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COURSE OBJECTIVES: 

(R22A6702) DATA SCIENCE 

The students should be able to: 

1. Understand the data science process. 

2. Conceive the methods in R to load, explore and manage large data. 

3. Choose and evaluate the models for analysis. 

4. Describe the regression analysis. 

5. Select the methods for displaying the predicted results. 

 
UNIT –I 

Introduction to Data Science 
Data Science Process: Roles in a data science project, Stages in a data science project, Applications of 
data science. 

Overview of R: Basic Features of R, R installation, basic data types: Numeric, Integer, Complex, Logical, 

Character. Data Structures: vectors, lists, matrices, array, data frames, factors. 

Control Structures: if, if-else, for loop, while loop, next, break. Functions: 
named arguments, default parameters, return values. 

 

UNIT –II 

Loading, Exploring and Managing Data 
Working with data from files: Reading and writing data, reading data files with read. table (), Reading in 

larger datasets with read. table. Working with relational databases. 

Data manipulation packages:dplyr, data.table, reshape2, tidyr, lubridate. 

 

UNIT–III 

Exploratory Data Analysis and Validation Approaches 

Data validation: handling missing values, null values, duplicate values, outlier detection, data cleaning, 

data loading and inspection, data transformation. 

Cross validation:Validaton set approach, leave one out cross validation, k-fold cross validation, repeated 
k -fold cross validation. 

 

UNIT – IV 

Modelling Methods 

Supervised: Regression Analysis in R, linear regression, logistic regression, 

naive bayes classifier, decision tree, random forest, knn classifier, 

Unsupervised: kmeans clustering, association rule mining, apriori algorithm. 
 

UNIT – V 

Data Visualization in R 

Introduction to ggplot2: Univariate graphs: categorical, quantitative, bivariate graphs categorical 

vs. categorical, quantitative vs quantitative, categorical vs. quantitative, multivariate graphs : 

grouping, faceting. 

 
TEXT BOOKS: 

1. Practical Data Science with R, Nina Zumel & John Mount , Manning Publications 

NY, 2014. 

2. Beginning Data Science in R-Data Analysis, Visualization, and Modelling for the Data 

Scientist -Thomas Mailund –Apress -2017. 
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COURSE OUTCOMES: 

The students will be able to: 

 Analyze the basics in R programming in terms of constructs, control statements, 
 Functions. 
 Implement Data Preprocessing using R Libraries. 

 Apply the R programming from a statistical perspective and Modelling Methods. 

 Build regression models for a given problem. 

 Illustrate R programming tools for Graphs. 
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UNIT-I 

 

Introduction to Data Science and Overview of R 

Data Science Process: Roles in a data science project, Stages in a data science project, Setting 

expectations. 

Overview of R: Basic Features of R, R installation, Basic Data Types: Numeric, Integer, Complex, 

Logical, Character. 

Data Structures: Vectors, Matrix, Lists, Indexing, Named Values, Factors. Subsetting R Objects: Sub 

setting a Vector, Matrix, Lists, Partial Matching, Removing NAValues. 

Control Structures: if-else, for Loop, while Loop, next, break. Functions: Named Arguments , 

Default Parameters, Return Values. 
 

Roles in a data science project 

 
PROJECT SPONSOR 

The most important role in a data science project is the project sponsor. The sponsor is the person who 

wants the data science result; generally they represent the business interests. The sponsor is responsi- 

ble for deciding whether the project is a success or failure. The ideal sponsor meets the following con- 

dition: if they’re satisfied with the project outcome, then the project is by definition a success. 

KEEP THE SPONSOR INFORMED AND INVOLVED 

It’s critical to keep the sponsor informed and involved. Show them plans, progress, and intermediate 

successes or failures in terms they can understand. 

CLIENT 

While the sponsor is the role that represents the business interest, the client is the role that represents 

the model’s end users’ interests. The client is more hands-on than the sponsor; they’re the interface 

between the technical details of building a good model and the day-to-day work process into which the 

model will be deployed. They aren’t necessarily mathematically or statistically sophisticated, but are 

familiar with the relevant business processes and serve as the domain expert on the team.As with the 

sponsor, you should keep the client informed and involved. Ideally you’d like to have regular meetings 

with them to keep your efforts aligned with the needs of the end users. 

