions. For example, AMEX 

credit check. 

d. Classification Systems 

Put information into one of a fixed set of categories using several sources of 

information. E.g., financial decision making systems. NASA developed a system for 

classifying very faint areas in astronomical images into either stars or galaxies with 

very high accuracy by learning from human experts' classifications. 

5) Mathematical Theorem Proving 

Use inference methods to prove new theorems. 

6) Natural Language Understanding 

AltaVista's translation of web pages. Translation of Catepillar Truck manuals into 20 

languages. 

 

http://babelfish.altavista.digital.com/cgi-bin/translate
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7) Scheduling and Planning 

Automatic scheduling for manufacturing. DARPA's DART system used in Desert Storm and 

Desert Shield operations to plan logistics of people and supplies. American Airlines rerouting 

contingency planner. European space agency planning and scheduling of spacecraft assembly, 

integration and verification. 

8) Artificial Neural Networks: 

9) Machine Learning  

Applications of AI: 

AI algorithms have attracted close attention of researchers and have also been applied 

successfully to solve problems in engineering. Nevertheless, for large and complex problems, AI 

algorithms consume considerable computation time due to stochastic feature of the search 

approaches 

 

1. Business; financial strategies 

2. Engineering: check design, offer suggestions to create new product, expert systems for all 

engineering problems 

3. Manufacturing: assembly, inspection and maintenance 

4. Medicine: monitoring, diagnosing 

5. Education: in teaching 

6. Fraud detection 

7. Object identification 

8. Information retrieval 

9. Space shuttle scheduling 

 

Building AI Systems: 
 

1) Perception 

Intelligent biological systems are physically embodied in the world and experience the world 

through their sensors (senses). For an autonomous vehicle, input might be images from a camera 

and range information from a rangefinder. For a medical diagnosis system, perception is the set of 

symptoms and test results that have been obtained and input to the system manually. 
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2) Reasoning 

Inference, decision-making, classification from what is sensed and what the internal "model" is of 

the world. Might be a neural network, logical deduction system, Hidden Markov Model induction, 

heuristic searching a problem space, Bayes Network inference, genetic algorithms, etc. 

Includes areas of knowledge representation, problem solving, decision theory, planning, game 

theory, machine learning, uncertainty reasoning, etc. 

3) Action 

Biological systems interact within their environment by actuation, speech, etc. All behavior is 

centered around actions in the world. Examples include controlling the steering of a Mars rover or 

autonomous vehicle, or suggesting tests and making diagnoses for a medical diagnosis system. 

Includes areas of robot actuation, natural language generation, and speech synthesis. 

The definitions of AI: 

 

 

a) "The exciting new effort to make 

computers think . . . machines with minds, 

in the full and literal sense" (Haugeland, 

1985) 

 

"The automation of] activities that we 

associate with human thinking, activities 

such as decision-making, problem solving, 

learning..."(Bellman, 1978) 

b) "The study of mental faculties 

through the use of computational 

models" (Charniak and McDermott, 

1985) 

 

"The study of the computations that 

make it possible to perceive, reason, 

and act" (Winston, 1992) 

c) "The art of creating machines that perform 

functions that require intelligence when 

performed by people" (Kurzweil, 1990) 

 

"The study of how to make computers 

do things at which, at the moment, 

people are better" (Rich and Knight, 1 

99 1 ) 

d) "A field of study that seeks to explain 

and emulate intelligent behavior in 

terms of computational processes" 

(Schalkoff, 1 990) 

"The branch of computer science 

that is concerned with the 

automation of intelligent behavior" 

(Luger and Stubblefield, 1993) 
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The definitions on the top, (a) and (b) are concerned with reasoning, whereas those 

on the bottom, (c) and (d) address behavior. The definitions on the left, (a) and (c) 

measure success in terms of human performance, and those on the right, (b) and (d) 

measure the ideal concept of intelligence called rationality 

Intelligent Systems: 

In order to design intelligent systems, it is important to categorize them into four 

categories (Luger and Stubberfield 1993), (Russell and Norvig, 2003) 

1. Systems that think like humans 

2. Systems that think rationally 

3. Systems that behave like humans 

4. Systems that behave rationally 

 

 Human- 

Like 

Rationall

y 

 
 

Think: 

 

Cognitive Science Approach 

 

“Machines that think like humans” 

 

Laws of thought Approach 

 

“ Machines that think Rationally” 

 
 

  Act: 

 

Turing Test Approach 

 

“Machines that behave like humans” 

 

Rational Agent Approach 

 

“Machines that behave Rationally” 

 

 

Cognitive Science: Think Human-Like 

 

a. Requires a model for human cognition. Precise enough models 

allow simulation by computers. 

 

b. Focus is not just on behavior and I/O, but looks like reasoning process. 

 

c. Goal is not just to produce human-like behavior but to produce a sequence of 

steps of the reasoning process, similar to the steps followed by a human in 

solving the same task. 

 

Laws of thought: Think Rationally 

 

a. The study of mental faculties through the use of computational models; that 

it is, the study of computations that make it possible to perceive reason and 
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act. 

 

b. Focus is on inference mechanisms that are probably correct and guarantee an optimal 

solution. 

 

c. Goal is to formalize the reasoning process as a system of logical rules and 

procedures of inference. 

 

d. Develop systems of representation to allow inferences to be like 

 

“Socrates is a man. All men are mortal. Therefore Socrates is mortal” 

Turing Test: Act Human-Like 

 

a. The art of creating machines that perform functions requiring intelligence 

when performed by people; that it is the study of, how to make computers do 

things which, at the moment, people do better. 

 

b. Focus is on action, and not intelligent behavior centered around the representation of the 

world 

 

c. Example: Turing Test 

 

o 3 rooms contain: a person, a computer and an interrogator. 

 

o The interrogator can communicate with the other 2 by 

teletype (to avoid the machine imitate the appearance of voice 

of the person) 

 

o The interrogator tries to determine which the person is and 

which the machine is. 

 

o The machine tries to fool the interrogator to believe that it is 

the human, and the person also tries to convince the 

interrogator that it is the human. 

 

o If the machine succeeds in fooling the interrogator, then 

conclude that the machine is intelligent. 

 

Rational agent: Act Rationally 

 

a. Tries to explain and emulate intelligent behavior in terms of computational 

process; that it is concerned with the automation of the intelligence. 

b. Focus is on systems that act sufficiently if not optimally in all situations. 
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c. Goal is to develop systems that are rational and sufficient 
 

  

 

 

Agents  and Environments: 
 
 

 

Fig 2.1: Agents and Environments 

                  Agent: 

An Agent is anything that can be viewed as perceiving its environment 

through sensors and acting upon that environment through actuators. 

 A human agent has eyes, ears, and other organs for sensors and hands, 

legs, mouth, and other body parts for actuators. 

 A robotic agent might have cameras and infrared range finders for 

sensors and various motors foractuators. 

 A software agent receives keystrokes, file contents, and network packets 

as sensory inputs and acts on the environment by displaying on the screen, 

writing files, and sending network packets. 

 

Percept: 

We use the term percept to refer to the agent's perceptual inputs at any given instant. 

 

Percept Sequence: 

An agent's percept sequence is the complete history of everything the agent has ever perceived. 

 

Agent function: 

Mathematically speaking, we say that an agent's behavior is described by the 

agent function that maps any given percept sequence to an action. 
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Agent program 

Internally, the agent function for an artificial agent will be implemented by an 

agent program. It is important to keep these two ideas distinct. The agent 

function is an abstract mathematical description; the agent program is a 

concrete implementation, running on the agent architecture. 

To illustrate these ideas, we will use a very simple example-the vacuum-cleaner world shown in  

Fig 2.1.5. This particular world has just two locations: squares A and B. The 

vacuum agent perceives which square it is in and whether there is dirt in the square. 

It can choose to move left, move right, suck up the dirt, or do nothing. One very 

simple agent function is the following: if the current square is dirty, then suck, 

otherwise move to the other square. A partial tabulation of this agent function is 

shown in Fig 2.1.6. 

 

 

 

Fig 2.1.5: A vacuum-cleaner world with just two locations. 

 

                          Agent function 
 
 

Percept Sequence Action 

[A, Clean] Right 

[A, Dirty] Suck 

[B, Clean] Left 

[B, Dirty] Suck 
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[A, Clean], [A, Clean] Right 

[A, Clean], [A, Dirty] Suck 

…  

Fig 2.1.6: Partial tabulation of a simple agent function for the example: vacuum-cleaner world shown 

in the Fig 2.1.5 

 

 

 

 

Fig 2.1.6(i): The REFLEX-VACCUM-AGENT program is invoked for each new 

percept (location, status) and returns an action each time 

 

 A Rational agent is one that does the right thing. we say that the right action is the 

one that will cause the agent to be most successful. That leaves us with the problem 

of deciding how and when to evaluate the agent's success. 

We use the term performance measure for the how—the criteria that determine how 

successful an agent is. 

 Ex-Agent cleaning the dirty floor 

 Performance Measure-Amount of dirt collected 

 When to measure-Weekly for better results 

 

What is rational at any given time depends on four things: 

 The performance measure defining the criterion of success 

 The agent’s prior knowledge of the environment 

 The actions that the agent can perform 

 The agent’s percept sequence up to now. 

 

          Omniscience ,Learning and Autonomy: 

 We need to distinguish between rationality and omniscience. An Omniscient 

agent knows the actual outcome of its actions and can act accordingly but 

Function REFLEX-VACCUM-AGENT ([location, status]) returns an action If 

status=Dirty then return Suck 

else if location = A then return Right 

 
else if location = B then return Left 
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omniscience is impossible in reality.   

 Rational agent not only gathers information but also learns as much as possible 

from what it perceives. 

 If an agent just relies on the prior knowledge of its designer rather than its own 

percepts then the agent lacks autonomy. 

 A system is autonomous to the extent that its behavior is determined  its own 

experience. 

 A rational agent should be autonomous. 

E.g., a clock(lacks autonomy) 

 No input (percepts) 

 Run only but its own algorithm (prior knowledge) 

 No learning, no experience, etc. 

 

ENVIRONMENTS: 

 The Performance measure, the environment and the agents actuators and sensors comes 

under the heading task environment. We also call this as 

PEAS(Performance,Environment,Actuators,Sensors) 
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Environment-Types: 

 

1. Accessible vs. inaccessible or Fully observable vs Partially 

Observable: 

If an agent sensor can sense or access the complete state of an environment at each 

point of time then it is a fully observable environment, else it is partially observable. 

2. Single agent vs. multiagent: 

 An agent solving a crossword puzzle by itself is clearly in a single-agent environment, 

whereas an agent playing chess is in a two agent environment or Multi Agent 

environment 

3. Deterministic vs. Stochastic: 

         If the next state of the environment is completely determined by the current state and 

the actions           selected by the agents, then we say the environment is deterministic 

4. Episodic vs.  Sequential 

 The agent's experience is divided into "episodes." Each episode consists of the 

agent perceiving and then acting. The quality of its action depends just on the 

episode itself, because subsequent episodes do not depend on what actions occur 
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in previous episodes.  

 Episodic environments are much simpler because the agent does not need to think 

ahead. 

 In sequential environments, on the other hand, the current decision could affect all 

future decisions. 

 Ex: Chess is   Sequential 

5. Static vs. dynamic.  

   If the environment can change while an agent is deliberating, then we say the 

environment is dynamic for that agent; otherwise it is static. 

6. Discrete vs. continuous: 

If there are a limited number of distinct, clearly defined percepts and 

actions we say that the environment is discrete. Otherwise, it is continuous. 

 

 

STRUCTURE OF INTELLIGENT AGENTS 

 

 The job of AI is to design the agent program: a function that implements the agent 

mapping from percepts to actions. We assume this program will run on some sort 

of ARCHITECTURE computing device, which we will call the architecture. 

 The architecture might be a plain computer, or it might include special-purpose 

hardware for certain tasks, such as processing camera images or filtering audio 

input. It might also include software that provides a degree of insulation between 

the raw computer and the agent program, so that we can program at a higher level. 

In general, the architecture makes the percepts from the sensors available to the 

program, runs the program, and feeds the program's action choices to the effectors 
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as they are generated.  

 The relationship among agents, architectures, and programs can be summed up as 

follows:  

                  agent = architecture + program 

 

Agent programs: 

 Intelligent agents accept percepts from an environment and generates actions. The 

early versions of agent programs will have a very simple form (Figure 2.4) 

 Each will use some internal data structures that will be updated as new percepts 

arrive. 

 These data structures are operated on by the agent's decision-making procedures to 

generate an action choice, which is then passed to the architecture to be executed 

 

Types of agents: 

 

Agents can be grouped into four classes based on their degree of perceived intelligence and 

capability : 

 Simple Reflex Agents 



MRCET-IT-ARTIFICIAL INTELLIGENCE Page 14  

 Model-Based Reflex Agents 

 Goal-Based Agents 

 Utility-Based Agents 

Simple reflex agents: 

 Simple reflex agents ignore the rest of the percept history and act only on the 

basis of the current percept. 

 The agent function is based on the condition-action rule. 

 If the condition is true, then the action is taken, else not. This agent function only succeeds 

when 

 the environment is fully observable. 

 

Model-based reflex agents: 

 The Model-based agent can work in a partially observable environment, and track the situation. 

 A model-based agent has two important factors: 

 Model: It is knowledge about "how things happen in the world," so it is called a Model-based 

agent. 

 Internal State: It is a representation of the current state based on percept history. 
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Goal-based agents: 

 

 A goal-based agent has an agenda. 

 It operates based on a goal in front of it and makes decisions based on how best to reach that 

goal.  

 A goal-based agent operates as a search and planning function, meaning it targets the goal 

ahead and  

finds the right action in order to reach it.  

 Expansion of model-based agent. 

 

 
 

Utility-based agents: 

 A utility-based agent is an agent that acts based not only on what the goal is, but the best way to 

reach that goal. 

 The Utility-based agent is useful when there are multiple possible alternatives, and an 
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agent has to choose in order to perform the best action. 

 The term utility can be used to describe how "happy" the agent is. 

 

 

 

Learning Agent 

 A learning agent in AI is the type of agent that can learn from its past experiences or it has 

learning capabilities. It starts to act with basic knowledge and then is able to act and adapt 

automatically through learning. A learning agent has mainly four conceptual components, which 

are:  

 Learning element: It is responsible for making improvements by learning from the environment. 

 Critic: The learning element takes feedback from critics which describes how well the agent is 

doing with respect to a fixed performance standard. 

 Performance element: It is responsible for selecting external action. 

 Problem Generator: This component is responsible for suggesting actions that will lead to new 

and informative experiences 
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Problem Solving Agents: 

 Problem solving agent is a goal-based agent. 

 Problem solving agents decide what to do by finding sequence of actions that lead to desirable 

states. 

Goal Formulation: 

It organizes the steps required to formulate/ prepare one goal out of multiple goals available. 

Problem Formulation: 

It is a process of deciding what actions and states to consider to follow goal formulation. 

The process of looking for a best sequence to achieve a goal is called Search. 

A search algorithm takes a problem as input and returns a solution in the form of action sequences.  

Once the solution is found the action it recommends can be carried out. This is called Execution 

phase. 

Well Defined problems and solutions: 

A problem can be defined formally by 4 components: 

 The initial state of the agent is the state where the agent starts in. In this case, the initial state 

can be described as In: Arad 

 The possible actions available to the agent, corresponding to each of the state the 

agent resides in.  

For example, ACTIONS(In: Arad) = {Go: Sibiu, Go: Timisoara, Go: Zerind}. 