DATA SCIENTIST 

The next role in a data science project is the data scientist, who’s responsible for taking all necessary 

steps to make the project succeed, including setting the project strategy and keeping the client in- 

formed. They design the project steps, pick the data sources, and pick the tools to be used. Since they 
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pick the techniques that will be tried, they have to be well informed about statistics and machine learn- 

ing. They’re also responsible for project planning and tracking, though they may do this with a project 

management partner. 

 
 

DATA ARCHITECT 

The data architect is responsible for all of the data and its storage. Often this role is filled by someone 

outside of the data science group, such as a database administrator or architect. Data architects often 

manage data warehouses for many different projects, and they may only be available for quick consul- 

tation. 

OPERATIONS 

The operations role is critical both in acquiring data and delivering the final results. The person filling 

this role usually has operational responsibilities outside of the data science group. For example, if 

you’re deploying a data science result that affects howproducts are sorted on an online shopping site, 

then the person responsible for running the site will have a lot to say about how such a thing can be 

deployed. This person will likely have constraints on response time, programming language, or data 

size that you need to respect in deployment. The person in the operations role may already be support- 

ing your sponsor or your client, so they’re often easy to find. 

The Lifecycle of Data Science 

The major steps in the life cycle of Data Science project are as follows: 

1. Problem identification 

This is the crucial step in any Data Science project. First thing is understanding in what way Data 

Science is useful in the domain under consideration and identification of appropriate tasks which are 

useful for the same. Domain experts and Data Scientists are the key persons in the problem 

identification of problem. Domain expert has in depth knowledge of the application domain and 

exactly what is the problem to be solved. Data Scientist understands the domain and help in 

identification of problem and possible solutions to the problems. 

2. Business Understanding 

Understanding what customer exactly wants from the business perspective is nothing but Business 

Understanding. Whether customer wish to do predictions or want to improve sales or minimise the loss 

or optimise any particular process etc forms the business goals. During business understanding two 

important steps are followed: 

 KPI (Key Performance Indicator) 

For any data science project, key performance indicators define the performance or success of the 

project. There is a need to be an agreement between the customer and data science project team 

on Business related indicators and related data science project goals. Depending on the business need 

the business indicators are devised and then accordingly the data science project team decides the goals 

and indicators. To better understand this let   us see an example. Suppose the business need is 

to optimise the overall spendings of the company, then the data science goal will be to use the existing 

resources to manage double the clients. Defining the Key performance Indicators is very crucial for 

any data science projects as the cost of the solutions will be different for different goals. 

 SLA (Service Level Agreement) 

Once the performance indicators are set then finalizing the service level agreement is important. As per 

the business goals the service level agreement terms are decided. For example, for any airline 

reservation system simultaneous processing of say 1000 users is required. Then the product must 

satisfy this service requirement is the part of service level agreement. Once the performance indicators 

are agreed and service level agreement is completed then the project proceeds to the next important 

step. 

https://www.knowledgehut.com/blog/data-science/data-science-projects-for-begginers-and-experts
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3. Collecting Data 

The basic data collection can be done using the surveys. Generally, the data collected through surveys 

provide important insights. Much of the data is collected from the various processes followed in the 

enterprise. At various steps the data is recorded in various software systems used in the enterprise 

which is important to understand the process followed from the product development to deployment 

and delivery. The historical data available through archives is also important to better understand the 

business. Transactional data also plays a vital role as it is collected on a daily basis. Many statistical 

methods are applied to the data to extract the important information related to business. In data science 

project the major role is played by data and so proper data collection methods are important. 

4. Pre-processing data 

Large data is collected from archives, daily transactions and intermediate records. The data is available 

in various formats and in various forms. Some data may be available in hard copy formats also. The 

data is scattered at various places on various servers. All these data are extracted and converted into 

single format and then processed. Typically, as data warehouse is constructed where the Extract, 

Transform and Loading (ETL) process or operations are carried out. In the data science project this 

ETL operation is vital and important. A data architect role is important in this stage who decides the 

structure of data warehouse and perform the steps of ETL operations. 

5. Analyzing data 

Now that the data is available and ready in the format required then next important step is to 

understand the data in depth. This understanding comes from analysis of data using various statistical 

tools available. A data engineer plays a vital role in analysis of data. This step is also called as 

Exploratory Data Analysis (EDA). Here the data is examined by formulating the various statistical 

functions and dependent and independent variables or features are identified. Careful analysis of data 

revels which data or features are important and what is the spread of data. Various plots are utilized to 

visualize the data for better understanding. The tools like Tableau, PowerBI etc are famous for 

performing Exploratory Data Analysis and Visualization. Knowledge of Data Science with Python and 

R is important for performing EDA on any type of data. 

6. Data Modelling 

Data modelling is the important next step once the data is analysed and visualized. The important 

components are retained in the dataset and thus data is further refined. Now the important is to decide 

how to model the data? What tasks are suitable for modelling? The tasks, like classification or 

regression, which is suitable is dependent upon what business value is required. In these tasks also 

many ways of modelling are available. The Machine Learning engineer applies various algorithms to 

the data and generates the output. While modelling the data many a times the models are first tested on 

dummy data similar to actual data. 

7. Model Evaluation/ Monitoring 

As there are various ways to model the data so it is important to decide which one is effective. For that 

model evaluation and monitoring phase is very crucial and important. The model is now tested with 

actual data. The data may be very few and in that case the output is monitored for improvement. There 

may be changes in data while model is being evaluated or tested and the output will drastically change 

depending on changes in data. So, while evaluating the model following two phases are important: 

 Data Drift Analysis 

Changes in input data is called as data drift. Data drift is common phenomenon in data science as 

depending on the situation there will be changes in data. Analysis of this change is called Data Drift  

Analysis. The accuracy of the model depends on how well it handles this data drift. The changes in 

data are majorly because of change in statistical properties of data. 

https://www.knowledgehut.com/blog/data-science/statistical-analysis-in-data-science
https://www.knowledgehut.com/blog/data-science/statistical-analysis-in-data-science
https://www.knowledgehut.com/data-science/data-science-with-python-certification-training
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 Model Drift Analysis 

To discover the data drift machine learning techniques can be used. Also, more sophisticated methods 

like Adaptive Windowing, Page Hinkley etc. are available for use. Modelling Drift Analysis is 

important as we all know change is constant. Incremental learning also can be used effectively where 

the model is exposed to new data incrementally. 

8. Model Training 

Once the task and the model are finalised and data drift analysis modelling is finalized then the 

important step is to train the model. The training can be done is phases where the important parameters 

can be further fine tuned to get the required accurate output. The model is exposed to the actual data in 

production phase and output is monitored. 

9. Model Deployment 

Once the model is trained with the actual data and parameters are fine tuned then model is deployed. 

Now the model is exposed to real time data flowing into the system and output is generated. The model 

can be deployed as web service or as an embedded application in edge or mobile application. This is 

very important step as now model is exposed to real world. 

10. Driving insights and generating BI reports 

After model deployment in real world, next step is to find out how model is behaving in real world 

scenario. The model is used to get the insights which aid in strategic decisions related to business. The 

business goals are bound to these insights. Various reports are generated to see how business is 

driving. These reports help in finding out if key process indicators are achieved or not. 

11. Taking a decision based on insight 

For data science to make wonders, every step indicated above has to be done very carefully and 

accurately. When the steps are followed properly then the reports generated in above step helps in 

taking key decisions for the organization. The insights generated helps in taking strategic decisions like 

for example the organization can predict that there will be need of raw material in advance. The 

data science can be of great help in taking many important decisions related to business growth and 

better revenue generation. 

Setting Expectations 

Developing expectations is the process of deliberately thinking about what you expect before you do 

anything, such as inspect your data, perform a procedure, or enter a command. For experienced data 

analysts, in some circumstances, developing expectations may be an automatic, almost subconscious 

process, but it’s an important activity to cultivate and be deliberate about.For example, you may be 

going out to dinner with friends at a cash-only establishment and need to stop by the ATM to withdraw 

money before meeting up. To make a decision about the amount of money you’re going to withdraw, 

you have to have developed some expectation of the cost of dinner. This may be an automatic 

expectation because you dine at this establishment regularly so you know what the typical cost of a 

meal is there, which would be an example of a priori knowledge. Another example of a priori 

knowledge would be knowing what a typical meal costs at a restaurant in your city, or knowing what a 

meal at the most expensive restaurants in your city costs. Using that information, you could perhaps 

place an upper and lower bound on how much the meal will cost.You may have also sought out 

external information to develop your expectations, which could include asking your friends who will 

be joining you or who have eaten at the restaurant before and/or Googling the restaurant to find 

general cost information online or a menu with prices. This same process, in which you use any a 
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priori information you have and/or external sources to determine what you expect when you inspect 

your data or execute an analysis procedure, applies to each core activity of the data analysis process. 