Actions are also known as operations. 
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 A description of what each action does.the formal name for this is Transition 

model,Specified by the function Result(s,a) that returns the state that results from the action a 

in state s. 

We also use the term Successor to refer to any state reachable from a given state by a single 

action. 

For EX:Result(In(Arad),GO(Zerind))=In(Zerind) 

 

 

Together the initial state,actions and transition model implicitly defines the state space of the 

problem 

State space: set of all states reachable from the initial state by any sequence of actions 

 The goal test, determining whether the current state is a goal state. Here, the goal 

state is {In: Bucharest} 

 The path cost function, which determine the cost of each path, which is reflecting 

in the performance measure. 

 we define the cost function as c(s, a, s’), where s is the current state and a is the action 

performed by the agent to reach state s’. 

Example – 

    8 puzzle problem 

Initial State 
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Goal State 

 

 States: a state description specifies the location of each of the eight tiles in one of the nine 

squares. For efficiency, it is useful to include the location of the blank.  

 Actions: blank moves left, right, up, or down. 

 Transition Model: Given a state and action, this returns the resulting state. For example if 

we apply left to the start state the resulting state has the 5 and the blank switched. 

 Goal test: state matches the goal configuration shown in fig. 

 Path cost: each step costs 1, so the path cost is just the length of the path. 

 

State Space Search/Problem Space Search: 

The state space representation forms the basis of most of the AI methods. 

 Formulate a problem as a state space search by showing the legal problem 

states, the legal operators, and the initial and goal states. 

 A state is defined by the specification of the values of all attributes of interest in the world 

 An operator changes one state into the other; it has a precondition which is the 

value of certain attributes prior to the application of the operator, and a set of 

effects, which are the attributes altered by the operator 

 The initial state is where you start 

 The goal state is the partial description of the solution 

 

Formal Description of the problem: 

1. Define a state space that contains all the possible configurations of the relevant 

objects. 
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2. Specify one or more states within that space that describe possible situations from 

which the problem solving process may start ( initial state) 

3. Specify one or more states that would be acceptable as solutions to the problem. ( 

goal states) 

Specify a set of rules that describe the actions (operations) available 

 

State-Space Problem Formulation: 

 

Example: A problem is defined by four items: 

1. initial state e.g., "at Arad“ 

2. actions or successor function : S(x) = set of action–state pairs e.g., S(Arad) = 

{<Arad → Zerind, Zerind>, … } 

3. goal test (or set of goal states) 

e.g., x = "at Bucharest”, Checkmate(x) 

4. path cost (additive) 

e.g., sum of distances, number of actions executed, etc. 

c(x,a,y) is the step cost, assumed to be ≥ 0 

A solution is a sequence of actions leading from the initial state to a goal state 
 

 

 

 

 

 
 

 

Example: 8-queens problem 
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1. Initial State: Any arrangement of 0 to 8 queens on board. 

2. Operators: add a queen to any square. 

3. Goal Test: 8 queens on board, none attacked. 

4. Path cost: not applicable or Zero (because only the final state counts, 

search cost might be of interest). 

Search strategies: 

Search: Searching is a step by step procedure to solve a search-problem in a  given search 

space. A search problem can have three main factors: 

Search Space: Search space represents a set of possible solutions, which a system may 

have. 

Start State: It is a state from where agent begins the search. 

Goal test: It is a function which observe the current state and returns whether the goal state 

is achieved or not. 

 
Properties of Search Algorithms 

 

Which search algorithm one should use will generally depend on 

the problem domain. There are four important factors to consider: 

1. Completeness – Is a solution guaranteed to be found if at least one solution exists? 

 

2. Optimality – Is the solution found guaranteed to be the best (or lowest cost) 

solution if there exists more than one solution? 

3. Time Complexity – The upper bound on the time required to find a solution, as a 

function of the complexity of the problem. 

4. Space Complexity – The upper bound on the storage space (memory) required at 

any point during the search, as a function of the complexity of the problem. 

 

State Spaces versus Search Trees: 

 State Space 

o Set of valid states for a problem 

o Linked by operators 

o e.g., 20 valid states (cities) in the Romanian travel problem 

 Search Tree 
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– Root node = initial state 

– Child nodes = states that can be visited from parent 

– Note that the depth of the tree can be infinite 

• E.g., via repeated states 

– Partial search tree 

• Portion of tree that has been expanded so far 

– Fringe 

• Leaves of partial search tree, 

candidates for expansion Search trees = data structure to 

search state-space 

Searching 
Many traditional search algorithms are used in AI applications. For complex problems, the traditional 

algorithms are unable to find the solution within some practical time and space limits. Consequently, many 

special techniques are developed; using heuristic functions. The algorithms that use heuristic functions are 

called heuristic algorithms. Heuristic algorithms are not really intelligent; they appear to be intelligent 

because they achieve better performance. 

 

Heuristic algorithms are more efficient because they take advantage of feedback from the data to direct the 

search path. 

Uninformed search 

 
Also called blind, exhaustive or brute-force search, uses no information about the problem to guide the 

search and therefore may not be very efficient. 

 

Informed Search: 

 
Also called heuristic or intelligent search, uses information about the problem to guide the search, usually 

guesses the distance to a goal state and therefore efficient, but the search may not be always possible.  

Uninformed Search (Blind searches): 

 
1. Breadth First Search: 

 

 One simple search strategy is a breadth-first search. In this strategy, the root node is 

expanded first, then all the nodes generated by the root node are expanded next, and then 

their successors, and so on. 

 In general, all the nodes at depth d in the search tree are expanded before the nodes at 
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depth d + 1. 

BFS illustrated: 

 

Step 1: Initially frontier contains only one node corresponding to the source state A. 

 

 

Figure 1 

Frontier: A 

Step 2: A is removed from fringe. The node is expanded, and its children B and C 

are generated. They are placed at the back of fringe. 

 

 

 

Figure 2 

Frontier: B C 

 

Step 3: Node B is removed from fringe and is expanded. Its children D, E are 

generated and put at the back of fringe. 

Figure 3 

Frontier: C D E 

 

Step 4: Node C is removed from fringe and is expanded. Its children D and G are 

added to the back of fringe. 
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Figure 4 

Frontier: D E D G 

 

Step 5: Node D is removed from fringe. Its children C and F are generated and added 

to the back of fringe. 

 

Figure 5 

Frontier: E D G C F 

 

Step 6: Node E is removed from fringe. It has no children. 

 

Figure 6 

Frontier: D G C F 

 

Step 7: D is expanded; B and F are put in OPEN. 
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Figure 7 

Frontier: G C F B F 

 

Step 8: G is selected for expansion. It is found to be a goal node. So the 

algorithm returns the path A C G by following the parent pointers of the node 

corresponding to G. The algorithm terminates. 

Breadth first search is: 

 

 One of the simplest search strategies 

 Complete. If there is a solution, BFS is guaranteed to find it. 

 If there are multiple solutions, then a minimal solution will be found 

 The algorithm is optimal (i.e., admissible) if all operators have the 

same cost. Otherwise, breadth first search finds a solution with the 

shortest path length. 

 Time complexity : O(bd ) 

 Space complexity : O(bd ) 

 Optimality :Yes 

b - branching factor(maximum no of 

successors of any node), d – Depth of the 

shallowest goal node 

Maximum length of any path (m) in search space 

Advantages:   

 BFS will provide a solution if any solution exists. 

 If there are more than one solutions for a given problem, then BFS will provide the 

minimal solution which requires the least number of steps. 

 

Disadvantages: 

 Requires the generation and storage of a tree whose size is exponential the 

depth of the shallowest goal node. 

 The breadth first search algorithm cannot be effectively used unless the 

search space is quite small. 

Applications Of Breadth-First Search Algorithm 

GPS Navigation systems: Breadth-First Search is one of the best algorithms used to find 

neighboring locations by using the GPS system. 
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Broadcasting: Networking makes use of what we call as packets for communication. These 

packets follow a traversal method to reach various networking nodes. One of the most 

commonly used traversal methods is Breadth-First Search. It is being used as an algorithm 

that is used to communicate broadcasted packets across all the nodes in a network. 

Depth- First- Search. 

We may sometimes search the goal along the largest depth of the tree, and move up 

only when further traversal along the depth is not possible. We then attempt to find 

alternative offspring of the parent of the node (state) last visited. If we visit the 

nodes of a tree using the above principles to search the goal, the traversal made is 

called depth first traversal and consequently the search strategy is called depth first 

search. 

 

DFS illustrated: 
 

A State 

Space Graph Step 1: Initially fringe contains 

only the node for A. 

 

Figure 1 

FRINGE: A 
 

Step 2: A is removed from fringe. A is expanded and its children B and C are put in 

front of fringe. 
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Figure 2 

FRINGE: B C 
 

Step 3: Node B is removed from fringe, and its children D and E are pushed in front of fringe. 

Figure 3 

FRINGE: D E C 
 
 

Step 4: Node D is removed from fringe. C and F are pushed in front of fringe. 

 

 

Figure 4 

FRINGE: C F E C 
 

Step 5: Node C is removed from fringe. Its child G is pushed in front of fringe. 

 

Figure 5 

 

 



MRCET-IT-ARTIFICIAL INTELLIGENCE Page 28  

 

                                                   Figure 5 

 

FRINGE: G F E C 

Step 6: Node G is expanded and found to be a goal node. 
 

 

 

Figure 6 

FRINGE: G F E C 
 
 

The solution path A-B-D-C-G is returned and the algorithm terminates. 

 
Depth first search  

 

1.  takes exponential time. 

2. If N is the maximum depth of a node in the search space, in the worst case the algorithm will 
 

d 

take time O(b ). 

3. The space taken is linear in the depth of the search tree, O(bN). 

 
Note that the time taken by the algorithm is related to the maximum depth of the search tree. 

If the search tree has infinite depth, the algorithm may not terminate. This can happen if the 

search space is infinite. It can also happen if the search space contains cycles. The latter 

case can be handled by checking for cycles in the algorithm. Thus Depth First Search is 

not complete. 
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Iterative Deeping DFS 
 

 The iterative deepening algorithm is a combination of DFS and BFS algorithms. 

 This search algorithm finds out the best depth limit and does it by gradually 

increasing the limit until a goal is found. 

 This algorithm performs depth-first search up to a certain "depth limit", and it 

keeps increasing the depth limit after each iteration until the goal node is found. 

 

Advantages: 

 It combines the benefits of BFS and DFS search algorithm in terms of fast search 

and memory efficiency. 

Disadvantages: 

 The main drawback of IDDFS is that it repeats all the work of the previous phase. 

 

Iterative deepening search L=0 

 

 

Iterative deepening search L=1 

 
Iterative deepening search L=2 

 
Iterative Deepening Search L=3 
 



MRCET-IT-ARTIFICIAL INTELLIGENCE Page 30  

 
M is the goal node. So we stop there. 

 

Complete: Yes  

 Time: O(bd)  

 Space: O(bd) 

 Optimal: Yes, if step cost = 1 or increasing function of depth. 

Conclusion: 

 

 We can conclude that IDS is a hybrid search strategy between BFS and DFS 

inheriting their advantages. 

 IDS is faster than BFS and DFS. 

 It is said that “IDS is the preferred uniformed search method when there is a large search space 

and the depth of the solution is not known 
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Informed search/Heuristic search 

A heuristic is a method that 

 might not always find the best solution but is guaranteed to find a good solution 

in reasonable time. By sacrificing completeness it increases efficiency. 

 Useful in solving tough problems which 

o could not be solved any other way. 

o solutions take an infinite time or very long time to compute. 

Calculating Heuristic Value: 

 1. Euclidian distance- used to calculate straight line distance. 

 2.Manhatten distance-If we want to calculate vertical or horizontal 

distance 

For ex:  8 puzzle problem 

     Source state 

 

 

 

 

destination state 

 

 

Then the Manhattan distance would be  sum of the no of moves required to move 

each number from source state to destination state. 

 

 

3. No. of misplaced tiles for 8 puzzle problem 

1 3 2 

6 5 4 

 8 7 

1 2 3 

4 5 6 

7 8  

Number in 8 

puzzle 

1 2 3 4 5 6 7 8 

No. of moves 

to reach 

destination 

0 2 1 2 0 2 2 0 
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Source state 

1 3 2 

6 5 4 

 8 7 
 

Destination state 

 

 

 

 
Here just calculate the number of tiles that have to be changed to reach goal state 

Here 1,5,8 need not be changed 

2,3,4,6,7 should be changed, so the heuristic value will be 5(because 5 tiles have to be changed) 

 

 

 

 

 

Hill Climbing Algorithm 
 

 Hill climbing algorithm is a local search algorithm which continuously 

moves in the direction of increasing elevation/value to find the peak of the 

mountain or best solution to the problem. It terminates when it reaches a 

peak value where no neighbor has a higher value. 

 It is also called greedy local search as it only looks to its good immediate 

neighbor state and not beyond that. 

 Hill Climbing is mostly used when a good heuristic is available. 

 In this algorithm, we don't need to maintain and handle the search tree or 

graph as it only keeps a single current state. 

The idea behind hill climbing is as follows. 

 

1. Pick a random point in the search space. 

2. Consider all the neighbors of the current state. 

3. Choose the neighbor with the best quality and move to that state. 

4. Repeat 2 thru 4 until all the neighboring states are of lower quality. 

5. Return the current state as the solution state. 

1 2 3 

4 5 6 

7 8  
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Different regions in the state space landscape: 

Local Maximum: Local maximum is a state which is better than its neighbor states, but 

there is also another state which is higher than it. 

Global Maximum: Global maximum is the best possible state of state space landscape. It 

has the highest value of objective function. 

Current state: It is a state in a landscape diagram where an agent is currently present. 

Flat local maximum: It is a flat space in the landscape where all the neighbor states of 

current states have the same value. 

Shoulder: It is a plateau region which has an uphill edge. 

 

Problems in Hill Climbing Algorithm: 

 

 

Simulated annealing search 
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A hill-climbing algorithm that never makes “downhill” moves towards states with lower 

value (or higher cost) is guaranteed to be incomplete, because it can stuck on a local 

maximum. In contrast, a purely random walk –that is, moving to a successor chosen 

uniformly at random from the set of successors – is complete, but extremely 

inefficient. Simulated annealing is an algorithm that combines hill-climbing with a 

random walk in some way that yields both efficiency and completeness. 

         Simulated annealing algorithm  is quite similar to hill climbing. Instead of 

picking the best move, however, it picks the random move. If the move improves the 

situation, it is always accepted. Otherwise, the algorithm accepts the move with some 

probability less than 1. The probability decreases exponentially with the “badness” of 

the move – the amount E by which the evaluation is worsened. The probability also 

decreases as the "temperature" T goes down: "bad moves are more likely to be allowed at the 

start when temperature is high, and they become more unlikely as T decreases. One can prove 

that if the schedule lowers T slowly enough, the algorithm will find a global optimum with 

probability approaching.  

Simulated annealing was first used extensively to solve VLSI layout problems. It has been 

applied widely to factory scheduling and other large-scale optimization tasks. 
 
Best First Search: 

 
 A combination of depth first and breadth first searches. 

 Depth first is good because a solution can be found without computing all nodes and 

breadth first is good because it does not get trapped in dead ends. 