Features Of R 

1) Open Source 

An open-source language is a language on which we can work without any need for a license or a fee. 

R is an open-source language. We can contribute to the development of R by optimizing our packages, 

developing new ones, and resolving issues. 

2) Platform Independent 

R is a platform-independent language or cross-platform programming language which means its code 

can run on all operating systems. R enables programmers to develop software for several competing 

platforms by writing a program only once. R can run quite easily on Windows, Linux, and Mac. 

3) Machine Learning Operations 

R allows us to do various machine learning operations such as classification and regression. For this 

purpose, R provides various packages and features for developing the artificial neural network. R is 

used by the best data scientists in the world. 

4) Exemplary support for data wrangling 

R allows us to perform data wrangling. R provides packages such as dplyr, readr which are capable of 

transforming messy data into a structured form. 

5) Quality plotting and graphing 

R simplifies quality plotting and graphing. R libraries such as ggplot2 and plotly advocates for visually 

appealing and aesthetic graphs which set R apart from other programming languages. 

6) The array of packages 

R has a rich set of packages. R has over 10,000 packages in the CRAN repository which are constantly 

growing. R provides packages for data science and machine learning operations. 

7) Statistics 

R is mainly known as the language of statistics. It is the main reason why R is predominant than other 

programming languages for the development of statistical tools. 

8) Continuously Growing 

R is a constantly evolving programming language. Constantly evolving means when something 

evolves, it changes or develops over time, like our taste in music and clothes, which evolve as we get 

older. R is a state of the art which provides updates whenever any new feature is added. 

 
Limitations of R 

1) Data Handling 

In R, objects are stored in physical memory. It is in contrast with other programming languages like 

Python. R utilizes more memory as compared to Python. It requires the entire data in one single place 

which is in the memory. It is not an ideal option when we deal with Big Data. 

2) Basic Security 

R lacks basic security. It is an essential part of most programming languages such as Python. Because 

of this, there are many restrictions with R as it cannot be embedded in a web-application. 

3) Complicated Language 

R is a very complicated language, and it has a steep learning curve. The people who don’t have prior 

knowledge or programming experience may find it difficult to learn R. 

4) Weak Origin 

The main disadvantage of R is, it does not have support for dynamic or 3D graphics. The reason 

behind this is its origin. It shares its origin with a much older programming language “S.” 
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5) Lesser Speed 

R programming language is much slower than other programming languages such as MATLAB and 

Python. In comparison to other programming language, R packages are much slower. 

In R, algorithms are spread across different packages. The programmers who have no prior knowledge 

of packages may find it difficult to implement algorithms. 
 

Basic Data Types 

 

The Numeric Type 

The numeric type is what you get any time you write a number into R. You can test if an object is 

numeric using the is.numeric function or by getting the class object. 

is.numeric(2) 

## [1] TRUE 

class(2) 

## [1] "numeric" 

The Integer Type 

The integer type is used for, well, integers. Surprisingly, the 2 is not an integer in R. It is a numeric 

type which is the larger type that contains all floating-point numbers as well as integers. To get an 

integer you have to make the value explicitly an integer, and you can do that using the function 

as.integer or writing L after the literal. 

is.integer(2) 

## [1] FALSE 

is.integer(2L) 

## [1] TRUE 

x <- as.integer(2) 

is.integer(x) 

## [1] TRUE 

class(x) 

## [1] "integer" 

If you translate a non-integer into an integer, you just get the integer part. 

as.integer(3.2) 

## [1] 3 

as.integer(9.9) 

## [1] 9 

The Complex Type 

If you ever find that you need to work with complex numbers, R has those as well. You construct them 

by adding an imaginary number—a number followed by i—to any number or explicitly using the 

function as. complex. The imaginary number can be zero, 0i, which creates a complex number that 

only has a non-zero real part. 