 The best first search allows us to switch between paths thus gaining the benefit of both 

approaches. At each step the most promising node is chosen. If one of the nodes chosen 

generates nodes that are less promising it is possible to choose another at the same 

level and in effect the search changes from depth to breadth. If on analysis these are no 

better than this previously unexpanded node and branch is not forgotten and the search 

method reverts to the 

 

OPEN is a priority queue of nodes that have been evaluated by the heuristic function but which 

have not yet been expanded into successors. The most promising nodes are at the front. 

 

CLOSED are nodes that have already been generated and these nodes must be stored because a 
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graph is being used in preference to a tree. 

 

Algorithm: 

 

1. Start with OPEN holding the initial state 

2. Until a goal is found or there are no nodes left on open do. 

 

 Pick the best node on OPEN 

 Generate its successors 

 For each successor Do 

• If it has not been generated before ,evaluate it ,add it to 

OPEN and record its parent 

 

• If it has been generated before change the parent if this new 

path is better and in that case update the cost of getting to 

any successor nodes. 

 

3. If a goal is found or no more nodes left in OPEN, quit, else return to 2. 

 

Example: 
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1. It is not optimal. 

2. It is incomplete because it can start down an infinite path and never 

return to try other possibilities. 

3. The worst-case time complexity for greedy search is O (bm), where m is 

the maximum depth of the search space. 

4. Because greedy search retains all nodes in memory, its space complexity is 

the same as its time complexity 

A* Algorithm 
 

The Best First algorithm is a simplified form of the A* algorithm. 

 

The A* search algorithm (pronounced "Ay-star") is a tree search algorithm that finds a path from 

a given initial node to a given goal node (or one passing a given goal test). It employs a "heuristic 

estimate" which ranks each node by an estimate of the best route that goes through that node. It 

visits the nodes in order of this heuristic estimate. 

 

Similar to greedy best-first search but is more accurate because A* takes into account the nodes 

that have already been traversed. 

 

From A* we note that f = g + h where 

 

g is a measure of the distance/cost to go from the initial node to the current node 

 

his an estimate of the distance/cost to solution from the current node. 

 

Thus fis an estimate of how long it takes to go from the initial node to the solution 

 

Algorithm: 

 

1. Initialize : Set OPEN = (S); CLOSED = ( ) g(s)= 0, f(s)=h(s) 

2. Fail : If OPEN = ( ), Terminate and fail. 

 

3. Select : select the minimum cost state, n, from OPEN, 

 

save n in CLOSED 

 

4. Terminate : If n €G, Terminate with success and return f(n) 

http://www.fact-index.com/t/tr/tree_search_algorithm.html
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5. Expand : for each successor, m, of n 

 

 

a) If m € 

[OPEN U 

CLOSED

] Set g(m) 

= g(n) + 

c(n , m) 

Set f(m) = 

g(m) + 

h(m) 

Insert m in OPEN 

 

b) If m € [OPEN U CLOSED] 

 

Set g(m) = min { g(m) 

, g(n) + c(n , m)} Set 

f(m) = g(m) + h(m) 

If f(m) has decreased and m € CLOSED 

 

Move m to OPEN. 

Description: 

 

 A* begins at a selected node. Applied to this node is the "cost" of entering this node 

(usually zero for the initial node). A* then estimates the distance to the goal node from the 

current node. This estimate and the cost added together are the heuristic which is assigned 

to the path leading to this node. The node is then added to a priority queue, often called 

"open". 

 The algorithm then removes the next node from the priority queue (because of the way a 

priority queue works, the node removed will have the lowest heuristic). If the queue is 

empty, there is no path from the initial node to the goal node and the algorithm stops. If 

the node is the goal node, A* constructs and outputs the successful path and stops. 

 If the node is not the goal node, new nodes are created for all admissible adjoining nodes; 

the exact way of doing this depends on the problem at hand. For each successive node, A* 

calculates the "cost" of entering the node and saves it with the node. This cost is 

calculated from the cumulative sum of costs stored with its ancestors, plus the cost of the 

operation which reached this new node. 

 The algorithm also maintains a 'closed' list of nodes whose adjoining nodes have been 

http://www.fact-index.com/n/no/node.html
http://www.fact-index.com/p/pr/priority_queue.html
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checked. If a newly generated node is already in this list with an equal or lower cost, no 

further  processing is done on that node or with the path associated with it. If a node in the 

closed list matches the new one, but has been stored with a higher cost, it is removed from 

the closed list, and processing continues on the new node. 

 

 Next, an estimate of the new node's distance to the goal is added to the cost to form the heuristic for 

that node. This is then added to the 'open' priority queue, unless an identical node is found there. 

 Once the above three steps have been repeated for each new adjoining node, the original node taken 

from the priority queue is added to the 'closed' list. The next node is then popped from the priority 

queue and the process is repeatedThe heuristic costs from each city to Bucharest: 
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A* search properties: 
 

 The algorithm A* is admissible. This means that provided a solution exists, the first solution found 

by A* is an optimal solution. A* is admissible under the following conditions: 
 

 Heuristic function: for every node n , h(n) ≤ h*(n) . 
 

 A* is also complete. 
 

 A* is optimally efficient for a given heuristic. 
 

 A* is much more efficient that uninformed search. 
 
 

Constraint Satisfaction Problems 

 

Sometimes a problem is not embedded in a long set of action sequences but requires picking the 

best option from available choices. A good general-purpose problem solving technique is to list 

the constraints of a situation (either negative constraints, like limitations, or positive elements 

that you want in the final solution). Then pick the choice that satisfies most of the constraints. 

Formally speaking, a constraint satisfaction problem (or CSP) is defined by a set of 

variables, X1;X2; : : : 

;Xn, and a set of constraints, C1;C2; : : : ;Cm. Each variable Xi has anonempty domain Di of 

possible values. Each constraint Ci involves some subset of tvariables and specifies the 

allowable combinations of values for that subset. A state of theproblem is defined by an 

assignment of values to some or all of the variables, {Xi = vi;Xj =vj ; : : :} An assignment that 

does not violate any constraints is called a consistent or 

legalassignment. A complete assignment is one in which every variable is mentioned, and a 

solution to a CSP is a complete assignment that satisfies all the constraints. Some CSPs also 

require a solution that maximizes an objectivefunction. 

CSP can be given an incremental formulation as a standard search problem as follows: 

 

1. Initial state: the empty assignment fg, in which all variables are unassigned. 

 

2. Successor function: a value can be assigned to any unassigned variable, provided that it 

does not conflict with previously assigned variables. 

3. Goal test: the current assignment is complete. 

 

4. Path cost: a constant cost for every step 
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Examples: 

 

1. The best-known category of continuous-domain 

CSPs is that of linear programming problems, 

where constraints must be linear inequalities forming 

a convex region. 

2. Crypt arithmetic puzzles. 

 

 
 

Example: The map coloring problem. 

 

The task of coloring each region red, green or blue in such a way that no neighboring regions 

have the same color. 

We are given the task of coloring each region red, green, or blue in such a way that the 

neighboring regions must not have the same color. 

To formulate this as CSP, we define the variable to be the regions: WA, NT, Q, NSW, V, SA,  

and 

T.   The   domain  of   each  variable   is   the   set   {red,  green,   blue}.   The  constraints 

require 
 

neighboring regions to have distinct colors: for example, the allowable combinations for WA 

and NT are the pairs {(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}. 

(The constraint can also be represented as the inequality WA ≠ NT). There are many possible 

solutions,  
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such as {WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = red}.Map of 

Australia showing each of its states and territories 

Constraint Graph: A CSP is usually represented as an undirected graph, called constraint graph 

where the nodes are the variables and the edges are the binaryconstraints. 

 

 
The map-coloring problem represented as 

a constraint graph. CSP can be viewed as a 

standard search problem as follows: 

> Initial state : the empty assignment {},in which all variables are unassigned. 

> Successor function: a value can be assigned to any unassigned 

variable, provided that it does not conflict with previously assigned 

variables. 

> Goal test: the current assignment is complete. 
 

> Path cost: a constant cost(E.g.,1) for every step. 
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UNIT II 
 

 

 

Constructing Search Trees: 

 
 
 

Game Playing 

Adversarial search, or game-tree search, is a technique for analyzing an adversarial game in 

order to try to determine who can win the game and what moves the players should make in 

order to win. Adversarial search is one of the oldest topics in Artificial Intelligence. The original 

ideas for adversarial search were developed by Shannon in 1950 and independently by Turing in 

1951, in the context of the game of chess—and their ideas still form the basis for the techniques 

used today. 

2- Person Games: 

o Players: We call them Max and Min. 

Advanced Search: Constructing Search Trees, Stochastic Search, AO* Search Implementation, Minimax Search, 
Alpha-Beta Pruning Basic Knowledge Representation and Reasoning: Propositional Logic, First-Order Logic, 
Forward Chaining and Backward Chaining, Introduction to Probabilistic Reasoning, Bayes Theorem 
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o Initial State: Includes board position and whose turn it is. 

o Operators: These correspond to legal moves. 

o Terminal Test: A test applied to a board position which determines whether the 

game is over. In chess, for example, this would be a checkmate or stalemate 

situation. 

o Utility Function: A function which assigns a numeric value to a terminalstate. 

For example, in chess the outcome is win (+1), lose (-1) or draw (0). Note that by 

convention, we always measure utility relative to Max. 

      

Stochastic Search 

Stochastic search refers to a class of optimization algorithms that use randomness or probability in 

the search process to find an optimal solution or approximate a solution to a problem. Unlike 

deterministic methods that follow a strict sequence of steps, stochastic search algorithms introduce 

randomness intentionally to explore the search space more broadly and potentially find better 

solutions. 

Many unforeseeable external occurrences can place us in unforeseen circumstances in real life. 

Many games, such as dice tossing, have a random element to reflect this unpredictability. These are 

known as stochastic games. Backgammon is a classic game that mixes skill and luck. The legal 

moves are determined by rolling dice at the start of each player’s turn white, for example, has 

rolled a 6–5 and has four alternative moves in the backgammon scenario shown in the figure 

below. 
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o This is a standard backgammon position. The object of the game is to get all of one’s pieces off the 

board as quickly as possible. White moves in a clockwise direction toward 25, while Black moves in 

a counterclockwise direction toward 0. Unless there are many opponent pieces, a piece can advance 

to any position; if there is only one opponent, it is caught and must start over. White has rolled a 6–5 

and must pick between four valid moves: (5–10,5–11), (5–11,19–24), (5–10,10–16), and (5–11,11–

16), where the notation (5–11,11–16) denotes moving one piece from position 5 to 11 and then 

another from 11 to 16. 

o Stochastic game tree for a backgammon position 

o White knows his or her own legal moves, but he or she has no idea how Black will roll, and thus has 

no idea what Black’s legal moves will be. That means White won’t be able to build a normal game 

tree-like in chess or tic-tac-toe. In backgammon, in addition to M A X and M I N nodes, a game tree 

must include chance nodes. The figure below depicts chance nodes as circles. The possible dice rolls 

are indicated by the branches leading from each chance node; each branch is labelled with the roll 

and its probability. There are 36 different ways to roll two dice, each equally likely, yet there are 

only 21 distinct rolls because a 6–5 is the same as a 5–6. P (1–1) = 1/36 because each of the six 

doubles (1–1 through 6–6) has a probability of 1/36. Each of the other 15 rolls has a 1/18 chance of 

happening. 

 

o The following phase is to learn how to make good decisions. Obviously, we want to choose the 

move that will put us in the best position. Positions, on the other hand, do not have specific 

minimum and maximum values. Instead, we can only compute a position’s anticipated value, 

which is the average of all potential outcomes of the chance nodes. 

o As a result, we can generalize the deterministic minimax value to an expected-minimax value for 

games with chance nodes. Terminal nodes, MAX and MIN nodes (for which the dice roll is 

known), and MAX and MIN nodes (for which the dice roll is unknown) all function as before. We 



MRCET-IT-ARTIFICIAL INTELLIGENCE Page 46  

compute the expected value for chance nodes, which is the sum of all outcomes, weighted by the 

probability of each chance action. 

  

 

where r is a possible dice roll (or other random events) and RESULT(s,r) denotes the same state as 

s, but with the addition that the dice roll’s result is r. 

Mini Max Algorithm: 

o Mini-max algorithm is a recursive or backtracking algorithm which is used in decision-making and 

game theory. It provides an optimal move for the player assuming that opponent is also playing 

optimally. 

o Mini-Max algorithm uses recursion to search through the game-tree. 

o Min-Max algorithm is mostly used for game playing in AI. Such as Chess, Checkers, tic-tac-toe, go, 

and various tow-players game. This Algorithm computes the minimax decision for the current state. 

o In this algorithm two players play the game, one is called MAX and other is called MIN. 

o Both the players fight it as the opponent player gets the minimum benefit while they get the 

maximum benefit. 

o Both Players of the game are opponent of each other, where MAX will select the maximized value 

and MIN will select the minimized value. 

o The minimax algorithm performs a depth-first search algorithm for the exploration of the complete 

game tree. 

o The minimax algorithm proceeds all the way down to the terminal node of the tree, then backtrack 

the tree as the recursion. 
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Example: 

 

 

 

Example: 
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Properties of minimax: 

 

 Complete : Yes (if tree is finite) 

 Optimal : Yes (against an optimal opponent) 

 Time complexity : O(bm) 

 Space complexity : O(bm) (depth-first exploration) 

 For chess, b ≈ 35, m ≈100 for "reasonable" games 

→ exact solution completely infeasible. 
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Limitations 

– Not always feasible to traverse entire tree 

– Time limitations 

 

Alpha-Beta pruning algorithm: 

 
• Pruning: eliminating a branch of the search tree from consideration 

without exhaustive examination of each node 

• -  Pruning: the basic idea is to prune portions of the search tree that 

cannot improve the utility value of the max or min node, by just 

considering the values of nodes seen so far. 

• Alpha-beta pruning is used on top of minimax search to detect paths that do 

not need to be explored. The intuition is: 

• The MAX player is always trying to maximize the score. Call this . 

• The MIN player is always trying to minimize the score. Call this  . 

• Alpha cutoff: Given a Max node n, cutoff the search below n (i.e., don't 

generate or examine any more of n's children) if alpha(n) >= beta(n) 

(alpha increases and passes beta from below) 

• Beta cutoff.: Given a Min node n, cutoff the search below n (i.e., don't 

generate or examine any more of n's children) if beta(n) <= alpha(n) 

(beta decreases and passes alpha from above) 

• Carry alpha and beta values down during search Pruning occurs whenever alpha >= beta 
 

 

Example: 

 
 

1) Setup phase: Assign to each left-most (or right-most) internal node of the 

tree, variables: alpha = -infinity, beta = +infinity 
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2) Look at first computed final configuration value. It’s a 3. Parent is a 

min node, so  set the beta (min) value to 3. 



MRCET-IT-ARTIFICIAL INTELLIGENCE Page 53  

3) Look  at  next  value,  5.    Since  parent  is  a  min  node,  we  want  the  minimum  of     3 

and 5 which is 3. Parent min node is done – fill  alpha (max) value of its parent max  node. 

Always set alpha for max nodes and beta for min nodes. Copy the state of the max parent node 

into the second unevaluated min child. 

 

 
 

4) Look at next value, 2. Since parent node is min with b=+inf, 2 is smaller, change b. 
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5) Now, the min parent node has a max value of 3  and min value of  2.  The value of the  2nd 

child does not matter. If it is >2, 2 will be selected for min node. If it is <2, it will be selected for 

min node, but since it is <3 it will not get selected for the parent max node. Thus, we prune the 

right subtree of the min node. Propagate max value up the tree. 

 

6) Max node is now done and we can set the beta value of its parent and propagate node state 

to sibling subtree’s left-most path. 
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7) The next node is 10. 10 is not smaller than 3, so state of parent does not change. We still have 

to look at the 2nd child since alpha is still –inf. 

 

 
 

8) The next node is 4. Smallest value goes to the parent min node. Min subtree is done, so the 

parent max node gets the alpha (max) value from the child. Note that if the max node had a 2nd 

subtree, we can prune it since a>b. 
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9) Continue propagating value up the tree, modifying the corresponding alpha/beta values. Also 

propagate the state of root node down the left-most path of the right subtree. 

 

 
 

10) Next value is a 2. We set the beta (min) value of the min parent to 2. Since no other children 

exist, we propagate the value up the tree. 
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11) We have a value for the 3rd level max node, now we can modify the beta (min) value of the 

min parent to 2. Now, we have a situation that a>b and thus the value of the rightmost subtree of 

the min node does not matter, so we prune the whole subtree. 

 

 

12) Finally, no more nodes remain, we propagate values up the tree. The root has a value  of 3 

that comes from the left-most child. Thus, the player should choose the left-most child’s move in 

order to maximize his/her winnings. As you can see, the result is the same as with the mini-max 

example, but we did not visit all nodes of the tree. 
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AO* Search:  

 
Best-first search is what the AO* algorithm does. The AO* method divides any given 

difficult problem into a smaller group of problems that are then resolved using the AND-OR graph 

concept. AND OR graphs are specialized graphs that are used in problems that can be divided into 

smaller problems. The AND side of the graph represents a set of tasks that must be completed to 

achieve the main goal, while the OR side of the graph represents different methods for accomplishing 

the same main goal. 

 

In the above figure, the buying of a car may be broken down into smaller problems or tasks that can 

be accomplished to achieve the main goal in the above figure, which is an example of a simple 

AND-OR graph. The other task is to either steal a car that will help us accomplish the main goal or 

use your own money to purchase a car that will accomplish the main goal. The AND symbol is used 

to indicate the AND part of the graphs, which refers to the need that all subproblems containing the 

AND to be resolved before the preceding node or issue may be finished 

The start state and the target state are already known in the knowledge-based search strategy known 

as the AO* algorithm, and the best path is identified by heuristics. The informed search technique 

considerably reduces the algorithm’s time complexity. The AO* algorithm is far more effective in 

searching AND-OR trees than the A* algorithm. 

Working of AO* algorithm: 

The evaluation function in AO* looks like this: 

f(n) = g(n) + h(n) 

f(n) = Actual cost + Estimated cost 
here, 

          f(n) = The actual cost of traversal. 

          g(n) = the cost from the initial node to the current node. 
          h(n) = estimated cost from the current node to the goal state. 



MRCET-IT-ARTIFICIAL INTELLIGENCE Page 59  

 

Here in the above example below the Node which is given is the heuristic value i.e h(n). Edge length 

is considered as 1. 

Step 1 

 

With help of  f(n) = g(n) + h(n) evaluation function, 

 

Start from node A, 

f(A⇢B) = g(B) + h(B) 

       = 1   +  5                       ……here g(n)=1 is taken by default for path cost 

       = 6 

      f(A⇢C+D) = g(c) + h(c) + g(d) + h(d) 

          = 1 + 2 + 1 + 4                ……here we have added C & D because they are in AND 
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          = 8 

  So, by calculation A⇢B path is chosen which is the minimum path, i.e f(A⇢B) 

Step 2 

 

According to the answer of step 1, explore node B 

Here the value of E & F are calculated as follows, 

 

f(B⇢E) = g(e) + h(e) 

f(B⇢E) = 1 + 7 

        = 8 

   f(B⇢f) = g(f) + h(f) 

f(B⇢f) = 1 + 9 

        = 10 

  So, by above calculation B⇢E path is chosen which is minimum path, i.e f(B⇢E) 

 because B's heuristic value is different from its actual value The heuristic is  updated and the minimum 

cost path is selected. The minimum value in our situation is 8. 

  Therefore, the heuristic for A must be updated due to the change in B's heuristic.So we need to calculate 

it again 

 f(A⇢B) = g(B) + updated h(B)  
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          = 1 + 8 = 9 

  We have Updated all values in the above tree.gain.   

Step 3 

 

By comparing f(A⇢B) & f(A⇢C+D)  

f(A⇢C+D) is shown to be smaller. i.e 8 < 9 

Now explore f(A⇢C+D)  

So, the current node is C 

f(C⇢G) = g(g) + h(g) 

f(C⇢G) = 1 + 3 

        = 4        

f(C⇢H+I) = g(h) + h(h) + g(i) + h(i)         

f(C⇢H+I) = 1 + 0 + 1 + 0                ……here we have added H & I because they are in AND 

          = 2 

      f(C⇢H+I) is selected as the path with the lowest cost and the heuristic is also left unchanged 

because it matches the actual cost. Paths H & I are solved because the heuristic for those paths is 0, 
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but Path A⇢D needs to be calculated because it has an AND. 

 

f(D⇢J) = g(j) + h(j) 

f(D⇢J) = 1 + 0  

        = 1  

the heuristic of node D needs to be updated to 1. 

f(A⇢C+D) = g(c) + h(c) + g(d) + h(d) 

          = 1 + 2 + 1 + 1 

          = 5 

   as we can see that path f(A⇢C+D) is get solved and this tree has become a solved tree now. 

In simple words, the main flow of this algorithm is that we have to find firstly level 1st heuristic 

value and then level 2nd and after that update the values with going upward means towards the root 

node. 

In the above tree diagram, we have updated all the values. 

 BASIC KNOWLEDGE REPRESENTATION AND REASONING: 

• Humans are best at understanding, reasoning, and interpreting knowledge. Human knows things, 

which is knowledge and as per their knowledge they perform various actions in the real world.  

• But how machines do all these things comes under knowledge representation 

• There are three factors which are put into the machine,  which makes it valuable: 

• Knowledge: The information related to the environment is stored in the machine. 

• Reasoning: The ability of the machine to understand the stored knowledge. 

• Intelligence: The ability of the machine to make decisions on the basis of the stored 

information. 

• A knowledge representation language is defined by two aspects: 

• The syntax of a language describes the possible configurations that can constitute sentences. 



MRCET-IT-ARTIFICIAL INTELLIGENCE Page 63  

• The semantics determines the facts in the world to which the sentences refer. 

• For example, the syntax of the language of arithmetic expressions says that if x and y are 

expressions denoting numbers, then x > y is a sentence about numbers. The semantics of the 

language says that x > y is false when y is a bigger number than x, and true otherwise From the 

syntax and semantics, we can derive an inference mechanism for an agent that uses the language.  

• Recall that the semantics of the language determine the fact to which a given sentence 

refers. Facts are part of the world, 

•  whereas their representations must be encoded in some way that can be physically stored within 

an agent. We cannot put the world inside a computer (nor can we put it inside a human), so all 

reasoning mechanisms must operate on representations of facts, rather than on the facts 

themselves. Because sentences are physical configurations of parts of the agent, 

Reasoning must be a process of constructing new physical configurations from old ones. Proper 

reasoning should ensure that the new configurations represent facts that actually follow from the 

facts that the old configurations represent.  

• We want to generate new sentences that are necessarily true, given that the old sentences are 

true. This relation between sentences is called entailment. 

• In mathematical notation, the relation of entailment between a knowledge base KB and a 

sentence a is pronounced "KB entails a" and written as  

• An inference procedure can do one of two things:  

• given a knowledge base KB, it can generate new sentences a that purport to be 

entailed by KB.  

• E.g., x + y = 4 entails 4 = x + y 

• Entailment is a relationship between sentences (i.e., syntax) that is based on 

semantics 

 PROPOSITIONAL LOGIC: 

• Propositional logic (PL) is the simplest form of logic where all the statements are 

made by propositions.  

• A proposition is a declarative statement which is either true or false.  

It is a technique of knowledge representation in logical and mathematical form 



MRCET-IT-ARTIFICIAL INTELLIGENCE Page 64  

 

Syntax of propositional logic: 

• The symbols of prepositional logic are the logical constants True and False, proposition 

symbols such as P and Q, the logical connectives A, V, <=>, =>and  and parentheses,  

• All sentences are made by putting these symbols together using the following rules:  

•  The logical constants True and False are sentences by themselves.  

•  A prepositional symbol such as P or Q is a sentence by itself.  

•  Wrapping parentheses around a sentence yields a sentence, for example, (P A Q).  

A sentence can be formed by combining simpler sentences with one of the five logical connectives:: 

1. Negation: A sentence such as ¬ P is called negation of P. A literal can be either Positive 

literal or negative literal. 

Example:P=Today is not Sunday -> ¬ p 

1. Conjunction: A sentence which has ∧ connective such as, P ∧ Q is called a conjunction. 

Example: Rohan is intelligent and hardworking. It can be written as, 

P= Rohan is intelligent, 

Q= Rohan is hardworking. → P∧ Q. 

2. Disjunction: A sentence which has ∨ connective, such as P ∨ Q. is called 

disjunction, where P and Q are the propositions. 

3. Example: "Ritika is a doctor or Engineer", 

Here P= Ritika is Doctor. Q= Ritika is Doctor, so we can write it as P ∨ Q. 

4. 4. Implication: A sentence such as P → Q, is called an implication. Implications are also 
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known as if-then rules. It can be represented as 

            If it is raining, then the street is wet. 

        Let P= It is raining, and Q= Street is wet, so it is represented as P → Q 

5. 5. Biconditional: A sentence such as P⇔ Q is a Biconditional sentence, example If I am 

breathing, then I am alive 

            P= I am breathing, Q= I am alive, it can be represented as P ⇔ Q. 

Precedence of connectives: 

Precedence Operators 

First Precedence Parenthesis 

Second Precedence Negation 

Third Precedence Conjunction(AND) 

Fourth Precedence Disjunction(OR) 

Fifth Precedence Implication 

Six Precedence Biconditional 

 

Precedence of connectives: 

 Semantics 

• The semantics of prepositional logic is also quite straightforward. We define it by specifying 

the interpretation of the proposition symbols and constants, and specifying the meanings of the 

logical connectives. 

 Validity   

• Truth tables can be used not only to define the connectives, but also to test for valid 

sentences.  

• Given a sentence, we make a truth table with one row for each of the possible combinations 

of truth values for the proposition symbols in the sentence. 

• If the sentence is true in every row, then the sentence is valid. For example, the sentence ((P 

V H)  A ¬H) => P 

 Translating English into logic: 

• User defines semantics of each propositional symbol 

• P: It is Hot 
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• Q: It  is Humid 

• R:It is raining 

1. If it is humid then it is hot 

Q->P 

.If it is hot and humid , then it is raining 

(P A Q)->R 

Limitations of Propositional logic: 

• In propositional logic, we can only represent the facts, which are either true or false.  

• PL is not sufficient to represent the complex sentences or natural language 

statements. 

• The propositional logic has very limited expressive power.  

• Consider the following sentence, which we cannot represent using PL logic. 

• "Some humans are intelligent", or "Sachin likes cricket 

 
 

Advantages of Propositional Logic 

 

 The  declarative nature of propositional logic, specify that knowledge and inference 

are separate, and  inference   is  entirely  domain-independent.  Propositional 

logic is a declarative language because its semantics is based on a truth relation 

between sentences and possible worlds. 

 It also  has sufficient expressive power to deal with partial information, using 

disjunction and negation. 

 Propositional logic has a third COMPOSITIONALITY property that is desirable in 

representation languages, namely, compositionality. In a compositional language, 

the meaning of a sentence is a function of the meaning of its parts. For example, the 

meaning of “S1,4∧ S1,2” is related to the meanings of “S1,4” and “S1,2. 

 

Drawbacks of   Propositional Logic   

 Propositional logic lacks the expressive power to concisely describe an environment with 

many objects. 
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For example, we were forced to write a separate rule about breezes and pits for each square, 

such as B1,1⇔ (P1,2 ∨ P2,1) . 

In   English, it seems easy enough to say, “Squares adjacent to pits are breezy.”  

The syntax and semantics of English somehow make it possible to describe the 

environment concisely 

First-order logic: 
 

Syntax And Semantics Of First-Order Logic 

 

Models for first-order logic : 

 

The models of a logical language are the formal structures that constitute the possible 

worlds under consideration. Each model links the vocabulary of the logical sentences to 

elements of the possible world, so that the truth of any sentence can be determined. Thus, 

models for propositional logic  link proposition symbols to predefined truth values. Models 

for first-order logic have objects. The domain of a model is the set of objects or domain 

elements it contains. The domain is required to be nonempty—every possible world must 

contain at least one object. 

A relation is just the set of tuples of objects that are related. 

   Unary Relation: Relations relates to single Object Binary Relation: Relation Relates 

to multiple objects Certain kinds of relationships are best considered as functions, in that a 

given object must be related to exactly one object. 

 

For Example: 

 

Richard the Lionheart, King of England from 1189 to 1199; His younger brother, the evil 

King John, who ruled from 1199 to 1215; the left legs of Richard and John; crown 
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Unary Relation : John is a king Binary Relation :crown is on head of john , Richard is brother 

ofjohn The unary "left leg" function includes the following mappings: (Richard the Lionheart) -

>Richard's left leg (King John) ->Johns left Leg 

 

Symbols and interpretations 

 

Symbols are the basic syntactic elements of first-order logic. Symbols stand for objects, relations, 

and functions. 

The  symbols  are of  three kinds:   Constant symbols which stand for objects; Example: John, 

Richard Predicate symbols, which stand for relations; Example: OnHead, Person, King, and Crown 

Function symbols, which stand for functions. Example: left leg Symbols will begin with uppercase 

letters. 

Interpretation The semantics must relate sentences to models in order to determine truth. For this to 

happen, we need an interpretation that specifies exactly which objects, relations and functions are 

referred to by the constant, predicate, and function symbols. 

 

For Example: 

 

Richard refers to Richard the Lionheart and John refers to the evil king John.  Brother refers to   the 

brotherhood relation  OnHead refers to the "on head relation that holds between the crown  and King 

John; Person, King, and Crown refer to the sets of objects that are persons, kings, and crowns. 

LeftLeg refers to the "left leg" function, 

 

The truth of any sentence is determined by a model and an interpretation for the sentence's 

symbols. Therefore, entailment, validity, and so on are defined in terms of all possiblemodels and all 

possible interpretations. The number of domain elements in each model may be unbounded-for 

example, the domain elements may be integers or real numbers. Hence, the number of possible 

models is anbounded, as is the number of interpretations. 

 
Term 
 

A term is a logical expression that refers to an object. Constant symbols are therefore terms. 

Complex Terms A complex term is just a complicated kind of name. A complex term is formed by a 
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function symbol followed by a parenthesized list of terms as arguments to the function symbol For 

example: "King John's left leg" Instead of using a constant symbol, we use LeftLeg(John). The 

formal semantics of terms  

Consider a term f (tl,. . . , t,). The function symbol frefers to some function in the model (F); the 

argument terms refer to objects in the domain (call them d1….dn); and the term as a whole refers to the 

object that is the value of the function Fapplied to dl, . . . , d,. For example,: the LeftLeg function 

symbol refers to the function “ (King John) -+ John's left leg” and John refers to King John, then 

LeftLeg(John) refers to King John's left leg. In this way, the interpretation fixes the referent of every 

term. 

 

Atomic sentences 

 
An atomic sentence is formed from a predicate symbol followed by a parenthesized list of terms: 

For Example: Brother(Richard, John). 