1 + 0i 

## [1] 1+0i 

is.complex(1 + 0i) 
## [1] TRUE 

class(1 + 0i) 

## [1] "complex" 

sqrt(as.complex(-1)) 

## [1] 0+1i 

The Logical Type 

Logical values are what you get if you explicitly type in TRUE or FALSE, but it is also what you get if 

you make, for example, a comparison. 

x <- 5 > 4 
x 
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## [1] TRUE 

class(x) 

## [1] "logical" 

is.logical(x) 

## [1] TRUE 

The Character Type 

Finally, characters are what you get when you type in a string such as "hello, world". 

x <- "hello, world" 

class(x) 

## [1] "character" 

is.character(x) 

## [1] TRUE 

Unlike in some languages, character doesn’t mean a single character but any text. So it is not like in C 

or Java where you have single character types, 'c', and multi-character strings, "string", they are both 

just characters. You can, similar to the other types, explicitly convert a value into a character (string) 

using as. character: 

as.character(3.14) 

## [1] "3.14" 

Unlike in some languages, character doesn’t mean a single character but any text. So it is not like in C 

or Java where you have single character types, 'c', and multi-character strings, "string", they are both 

just characters. You can, similar to the other types, explicitly convert a value into a character (string) 

using as. character: 

as.character(3.14) 

## [1] "3.14" 

 

Data Structures 

vectors 

vectors, which are sequences of values all of the  same type. 

v <- c(1, 2, 3) 

or through some other operator or function, e.g., the : operator or the rep function 

1:3 

## [1] 1 2 3 

rep("foo", 3) 

## [1] "foo""foo""foo" 

We can test if something is this kind of vector using the is.atomic function: 

v <- 1:3 

is.atomic(v) 

## [1] TRUE 

v <- 1:3 
is.vector(v) 

## [1] TRUE 

It is just that R only consider such a sequence a vector—in the sense that is.vector returns TRUE—if 
the object doesn’t have any attributes (except for one, names, which it is allowed to have). 

Attributes are meta-information associated with an object, and not something we will deal with much 

here, but you just have to know that is.vector will be FALSE if something that is a perfectly good 

vector gets 

an attribute. 

v <- 1:3 

is.vector(v) 

## [1] TRUE 

attr(v, "foo") <- "bar" 

v 
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## [1] 1 2 3 

## attr(,"foo") 
## [1] "bar" 

is.vector(v) 

## [1] FALSE 

So if you want to test if something is the kind of vector I am talking about here, use is.atomic instead. 

When you concatenate (atomic) vectors, you always get another vector back. So when you combine 

several c() calls you don’t get any kind of tree structure if you do something like this: 

c(1, 2, c(3, 4), c(5, 6, 7)) 

## [1] 1 2 3 4 5 6 7 

The type might change, if you try to concatenate vectors of different types, R will try to translate the 

type into the most general type of the vectors. 

c(1, 2, 3, "foo") 

## [1] "1""2""3""foo" 

Matrix 

If you want a matrix instead of a vector, what you really want is just a two-dimensional vector. You 

can set the dimensions of a vector using the dim function—it sets one of those attributes we talked 

about previously where you specify the number of rows and the number of columns you want the 

matrix to have. 

v <- 1:6 

attributes(v) 

## NULL 

dim(v) <- c(2, 3) 

attributes(v) 

## $dim 

## [1] 2 3 

dim(v) 

## [1] 2 3 

v 

## [,1] [,2] [,3] 

## [1,] 1 3 5 

## [2,] 2 4 6 
When you do this, the values in the vector will go in the matrix column-wise, i.e., the values in the 

vector will go down the first column first and then on to the next column and so forth. You can use the 

convenience function matrix to create matrices and there you can specify if you want 

the values to go by column or by row using the byrow parameter. 

v <- 1:6 

matrix(data = v, nrow = 2, ncol = 3, byrow = FALSE) 

## [,1] [,2] [,3] 

## [1,] 1 3 5 

## [2,] 2 4 6 

matrix(data = v, nrow = 2, ncol = 3, byrow = TRUE) 

## [,1] [,2] [,3] 

## [1,] 1 2 3 

## [2,] 4 5 6 

the * operator will not do matrix multiplication. You use * if you want to make element-wise 
multiplication; for matrix multiplication you need the operator %*% instead. 