Atomic sentences can have complex terms as arguments. For Example: Married (Father(Richard), 

Mother( John)). 

An atomic sentence is true in a given model, under a given interpretation, if the relation referred to by the 

predicate symbol holds among the objects referred to by the arguments 

 

Complex sentences Complex sentences can be constructed using logical Connectives, just as in 

propositional calculus. For Example: 

 
 

 
 

Thus, the sentence says, “For all x, if x is a king, then x is a person.” The symbol x is called  a 
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variable. Variables are lowercase letters. A variable is a term all by itself, and can also serve as the 

argument of a function A term with no variables is called a ground term. 

Assume we can extend the interpretation in different ways: x→ Richard the Lionheart, x→ King John, 

x→ Richard’s left leg, x→ John’s left leg, x→ the crown 

 

The universally quantified sentence ∀x King(x) ⇒Person(x) is true in the original model if the 

sentence King(x) ⇒Person(x) is true under each of the five extended interpretations. That is, the 

universally quantified sentence is equivalent to asserting the following five sentences: 

 

Richard the Lionheart is a king ⇒Richard the Lionheart is a person. King John is a king ⇒King John 

is a person. Richard’s left leg is a king ⇒Richard’s left leg is a person. John’s left leg is a king ⇒John’s left 

leg is a person. The crown is a king ⇒the crown is a person. 

 

Existential quantification (∃) 

 

Universal quantification makes statements about every object. Similarly, we can make a 

statement about some object in the universe without naming it, by using an existential 

quantifier. 

“The sentence ∃x P says that P is true for at least one object x. More precisely, ∃x P is true in a 

given model if P is true in at least one extended interpretationthat assigns x to a domain element.” 

∃x is pronounced “There exists an x such that . . .” or “For some x . . .”. 

 

For example, that King John has a crown on his head, we write ∃xCrown(x) ∧OnHead(x, John) 

Given assertions: 

Richard the Lionheart is a crown ∧Richard the Lionheart is on John’s head; King John is a crown 

∧King John is on John’s head; Richard’s left leg is a crown ∧Richard’s left leg is on John’s head; John’s left leg 

is a crown ∧John’s left leg is on John’s head; The crown is a crown ∧the crown is on John’s head. The 

fifth assertion is true in the model, so the original existentially quantified sentence is true in the 

model. Just as ⇒appears to be the natural connective to use with ∀, ∧is the natural connective to use 

with ∃. 

  

Nested quantifiers 
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One can express more complex sentences using multiple quantifiers. 

 

For example, “Brothers are siblings” can be written as ∀x∀y Brother (x, y) ⇒Sibling(x, y). 

Consecutive quantifiers of the same type can be written as one quantifier with several variables. 

 

For example, to say that siblinghood is a symmetric relationship, we can write∀x, y Sibling(x, y) 

⇔Sibling(y, x). 

In other cases we will have mixtures. 

 

For example: 1. “Everybody loves somebody” means that for every person, there is someone that person 

loves: ∀x∃y Loves(x, y) . 2. On the other hand, to say “There is someone who is loved by everyone,” we 

write ∃y∀x Loves(x, y) . 

Connections between ∀and ∃ 

 

Universal and Existential quantifiers are actually intimately connected with each other, through 

negation. 

 

Example assertions:  

1. “ Everyone dislikes medicine” is the same as asserting “ there does not exist someone who likes medicine” , 

and vice versa: “∀x ￢Likes(x, medicine)” is equivalent to “￢∃x Likes(x, medicine)”.  

2. “Everyone likes ice cream” means that “ there is no one who does not like ice cream” : ∀xLikes(x, 

IceCream) is equivalent to ￢∃x ￢Likes(x, IceCream) . 

Because ∀is really a conjunction over the universe of objects and ∃is a disjunction that they obey De 

Morgan’s rules. The De Morgan rules for quantified and unquantified sentences are as follows: 
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Equality 

 
First-order logic includes one more way to make atomic sentences, other than using a predicateand terms .We 

can use the equality symbol to signify that two terms refer to the same object. 

 

For example, 

 
“Father(John) =Henry” says that the object referred to by Father (John) and the object referred to by 

Henry are the same. 

 
Because an interpretation fixes the referent of any term, determining the truth of an equality sentence is 

simply a matter of seeing that the referents of the two terms are the same object.The equality symbol can be 

used to state facts about a given function.It can also be used with negation to insist that two terms are not the 

same object. 

 

For example, 

 
“Richard has at least two brothers” can be written as, ∃x, y Brother (x,Richard ) ∧Brother (y,Richard 

) ∧￢(x=y) . 
 

The sentence 

 
∃x, y Brother (x,Richard ) ∧Brother (y,Richard ) does not have the intended meaning.  

In particular, it is true only in the model where Richard has only one brother considering the extended 

interpretation in which both x and y are assigned to King John. The addition of ￢(x=y) rules out such 

models. 

 

 
USING FIRST ORDER LOGIC Assertions and queries in first-order logic Assertions: 
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Sentences are added to a knowledge base using TELL, exactly as in propositional logic. Such sentences are 

called assertions. 

 

For example, 

 
John is a king, TELL (KB, King (John)). Richard is a person. TELL (KB, Person (Richard)). All kings are 

persons: TELL (KB, ∀x King(x) ⇒Person(x)). 

 

Asking Queries: 

 
We can ask questions of the knowledge base using ASK. Questions asked with ASK are called queries or 

goals. 

 

For example, 

 

ASK (KB, King (John)) returns true. 

 

Any query that is logically entailed by the knowledge base should be answered affirmatively. Fo 

rexample, given the two preceding assertions, the query: 

“ASK (KB, Person (John))” should also return true. 

Substitution or binding list 

 

We can ask quantified queries, such as ASK (KB, ∃x Person(x)) . 

 

The answer is true, but this is perhaps not as helpful as we would like. It is rather like answering 

“Can you tell me the time?” with “Yes.” 

 

If we want to know what value of x makes the sentence true, we will need a different function, 

ASKVARS, which we call with ASKVARS (KB, Person(x)) and which yields a stream of answers. 

 

In this case there will be two answers: {x/John} and {x/Richard}. Such an answer is called a 

substitution or binding list. 

 

ASKVARS is usually reserved for knowledge bases consisting solely of Horn clauses, because in 

such knowledge bases every way of making the query true will bind the variables to specific values. 

 

The kinship domain 

 

The objects in Kinship domain are people. 
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We have two unary predicates, Male and Female. 

 

Kinship relations—parenthood, brotherhood, marriage, and so on—are represented by binary 

predicates: Parent, Sibling, Brother,Sister,Child, Daughter, Son, Spouse, Wife, Husband, 

Grandparent,Grandchild, Cousin, Aunt, and Uncle. 

 

We use functions for Mother and Father, because every person has exactly one of each of these. 

 

We can represent each function and predicate, writing down what we know in termsof the other 

symbols. 

 

For example:- 

 1. one’s mother is one’s female parent: ∀m, c Mother (c)=m ⇔Female(m) ∧Parent(m, 

. 

2. One’s husband is one’s male spouse: ∀w, h Husband(h,w) ⇔Male(h) ∧Spouse(h,w) . 

 

3. Male and female are disjoint categories: ∀xMale(x) ⇔￢Female(x) . 

 

4. Parent and child are inverse relations: ∀p, c Parent(p, c) ⇔Child (c, p) . 

 

5. A grandparent is a parent of one’s parent: ∀g, c Grandparent (g, c) ⇔∃p Parent(g, 

p) ∧Parent(p, c) 

 

6. A sibling is another child of one’s parents: ∀x, y Sibling(x, y) ⇔x _= y ∧∃p 

Parent(p, x) ∧Parent(p, 

 

Axioms: 

 

Each of these sentences can be viewed as an axiom of the kinship domain. Axioms are commonly 

associated with purely mathematical domains. They provide the basic factual information from 

which useful conclusions can be derived. 

 

Kinship axioms are also definitions; they have the form ∀x, y P(x, y) ⇔. . .. 

 

The axioms define the Mother function, Husband, Male, Parent, Grandparent, and Sibling predicates in 

terms of other predicates. 

 

Our definitions “bottom out” at a basic set of predicates (Child, Spouse, and Female) in terms of which 

the others are ultimately defined. This is a natural way in which to build up the 

representation of a domain, and it is analogous to the way in which software packages are 
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built up by successive definitions of subroutines from primitive library functions. 

Theorems: 

 

Not all logical sentences about a domain are axioms. Some are theorems—that is, they are entailed by 

the axioms. 

 

For example, consider the assertion that siblinghood is symmetric: ∀x, y Sibling(x, y) ⇔Sibling(y, x) . 

 

It is a theorem that follows logically from the axiom that defines siblinghood. If we ASK the knowledge 

base this sentence, it should return true. From a purely logical point of view, a knowledge base need 

contain only axioms and no theorems, because the theorems do not increase the set of conclusions that 

follow from the knowledge base. From a practical point of view, theorems are essential to reduce the 

computational cost of deriving new sentences. Without them, a reasoning system has to start from first 

principles every time. 

 

Axioms :Axioms without Definition 

 

Not all axioms are definitions. Some provide more general information about certain predicates 

without constituting a definition. Indeed, some predicates have no complete definition because we do 

not know enough to characterize them fully. 

 

For example, there is no obvious definitive way to complete the sentence 

 

∀xPerson(x) ⇔. . . 

 

Fortunately, first-order logic allows us to make use of the Person predicate without completely 

defining it. Instead, we can write partial specifications of properties that every person has and 

properties that make something a person: 

 

∀xPerson(x) ⇒. . . ∀x . . . ⇒Person(x) . 

 

Axioms can also be “just plain facts,” such as Male (Jim) and Spouse (Jim, Laura).Such facts form the 

descriptions of specific problem instances, enabling specific questions to be answered. The answers 

to these questions will then be theorems that follow from the axioms 

 

Numbers, sets, and lists Number theory 
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Numbers are perhaps the most vivid example of how a large theory can be built up from NATURAL 

NUMBERS a tiny kernel of axioms. We describe here the theory of natural numbers or non-negative 

integers. We need: 

 

predicate       NatNum that will be true of natural numbers; 

 PEANO AXIOMS constant symbol, 0; One function symbol, S (successor). The Peano axioms 

define natural numbers and addition. 

 

Natural numbers are defined recursively: NatNum(0) . ∀n NatNum(n) ⇒ NatNum(S(n)) . 

 

That is, 0 is a natural number, and for every object n, if n is a natural number, then S(n) is a natural 

number. 

 

So the natural numbers are 0, S(0), S(S(0)), and so on. We also need axioms to constrain the successor 

function: ∀n 0 != S(n) . ∀m, n m != n ⇒ S(m) != S(n) . 

 

Now we can define addition in terms of the successor function: ∀m NatNum(m) ⇒ + (0, m) = 

m . 

∀m, n NatNum(m) ∧ NatNum(n) ⇒ + (S(m), n) = S(+(m, n)) 

 

The first of these axioms says that adding 0 to any natural number m gives m itself. Addition is 

represented using the binary function symbol “+” in the term + (m, 0); 

 

To make our sentences about numbers easier to read, we allow the use of infix notation. We 

can also write S(n) as n + 1, so the second axiom becomes : 

 

∀m, n NatNum (m) ∧ NatNum(n) ⇒ (m + 1) + n = (m + n)+1 . 

 

This axiom reduces addition to repeated application of the successor function. Once we have 

addition, it is straightforward to define multiplication as repeated addition, exponentiation as 

repeated multiplication, integer division and remainders, prime numbers, and so on. Thus, the 

whole of number theory (including cryptography) can be built up from one constant, one 

function, one predicate and four axioms. 

 

Sets 

 

The domain of sets is also fundamental to mathematics as well as to commonsense reasoning. 
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Sets can be represented as individualsets, including empty sets. 

 

Sets can be built up by:  

adding an element to a set or  

Taking the union or intersection of two sets. 

 

Operations that can be performed on sets are: 

 

To know whether an element is a member of a set Distinguish sets from objects that are not 

sets. 

 

Vocabulary of set theory: 

 

The empty set is a constant written as { }. There is one unary predicate, Set, which is true of 

sets. The binary predicates are 

 

x∈ s (x is        a member of set s) s1 ⊆ s2 (    set s1 is a subset, not necessarily proper, of set 

s2). 

 

The binary functions are 

 

s1 ∩ s2 (the intersection of two sets),   s1 ∪ s2 (the union of two sets), and   {x|s} (the set 

resulting from adjoining element x to set s). 

Forward Chaining and backward chaining in AI 

Inference engine: 

The inference engine is the component of the intelligent system in artificial 

intelligence, which applies logical rules to the knowledge base to infer new information 

from known facts. The first inference engine was part of the expert system. Inference 

engine commonly proceeds in two modes, which are: 

a. Forward chaining 

b. Backward chaining 

Horn Clause and Definite clause: 

Horn clause and definite clause are the forms of sentences, which enables knowledge base 

to use a more restricted and efficient inference algorithm. Logical inference algorithms use 
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forward and backward chaining approaches, which require KB in the form of the first-

order definite clause. 

Definite clause: A clause which is a disjunction of literals with exactly one positive 

literal is known as a definite clause or strict horn clause. 

Horn clause: A clause which is a disjunction of literals with at most one positive 

literal is known as horn clause. Hence all the definite clauses are horn clauses. 

Example: (¬ p V ¬ q V k). It has only one positive literal k. 

It is equivalent to p ∧ q → k. 

A. Forward Chaining 

Forward chaining is also known as a forward deduction or forward reasoning method when 

using an inference engine. Forward chaining is a form of reasoning which start with atomic 

sentences in the knowledge base and applies inference rules (Modus Ponens) in the forward 

direction to extract more data until a goal is reached. 

The Forward-chaining algorithm starts from known facts, triggers all rules whose premises 

are satisfied, and add their conclusion to the known facts. This process repeats until the 

problem is solved. 

Properties of Forward-Chaining: 

o It is a down-up approach, as it moves from bottom to top. 

o It is a process of making a conclusion based on known facts or data, by starting 

from the initial state and reaches the goal state. 

o Forward-chaining approach is also called as data-driven as we reach to the goal 

using available data. 

o Forward -chaining approach is commonly used in the expert system, such as 

CLIPS, business, and production rule systems. 

Consider the following famous example which we will use in both approaches: 

Facts Conversion into FOL: 

o It is a crime for an American to sell weapons to hostile nations. (Let's say p, q, and 

r are variables) 

American (p) ∧ weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → Criminal(p)       ...(1) 
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o Country A has some missiles. ?p Owns(A, p) ∧ Missile(p). It can be written in 

two definite clauses by using Existential Instantiation, introducing new Constant T1. 

Owns(A, T1)             ......(2) 

Missile(T1)             .......(3) 

o All of the missiles were sold to country A by Robert. 

?p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A)       ......(4) 

o Missiles are weapons. 

Missile(p) → Weapons (p)             .......(5) 

o Enemy of America is known as hostile. 

Enemy(p, America) →Hostile(p)             ........(6) 

o CountryA is an enemy of America. 

Enemy (A, America)             .........(7) 

o RobertisAmerican 

American(Robert).             ..........(8) 

Forward chaining proof: 

Step-1: 

In the first step we will start with the known facts and will choose the sentences which do 

not have implications, such as: American(Robert), Enemy(A, America), Owns(A, T1), 

and Missile(T1). All these facts will be represented as below. 

 

 

Step-2: 

At the second step, we will see those facts which infer from available facts and with 

satisfied premises. 

Rule-(1) does not satisfy premises, so it will not be added in the first iteration. 

Rule-(2) and (3) are already added. 

Rule-(4) satisfy with the substitution {p/T1}, so Sells (Robert, T1, A) is added, which 

infers from the conjunction of Rule (2) and (3). 
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Rule-(6) is satisfied with the substitution(p/A), so Hostile(A) is added and which infers 

from Rule-(7). 

 
 

Step-3: 

At step-3, as we can check Rule-(1) is satisfied with the substitution {p/Robert, q/T1, r/A}, 

so we can add Criminal(Robert) which infers all the available facts. And hence we 

reached our goal statement. 

 
Hence it is proved that Robert is Criminal using forward chaining approach. 

 

Backward Chaining: 

Backward-chaining is also known as a backward deduction or backward reasoning method 

when using an inference engine. A backward chaining algorithm is a form of reasoning, 

which starts with the goal and works backward, chaining through rules to find known facts 

that support the goal. 

Properties of backward chaining: 

o It is known as a top-down approach. 
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o Backward-chaining is based on modus ponens inference rule. 

o In backward chaining, the goal is broken into sub-goal or sub-goals to prove the 

facts true. 

o It is called a goal-driven approach, as a list of goals decides which rules are 

selected and used. 

o Backward -chaining algorithm is used in game theory, automated theorem proving 

tools, inference engines, proof assistants, and various AI applications. 

o The backward-chaining method mostly used a depth-first search strategy for 

proof. 

Example: 

In backward-chaining, we will use the same above example, and will rewrite all the rules. 

o American (p) ∧ weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → Criminal(p) ...(1) 

Owns(A, T1)                 ........(2) 

o Missile(T1) 

o ?p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A)           ......(4) 

o Missile(p) → Weapons (p)                 .......(5) 

o Enemy(p, America) →Hostile(p)                 ........(6) 

o Enemy (A, America)                 .........(7) 

o American(Robert).                 ..........(8) 

Backward-Chaining proof: 

In Backward chaining, we will start with our goal predicate, which is Criminal(Robert), 

and then infer further rules. 

Step-1: 

At the first step, we will take the goal fact. And from the goal fact, we will infer other facts, 

and at last, we will prove those facts true. So our goal fact is "Robert is Criminal," so 

following is the predicate of it. 

 
 Step-2: 
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At the second step, we will infer other facts form goal fact which satisfies the rules. So as 

we can see in Rule-1, the goal predicate Criminal (Robert) is present with substitution 

{Robert/P}. So we will add all the conjunctive facts below the first level and will replace p 

with Robert. 

Here we can see American (Robert) is a fact, so it is proved here. 

 

Step-3:t At step-3, we will extract further fact Missile(q) which infer from Weapon(q), 

as it satisfies Rule-(5). Weapon (q) is also true with the substitution of a constant T1 at q. 

 
 

Step-4: 

At step-4, we can infer facts Missile(T1) and Owns(A, T1) form Sells(Robert, T1, r) 

which satisfies the Rule- 4, with the substitution of A in place of r. So these two statements 

are proved here. 
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Step-5: 

At step-5, we can infer the fact Enemy(A, America) from Hostile(A) which satisfies 

Rule- 6. And hence all the statements are proved true using backward chaining. 
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Difference between backward chaining and forward chaining 

 

No. 

Forward Chaining Backward Chaining 

1

. 

Forward chaining 

starts from known facts 

and applies inference rule 

to extract more data unit it 

reaches to the goal. 

Backward chaining 

starts from the goal and 

works backward through 

inference rules to find the 

required facts that support 

the goal. 

2

. 

It is a bottom-up 

approach 

It is a top-down 

approach 

3

. 

Forward chaining is 

known as data-driven 

inference technique as we 

reach to the goal using the 

available data. 

Backward chaining is 

known as goal-driven 

technique as we start from 

the goal and divide into 

sub-goal to extract the 

facts. 

4

. 

Forward chaining 

reasoning applies a 

breadth-first search 

strategy. 

Backward chaining 

reasoning applies a depth-

first search strategy. 

5

. 

Forward chaining 

tests for all the available 

rules 

Backward chaining 

only tests for few required 

rules. 

6

. 

Forward chaining is 

suitable for the planning, 

monitoring, control, and 

interpretation application. 

Backward chaining is 

suitable for diagnostic, 

prescription, and 

debugging application. 

7

. 

Forward chaining can 

generate an infinite 

number of possible 

conclusions. 

Backward chaining 

generates a finite number 

of possible conclusions. 

8

. 

It operates in the 

forward direction. 

It operates in the 

backward direction. 

9

. 

Forward chaining is 

aimed for any conclusion. 

Backward chaining is 

only aimed for the required 

data. 
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 Basic probability notation 
• Prior probability :We will use the notation P(A) for the unconditional or prior probability 

that the proposition A is true.  

• For example, if Cavity denotes the proposition that a particular patient has a cavity, 

P(Cavity) = 0.1 means that in the absence of any other information, the agent will assign a 

probability of 0.1( a 10% chance)  

• It is important to remember that P(A) can only be used when there is no other information. 

As soon as some new information B is known, we have to reason with the conditional probability 

of A given B instead of P(A) to the event of the patient's having a cavity.  

• Propositions can also include equalities involving so-called random variables. 

•  For example, if we are concerned about the random variable Weather,  

we might have P( Weather = Sunny) = 0.7  

P(Weather = Rain) = 0.2  

P(Weather= Cloudy) = 0.08  

P(Weather = Snow) = 0.02  

Each random variable X has a domain of possible values (x1,...,xn) that it can take on. 

• We can view proposition symbols as random variables as well, if we assume that they have 

a domain [true,false).  

• Thus, the expression P(Cavity) can be viewed as shorthand for P(Cavity = true).  

• Similarly, P(->Cavity) is shorthand for P(Cavity =false).  

• Sometimes, we will want to talk about the probabilities of all the possible values of a 

random variable. In this case, we will use an expression such as P(Weather ) 

• for example, we would write P(Weather) = (0.7,0.2,0.08,0.02)  

This statement defines a probability distribution 

• We can also use logical connectives to make more complex sentences and assign 

probabilities to them.  

For example, P(Cavity A ¬Insured)  

Conditional probability: 

• Once the agent has obtained some evidence concerning the previously unknown 

propositions making up the domain, prior probabilities are no longer applicable.  

Instead, we use conditional or posterior probabilities, with the notation P(A|B) 

• This is read as "the probability of A given that all we know is B."  
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• P(B|A) means "Event B given Event A" 

• In other words, event A has already happened, now what is the chance of event B? 

• P(B|A) is also called the "Conditional Probability" of B given A. 

Ex:Drawing 2 Kings from a Deck 

• Event A is drawing a King first, and Event B is drawing a King second. 

• For the first card the chance of drawing a King is 4 out of 52 (there are 4 Kings in a deck of 

52 cards): 

• P(A) = 4/52 

• But after removing a King from the deck the probability of the 2nd card drawn is less likely 

to be a King (only 3 of the 51 cards left are Kings): 

• P(B|A) = 3/51 

And so: P(A and B) = P(A) x P(B|A) = (4/52) x (3/51) = 12/2652 = 1/221 

• So the chance of getting 2 Kings is 1 in 221, or about 0.5 

 

BAYES  Theorem: 

• Bayes' Theorem is a way of finding a probability when we know certain other probabilities. 

The formula is 

 

• Which tells us: how often A happens given that B happens, written P(A|B), 

• When we know: How often B happens given that A happens, written P(B|A) 

• and how likely A is on its own, written P(A) 

• and how likely B is on its own, written P(B) 

Example: 

• Dangerous fires are rare (1%) 

• But smoke is fairly common (10%) due to barbecues,and 90% of dangerous fires 

make smoke 

We can then discover the probability of dangerous Fire when there is Smoke: 

P(Fire|Smoke) =P(Fire) P(Smoke|Fire)/P(Smoke) 
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=1% x 90/10% 

=9% 

So it is still worth checking out any smoke to be sure. 

Example 2: 

You are planning a picnic today, but the morning is cloudy 

Oh no! 50% of all rainy days start off cloudy! 

But cloudy mornings are common (about 40% of days start cloudy) 

And this is usually a dry month (only 3 of 30 days tend to be rainy, or 10%) 

What is the chance of rain during the day? 

We will use Rain to mean rain during the day, and Cloud to mean cloudy morning. 

The chance of Rain given Cloud is written P(Rain|Cloud) 

So let's put that in the formula: 

P(Rain|Cloud) = P(Rain) P(Cloud|Rain)/P(Cloud) 

P(Rain) is Probability of Rain = 10% 

P(Cloud|Rain) is Probability of Cloud, given that Rain happens = 50% 

P(Cloud) is Probability of Cloud = 40% 

P(Rain|Cloud) = 0.1 x 0.5/0.4  = .125 

Or a 12.5% chance of rain. Not too bad, let's have a picnic! 
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UNIT-III 

 

Artificial intelligence is a system that is concerned with the study of understanding, designing and 

implementing the ways,  associated with knowledge representation to computers. 

In any intelligent system, representing the knowledge is supposed to be an important technique to 

encode the knowledge. 

The main objective of AI system is to design the programs that provide information to the computer, 

which can be helpful to interact with humans and  solve problems in various fields which require 

human intelligence. 

What is Knowledge? 

Knowledge is an useful term to judge the understanding of an individual on a given subject. 

In intelligent systems, domain is the main focused subject area. So, the system specifically focuses on 

acquiring the domain knowledge. 

Issues in knowledge representation 

The main objective of knowledge representation is to draw the conclusions from the knowledge, but 

there are many issues associated with the use of knowledge representation techniques. 

 

Refer to the above diagram to refer to the following issues. 

 

Advanced Knowledge Representation and Reasoning: Knowledge Representation Issues, 
Nonmonotonic Reasoning, Other Knowledge Representation Schemes Reasoning Under 
Uncertainty: Basic probability, Acting Under Uncertainty, Bayes’ Rule, Representing Knowledge in 
an Uncertain Domain, Bayesian Networks 
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1. Important attributes 

There are two attributes shown in the diagram, instance and isa. Since these attributes support 

property of inheritance, they are of prime importance. 

 

2. Relationships among attributes 

Basically, the attributes used to describe objects are nothing but the entities. However, the attributes 

of an object do not depend on the encoded specific knowledge. 

3. Choosing the granularity of representation 

While deciding the granularity of representation, it is necessary to know the following: 

i. What are the primitives and at what level should the knowledge be represented? 

       ii. What should be the number (small or large) of low-level primitives or high-level facts? 

            High-level facts may be insufficient to draw the conclusion while Low-level primitives may 

require a lot of storage. 

For example: Suppose that we are interested in following facts: 

John spotted Alex. 

Now, this could be represented as "Spotted (agent(John), object (Alex))" 

Such a representation can make it easy to answer questions such as: Who spotted Alex? 

Suppose we want to know : "Did John see Sue?" 

Given only one fact, user cannot discover that answer. 

Hence, the user can add other facts, such as "Spotted (x, y) → saw (x, y)" 

4. Representing sets of objects. 

There are some properties of objects which satisfy the condition of a set together but not as 

individual; 

Example: Consider the assertion made in the sentences: 

"There are more sheep than people in Australia", and "English speakers can be found all over the 

world." 

These facts can be described by including an assertion to the sets representing people, sheep, and 

English. 

5. Finding the right structure as needed 

To describe a particular situation, it is always important to find the access of right structure. This can 

be done by selecting an initial structure and then revising the choice. 
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While selecting and reversing the right structure, it is necessary to solve following problem 

statements. They include the process on how to: 

 Select an initial appropriate structure. 

 Fill the necessary details from the current situations. 

 Determine a better structure if the initially selected structure is not appropriate to fulfill other 

conditions. 

 Find the solution if none of the available structures is appropriate. 

 Create and remember a new structure for the given condition. 

 There is no specific way to solve these problems, but some of the  effective knowledge 

representation techniques have the potential to solve them. 

Non Monotonic reasoning: 

● In Non-monotonic reasoning, some conclusions may be invalidated if we add some more 

information to our knowledge base. 

● Logic will be said as non-monotonic if some conclusions can be invalidated by adding more 

knowledge into our knowledge base. 

● Non-monotonic reasoning deals with incomplete and uncertain models. 

● "Human perceptions for various things in daily life, "is a general example of non-monotonic 

reasoning. 

Example: Let suppose the knowledge base contains the following knowledge: 

● Birds can fly 

● Penguins cannot fly 

● Pitty is a bird 

So from the above sentences, we can conclude that Pitty can fly. 

However, if we add one another sentence into knowledge base "Pitty is a penguin", which concludes 

"Pitty cannot fly", so it invalidates the above conclusion. 

ACTING UNDER UNCERTAINTY 

Agents may need to handle uncertainity ,whether due to partial observability,non determininsm or 

combination of two. 
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Summarizing Uncertainity: 

Consider the following Simple rule: 

Toothache=> Cavity 

Not all the patients with toothaches have cavities ,some of them may have gum disease ,an abscess or 

some other problems 

Toothache=>cavity V Gum Problem V Abscess….. 

Unfortunately in order to make the rule true we have to add an almost unlimited list of possible 

problems 

 

Trying to use first-order logic to cope with a domain like medical diagnosis thus fails for three main 

reasons: 

Laziness: It is too much work to list the complete set of antecedents or consequents needed to ensure 

an exceptionless rule, and too hard to use the enormous rules that result.  

Theoretical ignorance: Medical science has no complete theory for the domain. 

Practical ignorance: Even if we know all the rules, we may be uncertain about a particular patient 

because all the necessary tests have not or cannot be run. 

The agent's knowledge can at best provide only a degree of belief in the relevant sentences. Our main 

tool for dealing with degrees of belief will be probability theory, which assigns a numerical degree of 

belief between 0 and 1 to sentences. 

Probability provides a way of summarizing the uncertainty that comes from our laziness and 

ignorance. We may not know for sure what afflicts a particular patient, but we believe that there is, 

say, an 80% chance—that is, a probability of 0.8—that the patient has a cavity if he or she has a 

toothache 

 

BASIC PROBABILITY NOTATION 
 

Prior probability We will use the notation P(A) for the unconditional or prior probability that the 

proposition A is true.  

For example, if Cavity denotes the proposition that a particular patient has a cavity, 

 P(Cavity) = 0 

means that in the absence of any other information, the agent will assign a probability of 0.1 (a 10% 

chance) to the event of the patient's having a cavity.  
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It is important to remember that P(A) can only be used when there is no other information. As soon 

as some new information B is known, we have to reason with the conditional probability of A given 

B instead of P(A).  

 The proposition that is the subject of a probability statement can be represented by a proposition 

symbol, as in the P(A) example. Propositions can also include equalities involving so-called random 

variables. For example, if we are concerned about the random variable Weather, we might have 

 P( Weather = Sunny) = 0.7  

P(Weather = Rain) = 0.2 

 P(Weather= Cloudy) = 0.08  

P(Weather = Snow) = 0.02 

Each random variable X has a domain of possible values (x\,...,xn) that it can take on 

 

We can view proposition symbols as random variables as well, if we assume that they have a domain 

[true,false). Thus, the expression P(Cavity) can be viewed as shorthand for P(Cavity = true). 

Similarly, P(->Cavity) is shorthand for P(Cavity =false). Usually, we will use the letters A, B, and so 

on for Boolean random variables, and the letters X, Y, and so on for multivalued variables. 

 

Sometimes, we will want to talk about the probabilities of all the possible values of a random 

variable. 