(A <- matrix(1:4, nrow = 2)) 

## [,1] [,2] 

## [1,] 1 3 

## [2,] 2 4 

(B <- matrix(5:8, nrow = 2)) 
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## [,1] [,2] 

## [1,] 5 7 

## [2,] 6 8 

A * B 

## [,1] [,2] 

## [1,] 5 21 

## [2,] 12 32 

A %*% B 

## [,1] [,2] 

## [1,] 23 31 

## [2,] 34 46 

If you want to transpose a matrix, you use the t function and, if you want to invert it, you use the solve 

function. 

t(A) 

## [,1] [,2] 

## [1,] 1 2 

## [2,] 3 4 

solve(A) 

## [,1] [,2] 

## [1,] -2 1.5 

## [2,] 1 -0.5 

Lists 

Lists, like vectors, are sequences, but unlike vectors, the elements of a list can be any kind of objects, 

and they do not have to be the same type of objects. This means that you can construct more complex 

data structures out of lists. 

For example, we can make a list of two vectors: 

list(1:3, 5:8) 

## [[1]] 

## [1] 1 2 3 

## 

## [[2]] 

## [1] 5 6 7 8 

Notice how the vectors do not get concatenated like they would if we combined them with c(). The 

result of this command is a list of two elements that happens to be both vectors. 

They didn’t have to have the same type either, we could make a list like this, which also consist of two 

vectors but vectors of different types: 

list(1:3, c(TRUE, FALSE)) 

## [[1]] 

## [1] 1 2 3 

## 

## [[2]] 

## [1] TRUE FALSE 

You can flatten a list into a vector using the function unlist(). This will force the elements in the list to 

be converted into the same type, of course, since that is required of vectors. 

unlist(list(1:4, 5:7)) 

## [1] 1 2 3 4 5 6 7 
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Indexing 

v <- 1:4 

v[2] 

## [1] 2 

We can also know that you can get a subsequence out of the vector using a range of indices: 

v[2:3] 

## [1] 2 3 

Here we are indexing with positive numbers, which makes sense since the elements in the vector have 

positive indices, but it is also possible to use negative numbers to index in R. If you do that it is 

interpreted as specifying the complement of the values you want. So if you want all elements except 

the first element, you can use: 

You can also use multiple negative indices to remove some values: 

v[-(1:2)] 

## [1] 3 4 

Another way to index is to use a Boolean vector. This vector should be the same length as the vector 

you index into, and it will pick out the elements where the Boolean vector is true. 

v[v %% 2 == 0] 

## [1] 2 4 

If you want to assign to a vector you just assign to elements you index; as long as the vector to the 

right of the assignment operator has the same length as the elements the indexing pulls out you will be 

assigning to the vector. 

v[v %% 2 == 0] <- 13 

v 

## [1] 1 13 3 13 
If the vector has more than one dimension—remember that matrices and arrays are really just vectors 

with more dimensions—then you subset them by subsetting each dimension. If you leave out a 

dimension, you will get whole range of values in that dimension, which is a simple way to of getting 

rows and columns of a matrix: 

m <- matrix(1:6, nrow = 2, byrow = TRUE) 

m 

## [,1] [,2] [,3] 

## [1,] 1 2 3 

## [2,] 4 5 6 

m[1,] 

## [1] 1 2 3 

m[,1] 

## [1] 1 4 

You can also index out a submatrix this way by providing ranges in one or more dimensions: 

m[1:2,1:2] 

## [,1] [,2] 

## [1,] 1 2 

## [2,] 4 5 

If you want to get to the actual element in there, you need to use the [[]] operator instead. 

L <- list(1,2,3) 

L[[1]] 

## [1] 1 



15  

Named Values 

The elements in a vector or a list can have names. These are attributes that do not affect the values of 

the elements but can be used to refer to them. You can set these names when you create the vector or 

list: 

v <- c(a = 1, b = 2, c = 3, d = 4) 

v 

## a b c d 

## 1 2 3 4 

L <- list(a = 1:5, b = c(TRUE, FALSE)) 

L 

## $a 
## [1] 1 2 3 4 5 

## 

## $b 

## [1] TRUE FALSE 

Or you can set the names using the names<- function. That weird name, by the way, means that you 
are dealing with the names() function combined with assignment: 

names(v) <- LETTERS[1:4] 

v 

## A B C D 
## 1 2 3 4 

You can use names to index vectors and lists (where the [] and [[]] returns either a list or the element 

of the list, as before): 

v["A"] 

## A 

## 1 

L["a"] 

## $a 

## [1] 1 2 3 4 5 

L[["a"]] 

## [1] 1 2 3 4 5 

factors 

In the first step, we create a vector. 