 In this case, we will use an expression such as P(Weather), which denotes vector of values for the 

probabilities of each individual state of the weather.  

Given the preceding values, for example, we would write P(Weather) = (0.7,0.2,0.08,0.02) 

 This statement defines a probability distribution for the random variable Weather.  

We will also use expressions' such as P(Weather, Cavity) to denote the probabilities of all 

combinations of the values of a set of random variables.  

In this case, P(Weather, Cavity) denotes a 4 x 2 table of probabilities. We will see that this notation 

simplifies many equations. We can also use logical connectives to make more complex sentences and 

assign probabilities to them. For example, P(Cavity A -^Insured) - 0.06 says there is an 6% chance 

that a patient has a cavity and has no insurance 

Conditional probability: 

 

 Once the agent has obtained some evidence concerning the previously unknown propositions 
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making up the domain, prior probabilities are no longer applicable. Instead, we use 

conditional or posterior probabilities, with the notation P(A|B).  

 This is read as "the probability of A given that all we know is B."  

For example, indicates that if a patient is observed to have a toothache, and no other information is 

yet available, 

then the probability of the patient having a cavity will be 0.8.  

 It is important to remember that P(A|B) can only be used when all we know is B. As soon as 

we know C, then we must compute 

 P(A|B A C) instead of P(A|B). A prior probability P(A) can be thought of as a special case of 

conditional probability P(A\), where the probability is conditioned on no evidence. 

 We can also use the P notation with conditional probabilities. P(X| Y) is a two-dimensional 

table giving the values of P(X=x,|Y = yj) for each possible I, j. Conditional probabilities can be 

defined in terms of unconditional probabilities. The equation 

   

Axioms of Probability: 

 All probabilities are between 0 and 1.  

0 < P(A) < 1  

 Necessarily true (i.e., valid) propositions have probability 1, and necessarily false (i.e., 

unsatisfiable) propositions have probability 0. P(True) = 1 P(False) = 0  

 The probability of a disjunction is given by P(A V 5) = P(A) + P(B) - P(A A B) 

 

 

The joint probability distribution 
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The joint probability distribution (or "joint" for short), which completely specifies an agent's 

probability assignments to all propositions in the domain (both simple and complex).  

A probabilistic model of a'domain consists of a set of random variables that can take on particular 

values with certain probabilities. Let the variables be X\ ... Xn. 

 An atomic event is an assignment of particular values to all the variables—in other words, a 

complete specification of the state of the domain 

The joint probability distribution P(X],.. . ,Xn) assigns probabilities to all possible atomic events. 

Recall that P(X,) is a one-dimensional vector of probabilities for the possible values of the variable 

X,-. Then the joint is an w-dimensional table with a value in every cell giving the probability of that 

specific state occurring. Here is a joint probability distribution for the trivial medical domain 

consisting of the two Boolean variables Toothache and Cavity: 

 
 

Adding across a row or column gives the unconditional probability of a variable, for example, 

P(Cavity) = 0.06 + 0.04 = 0.10. 

P(Cavity V Toothache) = 0.04 + 0.01 + 0.06 = 0.11 

 

Bayes Rule:
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Representing knowledge in uncertain domain 

In the context of using Bayes' rule, conditional independence relationships among variables can simplify the 

computation of query results and greatly reduce the number of conditional probabilities that need to be 

specified. We use a data structure called a belief BELIEF NETWORK network' to represent the dependence 

between variables and to give a concise specification of the joint probability distribution.   

A Bayesian Network Is a directed graph in which each node is annotated with quantitative probability 

information. 

The full specification is as follows: 

1. Each node corresponds to a random variable , which can be discrete or continuous. 

2. f A set of directed links or arrows connects pairs of nodes.  If there is an arrow from node X to node Y ,X I s 

said to be parent of Y.The graph has no directed cycles and hence it is called directed acyclic graph(DAG) 

3. Each node Xi has a conditional probability distribution P(Xi|Parents(Xi)) that quantifies the effect of the 

parents on the node.  

The intuitive meaning of an arrow from node X to node Y is that X has a direct influence on Y 

 

Consider the following situation. You have a new burglar alarm installed at home. It is fairly reliable 

at detecting a burglary, but also responds on occasion to minor earthquakes. (This example is due to 

Judea Pearl, a resident of Los Angeles; hence the acute interest in earthquakes.) You also have two 

neighbors, John and Mary, who have promised to call you at work when they hear the alarm. John 

always calls when he hears the alarm, but sometimes confuses the telephone ringing with the alarm 

and calls then, too. Mary, on the other hand, likes rather loud music and sometimes misses the alarm 

altogether. Given the evidence of who has or has not called, we would like to estimate the probability 
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of a burglary. 

This simple domain is described by the belief network in Figure 15.2 

 

Notice that the network does not have nodes corresponding to Mary currently listening to loud music, 

or to the telephone ringing and confusing John. These factors are summarized in the uncertainty 

associated with the links from Alarm to JohnCalls and MaryCalls.  

This shows both laziness and ignorance in operation: it would be a lot of work to determine any 

reason why those factors would be more or less likely in any particular case, and we have no 

reasonable way to obtain the relevant information anyway.  

The probabilities actually summarize a potentially infinite set of possible circumstances in which the 

alarm might fail to go off (high humidity, power failure, dead battery, cut wires, dead mouse stuck 

inside bell,...) or John or Mary might fail to call and report it (out to lunch, on vacation, temporarily 

deaf, passing helicopter, ...). In this way, a small agent can cope with a very large world, at least 

approximately. The degree of approximation can be improved if we introduce additional relevant 

information. 

Bayesian belief network 
Bayesian belief network is key computer technology for dealing with probabilistic events and to 

solve a problem which has uncertainty. We can define a Bayesian network as: 

"A Bayesian network is a probabilistic graphical model which represents a set of variables and their 

conditional dependencies using a directed acyclic graph." 

It is also called a Bayes network, belief network, decision network, or Bayesian model. 
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Bayesian networks are probabilistic, because these networks are built from a probability distribution, 

and also use probability theory for prediction and anomaly detection 

Bayesian Network can be used for building models from data and experts opinions, and it consists of 

two parts: 

Directed Acyclic Graph 

Table of conditional probabilities. 

The generalized form of Bayesian network that represents and solve decision problems under 

uncertain knowledge is known as an Influence diagram. 

A Bayesian network graph is made up of nodes and Arcs (directed links), where:  

 

  
o Each node corresponds to the random variables, and a variable can be continuous or discrete. 

o Arc or directed arrows represent the causal relationship or conditional probabilities between random 

variables. These directed links or arrows connect the pair of nodes in the graph. 

These links represent that one node directly influence the other node, and if there is no directed link 

that means that nodes are independent with each other 

o In the above diagram, A, B, C, and D are random variables represented by the nodes of the network 

graph. 

o If we are considering node B, which is connected with node A by a directed arrow, then node A is 

called the parent of Node B. 

o Node C is independent of node A. 

Each node in the Bayesian network has condition probability distribution P(Xi |Parent(Xi) ), which 

determines the effect of the parent on that node. 

Bayesian network is based on Joint probability distribution and conditional probability. So let's first 

understand the joint probability distribution: 
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Joint probability distribution: 

If we have variables x1, x2, x3,....., xn, then the probabilities of a different combination of x1, x2, x3.. 

xn, are known as Joint probability distribution. 

P[x1, x2, x3,....., xn], it can be written as the following way in terms of the joint probability 

distribution. 

= P[x1| x2, x3,....., xn]P[x2, x3,....., xn] 

 

= P[x1| x2, x3,....., xn]P[x2|x3,....., xn]....P[xn-1|xn]P[xn]. 

 

In general for each variable Xi, we can write the equation as: 

 

P(Xi|Xi-1,........., X1) = P(Xi |Parents(Xi )) 

Explanation of Bayesian network: 

Let's understand the Bayesian network through an example by creating a directed acyclic graph: 

 

Example: Harry installed a new burglar alarm at his home to detect burglary. The alarm reliably 

responds at detecting a burglary but also responds for minor earthquakes. Harry has two neighbors 

David and Sophia, who have taken a responsibility to inform Harry at work when they hear the alarm. 

David always calls Harry when he hears the alarm, but sometimes he got confused with the phone 

ringing and calls at that time too. On the other hand, Sophia likes to listen to high music, so sometimes 

she misses to hear the alarm. Here we would like to compute the probability of Burglary Alarm. 

 Problem: 

Calculate the probability that alarm has sounded, but there is neither a burglary, nor an 

earthquake occurred, and David and Sophia both called the Harry. 

Solution: 

 

The Bayesian network for the above problem is given below. The network structure is showing that 

burglary and earthquake is the parent node of the alarm and directly affecting the probability of 

alarm's going off, but David and Sophia's calls depend on alarm probability. 

The network is representing that our assumptions do not directly perceive the burglary and also do not 

notice the minor earthquake, and they also not confer before calling. 
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The conditional distributions for each node are given as conditional probabilities table or CPT. 

Each row in the CPT must be sum to 1 because all the entries in the table represent an exhaustive set 

of cases for the variable. 

In CPT, a boolean variable with k boolean parents contains 2K probabilities. Hence, if there are two 

parents, then CPT will contain 4 probability values 

List of all events occurring in this network: 

 

Burglary (B) 

Earthquake(E) 

Alarm(A) 

David Calls(D) 

Sophia calls(S) 

We can write the events of problem statement in the form of probability: P[D, S, A, B, E], can 

rewrite the above probability statement using joint probability distribution: 

P[D, S, A, B, E]= P[D | S, A, B, E]. P[S, A, B, E] 

 

=P[D | S, A, B, E]. P[S | A, B, E]. P[A, B, E] 

P [D| A]. P [ S| A, B, E]. P[ A, B, E] 

 

= P[D | A]. P[ S | A]. P[A| B, E]. P[B, E] 

 

= P[D | A ]. P[S | A]. P[A| B, E]. P[B |E]. P[E] 
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Let's take the observed probability for the Burglary and earthquake component: 

P(B= True) = 0.002, which is the probability of burglary. 

P(B= False)= 0.998, which is the probability of no burglary. 

P(E= True)= 0.001, which is the probability of a minor earthquake 

P(E= False)= 0.999, Which is the probability that an earthquake not occurred. 

Conditional probability table for Alarm A: 

The Conditional probability of Alarm A depends on Burglar and earthquake: 

B E P(A= True) P(A= False) 

True True 0.94 0.06 

True False 0.95 0.04 

False True 0.31 0.69 

False False 0.001 0.999 

Conditional probability table for David Calls: 

The Conditional probability of David that he will call depends on the probability of Alarm. 

A P(D= True) P(D= False) 

True 0.91              0.09 

False 0.05              0.95 

Conditional probability table for Sophia Calls: 

The Conditional probability of Sophia that she calls is depending on its Parent Node "Alarm." 

A P(S= True) P(S= False) 

True    0.75             0.25 

False      0.02             0.98 

From the formula of joint distribution, we can write the problem statement in the form of 

probability distribution: 

P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A)*P (A|¬B ^ ¬E) *P (¬B) *P (¬E). 

= 0.75* 0.91* 0.001* 0.998*0.999 
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from the formula of joint distribution, we can write the problem statement in the form of 

probability distribution: 

P(S, D, A, ¬B, ¬E) = P (S|A) *P (D|A)*P (A|¬B ^ ¬E) *P (¬B) *P (¬E). 

= 0.75* 0.91* 0.001* 0.998*0.999 

 

 

 

.
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                                                  UNIT-IV 
 

 
What is learning? 

Most often heard criticisms of AI is that machines cannot be called intelligent until theyare able to learn to 

do new things and adapt to new situations, rather than simply doing asthey are told to do. 

Some critics of AI have been saying that computers cannot learn! 

Definitions of Learning: changes in the system that are adaptive in the sense that they enable the system to 

do the same task or tasks drawn from the same population more efficiently and more effectively the next 

time. 

 Learning covers a wide range of phenomenon: 

 Skill refinement: Practice makes skills improve. More you play tennis, better you get  

 Knowledge acquisition: Knowledge is generally acquired through experience 

 

Various learning mechanisms: 

 
 

Rote learning: 
 Rote Learning is basically memorisation. 

• Saving knowledge so it can be used again. 

• Retrieval is the only problem. 

Learning: What Is Learning? Rote Learning, Learning by Taking Advice, Learning in Problem 

Solving,  

Learning from Examples: Winston’s Learning Program, Decision Trees. 
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• No repeated computation, inference or query is necessary. 

• A simple example of rote learning is caching 

• Store computed values (or large piece of data) 

• Recall this information when required by computation. 

• Significant time savings can be achieved. 

• Many AI programs (as well as more general ones) have used caching very effectively. 

Checkers game: 

 
 Samuel's Checkers program employed rote learning (it also used parameter adjustment 

which will be discussed shortly). 

 A minimax search was used to explore the game tree. 

 Time constraints do not permit complete searches. 

 It records board positions and scores at search ends. 

 Now if the same board position arises later in the game the stored value can be recalled 

and the end effect is that deeper searched have occurred. 
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 Rote learning is basically a simple process. However it does illustrate some issues 

that are relevant to more complex learning issues. 

Organisation 

 -- access of the stored value must be faster than it would be to recompute it. Methods 

such as hashing, indexing and sorting can be employed to enable this. 

 E.g Samuel's program indexed board positions by noting the number of pieces. 

Generalisation 

 -- The number of potentially stored objects can be very large. We may need to 

generalise some information to make the problem manageable. 

E.g Samuel's program stored game positions only for white to move. Also rotations along 

diagonals are combined 
 

Learning by taking advice: 

This is a simple form of learning. Suppose a programmer writes a set of instructions to instruct the 

computer what to do, the programmer is a teacher and the computer is a student. 

 Once learned (i.e. programmed), the system will be in a position to do new things. 

The advice may come from many sources: human experts, internet to name a few. This type of learning 

requires more inference than rote learning.  
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The knowledge must be transformed into an operational form before stored in the knowledge base. 

 

 FOO (First Operational Operationaliser), for example, is a learning system which is used to learn 

the game of Hearts.  

 It converts the advice which is in the form of principles, problems, and methods into effective 

executable (LISP) procedures (or knowledge). Now this knowledge is ready to use. 

 A human user first translates the advice from English into a representation  

That foo can understand  

For eg: “Avoid taking points” 

Avoid(take points me)(trick) 

Achieve (not( during (trick)(take point-me))))) 

 

Learning in Problem Solving- learning by Parameter Adjustment 

Many programs rely on an evaluation procedure to summarise the state of search etc. Game playing 

programs provide many examples of this. 

However, many programs have a static evaluation function to get a score that achieves the desirable board 

position. 

In learning a slight modification of the formulation of the evaluation of the problem is required. 

Here the problem has an evaluation function that is represented as a polynomial of the form such as: 

 

The ‘t’ terms are the values that contribute to the evaluation. The ‘C’ terms are the coefficients 

(weights) that are attached to these values. 

 But many moves must have contributed to that final outcome, Even if the program wins it 

may have made some wrong moves along the way 

  Because of the limitations Samuel program did two things: 

 When the program is in learning mode paly against the copy of itself, At the end of the 

game if the modified function won then the modified version is accepted otherwise the old one is 

retained. 

 Periodically,one term in the scoring function was eliminated and replaced by another. 
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Learning in Problem Solving-Learning with macro operators: 

 The basic idea here is similar to Rote Learning:Avoid expensive recomputation 

 Macro-operators can be used to group a whole series of actions into one. 

 For example: Making dinner can be described a lay the table, cook dinner, serve dinner. We 

could treat laying the table as on action even though it involves a sequence of actions. 

 The STRIPS problem-solving employed macro-operators in it's learning phase. 

 Consider a blocks world example in which ON(C,B) and ON(A,TABLE) are true. 

 STRIPS can achieve ON(A,B) in four steps: 

UNSTACK(C,B), PUTDOWN(C), PICKUP(A),  

       STACK(A,B) 

STRIPS now builds a macro-operator MACROP with preconditions ON(C,B), ON(A,TABLE), 

postconditions ON(A,B), ON(C,TABLE) and the four steps as its body. 

MACROP can now be used in future operation. 

But it is not very general. The above can be easily generalised with variables used in place of the blocks. 

However generalisation is not always that easy 

 

Non Serializable subgoals: 

 Non serializability means that working on one subgoal will necessarily interfere with 

previous solution to another subgoal 

 Macro operators can be used for games like 8-Puzzle(foe ex we have correctly placed 4 tiles 

and our job is to put fifth without disturbing the earlier tiles. 

 A macro will not disturb 4 files externally (but within the macro tiles are disturbed). 

 

Learning in Problem Solving-Learning from chunking: 

 Chunking is similar to learnig with macro-operators. Generally, it is used by problem 

solver systems that make use  of production systems. 

 A production system consists of a set of rules that are in if-then form. That is given a particular 

situation, what are the actions to be performed. For example, if it is raining then take umbrella 

 To solve a problem, a system will compare the present situation with the left hand side of the 

rules. If there is a match then the system will perform the actions described in the right hand 

side of the corresponding rule. 
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 Problem solvers solve problems by applying the rules. Some of these rules may be more useful 

than others and the results are stored as a chunk. Chunking can be used to learn general search 

control knowledge 

 Several chunks may encode a single macro-operator and one chunk may participate in a number 

of macro sequences. Chunks learned in the beginning of problem solving, may be used in the 

later stage. The system keeps the chunk to use it in solving other problems. 

 Soar is a general cognitive architecture for developing intelligent systems. Soar requires 

knowledge to solve various problems. It acquires knowledge using chunking mechanism 

 An impasse arises when the system does not have sufficient knowledge. Consequently, Soar 

chooses a new problem space (set of states and the operators that manipulate the states) in a bid 

to resolve the impasse. 

 While resolving the impasse, the individual steps of the task plan are grouped into larger steps 

known as chunks.  

 The chunks decrease the problem space search and so increase the efficiency of performing the 

task. 

 in Soar, the knowledge is stored in long-term memory. Soar uses the chunking mechanism to 

create productions that are stored in long-term memory. 

 A chunk is nothing but a large production that does the work of an entire sequence of smaller 

ones. 

 The productions have a set of conditions or patterns to be matched to working memory which 

consists of current goals, problem spaces, states and operators and a set of actions to perform 

when the production fires 

 Chunks are generalized before storing. When the same impasse occurs again, the chunks so 

collected can be used to resolve it. 

 

Learning from Examples-Induction: 

 Classification is a process of assigning to a particular input, to tha name of the class to which it belongs 

to. Classification is important component in many problem solving tasks. 

 But often classification is embedded inside another operation.  

For eg: 

 If:the current goal is to get from place A to place B and there is a wall seperating two places 

Then look for a Doorway in the wall and through it. 
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 To use this rule successfully, the system’s matching routine must be able to identify an object as a 

wall. Without this the rule can never be invoked. 

 Then to apply the rule,the system must be able to recognize the a doorway. 

 Before classification is done , the classes it will use must be defined . This can be done in variety 

of ways: 

 Isolate a set of features that are relevent to task domain.Define each class by some values of these 

features. 

Eg: for weather predictions the parameters can be of rainfall,sunny,cloudy 

 Isolate a set of features that are relevant to the task domain.Define a class as a structure composed 

of those features. 

For example if the task is to identify animals,the body of each type of animal can be stored as structure 

and various features  like color, length of a neck can be represented.The task of constructing class 

definitions is called concept learning or Induction. 

Let us the learn the techniques to define classes structurally. 

Winston’s Learning Program: 

 Winston describes an early structural concept learning program. 

Its goal is to construct representations of the definitions of concepts in the blocks domain. 

For eg : it learned the concepts, House tent and Arch 
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To objects marry if they have faces that touch each and they have a common edge. 

The marry relation is critical in  the definition of arch . It is the difference between the first arch and near 

miss arch structure. In fig 17.2 
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Decision Trees: 
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UNIT-V 

 

 

What is an Expert System? 

An expert system is a computer program that is designed to solve complex problems and to provide 

decision-making ability like a human expert.. 

It performs this by extracting knowledge from its knowledge base using the reasoning and inference rules 

according to the user queries. 

The system helps in decision making for complex problems using both facts and heuristics like a human 

expert.  

It is called so because it contains the expert knowledge of a specific domain and can solve any complex 

problem of that particular domain.  

These systems are designed for a specific domain, such as medicine, science, etc. 

The performance of an expert system is based on the expert's knowledge stored in its knowledge base. 

 The more knowledge stored in the KB, the more that system improves its performance.  

One of the common examples of an ES is a suggestion of spelling errors while typing in the Google search 

box. 

Examples of the Expert System: 

MYCIN: It was one of the earliest backward chaining expert systems that was designed to find the 

bacteria causing infections like bacteraemia and meningitis. It was also used for the recommendation of 

antibiotics and the diagnosis of blood clotting diseases. 

PXDES: It is an expert system that is used to determine the type and level of lung cancer. To determine 

the disease, it takes a picture from the upper body, which looks like the shadow. This shadow identifies 

the type and degree of harm. 

CaDeT: The CaDet expert system is a diagnostic support system that can detect cancer at early stages 

Representing and using Domain knowledge: 

The R1  program internally called XCON, for eXpert CONfigurer was a production-rule-based system to 

  

Expert Systems: Representing and Using Domain Knowledge, Shell, Explanation, Knowledge 

Acquisition. 
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assist in the ordering of DEC's VAX computer systems by automatically selecting the computer system 

components based on the customer's requirements. 

It eventually had about 2500 rules. 

Rule of Xcon that configures DEC VAX system 

If: the most current active context is distributing mass bus devices and  

        There is a single-port disk drive that has not been assigned to a massbus and 

         There are no unassigned dual port disk drives and the number of devices that each mass bus should 

support is known and, 

    There is a mass bus that has been assigned at least  one disk drive and that should support additional 

disk drives, 

   And the type of the cable needed to connect the disk drive to the previous device on the mass bus is 

known  

    Then: assign the disk drive to the massbus 

 As RI is doing a design task ( in contrast to the diagnosis task  performed by MYCIN)it is not necessary 

to consider all the possible alternatives one good one is enough. As a result probabilistic information is not 

necessary in R1; 

PROSPECTOR is a program that provides  advice on mineral exploration. It’s rule looks like this: 

IF: magnetite and pyrite is disseminated or veinlet form is present 

Then( 2,-4) there is a favourable mineralization and texture  for the propylitic stage 

Here each rule contains two estimates. 

The first indicates that the presence of evidence described in the condition part of the rule suggests the 

validity of the rules conclusion 

The second measures the extent to which the evidence is necessary to the validity of the conclusion. 

2 indicates the presence of the evidence is encouraging.. 

-4 indicates that the absence of the evidence is slightly discouraging 

 

Reasoning with knowledge 

■ Expert systems exploit many of the representation and reasoning mechanisms that we have discussed. 

■ Because these programs are usually written primarily as rule based systems, forward chaining and 

backward chaining are usually used . 
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■ For ex: MYCIN used backward chaining to discover what organisms are present. And then uses forward 

chaining to reason from the organisms to a treatment regime.. 

■ RI on the other hand uses Forward chaining. 

Expert system Shells 

A new expert system can be developed by adding domain knowledge to the shell. The figure depicts 

generic components of expert system. 

 

 Knowledge acquisition system: It is the first and fundamental step. It helps to collect the experts 

knowledge required to solve the Problems and build the knowledge base.  

 Knowledge Base: This component is the heart of expert systems. It stores all factual and heuristic 

knowledge about the application domain. It provides with the various representation techniques for all the 

data. 

 Inference mechanism: Inference engine is the brain of the expert system. This component is mainly 

responsible for generating inference from the given knowledge from the knowledge base and produce line 

of reasoning in turn the result of the user's query. 

 Explanation subsystem: This part of shell is responsible for explaining or justifying the final or 

intermediate result of user query. It is also responsible to justify need of additional knowledge 

 User interface: It is the means of communication with the user. It decides the utility of expert system. 
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 Building expert systems by using shells has significant advantages. It is always advisable to use shell to 

develop expert system as it avoids building the system from scratch. 

 To build an expert system using system shell, one needs to enter all necessary knowledge about a task 

domain into the shell. 

Explanation: 

An expert system is said to be effective when people can interact with it easily. 

To facilitate the interaction  ,the expert system must have the following two properties: 

1. Explain its reasoning: In many of the domains in which experts system operate ,people will not 

accept results unless they have been convinced of the accuracy of the of the reasoning process that 

produced those results. 

An expert system is said to be effective when people can interact with it easily. 

2. Acquire new knowledge and modifications of old knowledge: since expert systems derive their 

power from the richness of the knowledge bases they is exploit it ,it is extremely important  that those 

knowledge bases be complete and as accurate as possible 

One way to get the knowledge into a program is through interaction with the human expert. Or to have a 

program that learns the expert behaviour from raw data. 

 TEIRESIAS was the first program to support explanation and knowledge acquisition. 

TEIRESIAS served as a front end for the MYCIN expert system. 

The program asks for a piece information that it needs in order to continue its reasoning 

The doctor wants  to know why the program wants the information and later asks the  how the program 

arrived at a conclusion that it claimed had reached 

 Mycirn attempts to solve its goal of recommending a therapy for a particular patient  by first finding the 

cause of the patient’s illness. 

 It uses its production rules to reason  backward from goals to clinical observations. 

 To solve the top level diagnostic goal, it looks for rules whose right side suggests diseases. 

 It then uses left sides of those rules(preconditions) to set up subgoals . 

 These subgoals are again matched against rules and their preconditions  are used to set up additional 

goals. 

 Whenever a precondition specifies  a specific piece of clinical evidence  ,mycin uses that evidence, 
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otherwise it asks the user to provide  the information. 

 The actual goal  that MYCIN set up are more general than the they need to specify  the preconditions 

of a individual rule. 

For ex: 

 If a precondition satisfies  that the identity of a organism X , MYCIN will set up the goal “infer 

identity” 

 The first Question that the user asks is WHY? Why do you need to know that? 

 Because the clinical tests are either expensive or dangerous.. 

 It is important for the doctor to be convinced that the information is really needed before ordering 

the test. 

Because MYCIN is reasoning backward the question can be easily answered by examining the goal tree. 

● The user can ask the question How did you know that? 

● The question can be answered by looking at the goal tree and chaining backward from the stated fact to 

the evidence that allowed a rule that determined the fact to fire. 

Knowledge Acquisition: 

● How are experts system built? 

 Knowledge Engineer Interviews domain experts and  to get the clear knowledge and the they are 

translated into rules- This process is expensive and time consuming. 

● Look for Automatic ways of constructing expert knowledge bases, but no automatic knowledge 

acquisition systems exist yet. 

● But there are programs that interact with domain experts to extract knowledge efficiently. 

● These programs  provides supports for the following activities: 

 1. Entering knowledge 

 2. maintaining Knowledge base consistency 

 3. Ensuring Knowledge base completeness. 

● The most useful knowledge acquisition programs are those that are restricted to a particular problem 

solving paradigm eg: diagnosis or design. 

● If the paradigm  is diagnosis then the program can structure its knowledge base around  symptoms, 

hypothesis and causes. 
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● It can identify symptoms for which the expert system has not yet provided causes. 

● Since one system have many multiple causes the program can ask for knowledge about how to decide 

when one hypothesis is better than another. 

● MOLE is a knowledge acquisition system for heuristic classification problems, such as diagnosing  

diseases. 

● It used in conjunction with COVER AND DIFFERENTIATE problem solving method. 

● An Expert system produced by MOLE  accepts input data ,comes up with a set of candidate 

explanations or classifications that cover(explain) the data., the uses differentiating knowledge to 

determine which one is best. 

● MOLE interacts with the human expert to produce a knowledge base that a system called MOLE-

p(performance ) uses to solve problems 

The acquisition proceeds through several steps: 

1. Initial  knowledge base construction. MOLE asks the expert to list common symptoms or 

complaints that might require diagnosis. 

For each symptom ,MOLE prompts for a list of possible explanations. 

Whenever an event has multiple explanations, MOLE tries to determine the conditions under which the 

explanation is correct. 

The expert provides COVERING knowledge ,that is the knowledge that a hypothesized event does occur, 

then the symptom will definitely appear. 

2. Refinement of knowledge Base: 

MOLE now tries to identify the weaknesses of knowledge base.One approach is to find holes and prompt 

the expert to fill them. 

MoLE lets the expert watch MOLE-P solving sample problems. 

When ever MOLE-p makes an incorrect diagnosis ,the expert adds new knowledge. 

 For Ex: suppose we have  a patient with Symptoms A and B. Futher suppose that symptom A could be 

caused by the events X and Y, and that symptom B can be caused by Y and Z. 

MOLE-p may conclude Y, since it explains both A and B. 

If the expert indicates that this decision was incorrect,then MOLE will ask what evidence should be used 

tp prefer X and/or Z over Y 
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● Suppose if our task is to design an artifact for eg: an elevator system, then we must assign values to large 

number of parameters such as width of the platform,  the type of door,the cable weight, cable strength. 

● These parameters must be consistent with each other and they must  result in the design that satisfies 

external constraints imposed by cost factors, the type of building involved and the expected payloads. 

● One problem solving method useful for design tasks is called propose and Revise. 

● Here the system first proposes an extension to the current design. Then it checks whether the extension 

violates any global  or local constraints. 

● Constraints violations are fixed and the process repeats. 

● It turns out that domain experts are good at listing overall design constraints and providing local 

constraints on the individual parameters ,but not so good at explaining how to arrive at global solutions. 

● The SALT program provides mechanisms for elucidating this knowledge from the expert. 

● SALT builds a dependency network as it converses with the expert. 

● Each node stands for a value of a parameter that must be acquired or generated. 

● There are three kinds of links: 

● Contributes–to ,constrains, suggests-revision-of 

● Contributes- to link are are procedures that allows SALT to generate a value for one parameter based on 

the value of another.. 

● Constrains rules out certain parameter values. 

● Suggests -revision- of  linkpoints to ways in which a constrain violation can be fixed. 

SALT uses the following heuristics to guide the acquisition process: 

1. Every non-input node in the network needs atleast one  link coming into it.If links are missing 

the expert is asked to fill it. 

2. No contribute-to loops are allowed in the network.If a loop exists ,SALT tries to transform one of 

the contributes to links into constrains links. 

3. Constrains links should have Suggests-revision-of links associated with them. 
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● These includes constrain links that are created when dependency loops are broken. 

● SALT compiles its dependency network into set of production rules.. 

● Consider a bank’s problem in deciding whether to approve a loan  a loan. 

● One approach to automate this task is to interview loan officers in an attempt to extract domain 

knowledge. 

● Another approach is to inspect the records of loans the bank has made in the past and try to generate 

rules automatically that will maximize the number of good loans and minimize the number of bad ones in 

the future. 

● META DENDRAL was the first program to use learning techniques to construct rules for the 

expert system automatically 
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