1. Next step is to convert the vector into a factor, 

R provides factor() function to convert the vector into factor. There is the following syntax of factor() 

function 

1. factor_data<- factor(vector) 

data <- 

c("Shubham","Nishka","Arpita","Nishka","Shubham","Sumit","Nishka","Shubham","Sumit"," 

Arpita","Sumit") 

2. print(data) 

3. print(is.factor(data)) 

4. # Applying the factor function. 

5. factor_data<- factor(data) 

6. print(factor_data) 

7. print(is.factor(factor_data)) 

output:[1] "Shubham""Nishka""Arpita""Nishka""Shubham""Sumit""Nishka" 

[8] "Shubham""Sumit""Arpita""Sumit" 

[1] FALSE 

[1] Shubham Nishka Arpita Nishka Shubham Sumit Nishka Shubham Sumit 
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[10] Arpita Sumit 

Levels: Arpita Nishka Shubham Sumit 

[1] TRUE 

Accessing components of factor 

Like vectors, we can access the components of factors. The process of accessing components of factor 

is much more similar to the vectors. We can access the element with the help of the indexing method or 

using logical vectors. Let's see an example in which we understand the different-different ways of 

accessing the components. 

# Creating a vector as input. 

data <- 

c("Shubham","Nishka","Arpita","Nishka","Shubham","Sumit","Nishka","Shubham","Sumit","Arpita", 

"Sumit") 

factor_data<- factor(data) 

print(factor_data) 

print(factor_data[4]) 

print(factor_data[c(5,7)]) 

print(factor_data[-4]) 

print(factor_data[c(TRUE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,TRU 

E)]) 

 

[1] Shubham Nishka Arpita Nishka Shubham Sumit Nishka Shubham Sumit 

[10] Arpita Sumit 

Levels: Arpita Nishka Shubham Sumit 

[1] Nishka 

Levels: Arpita Nishka Shubham Sumit 

[1] Shubham Nishka 

Levels: Arpita Nishka Shubham Sumit 

[1] Shubham Nishka Arpita Shubham Sumit Nishka Shubham Sumit Arpita 

[10] Sumit 

Levels: Arpita Nishka Shubham Sumit 

[1] Shubham Shubham Sumit Nishka Sumit 

Levels: Arpita Nishka Shubham Sumit 

Modification of factor 

Like data frames, R allows us to modify the factor. We can modify the value of a factor by simply re- 

assigning it. In R, we cannot choose values outside of its predefined levels means we cannot insert 

value if it's level is not present on it. For this purpose, we have to create a level of that value, and then 

we can add it to our factor. 

data <- c("Shubham","Nishka","Arpita","Nishka","Shubham") 

factor_data<- factor(data) 

print(factor_data) 

factor_data[4] <-"Arpita" 

print(factor_data) 

factor_data[4] <- "Gunjan" 

print(factor_data) 

levels(factor_data) <- c(levels(factor_data),"Gunjan") 

factor_data[4] <- "Gunjan" 

print(factor_data) 

output: 

[1] Shubham Nishka Arpita Nishka Shubham 

Levels: Arpita Nishka Shubham 

[1] Shubham Nishka Arpita Arpita Shubham 
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Levels: Arpita Nishka Shubham 

Warning message: 

In `[<-.factor`(`*tmp*`, 4, value = "Gunjan") : 

invalid factor level, NA generated 

[1] Shubham Nishka Arpita <NA> Shubham 

Levels: Arpita Nishka Shubham 

[1] Shubham Nishka Arpita Gunjan Shubham 

Levels: Arpita Nishka Shubham Gunjan 

Generating Factor Levels 

R provides gl() function to generate factor levels. This function takes three arguments i.e., n, k, and 

labels. Here, n and k are the integers which indicate how many levels we want and how many times 

each level is required. 

There is the following syntax of gl() function which is as follows 

1. gl(n, k, labels) 

1. n indicates the number of levels. 

2. k indicates the number of replications. 

3. labels is a vector of labels for the resulting factor levels. 

Example 

1. gen_factor<- gl(3,5,labels=c("BCA","MCA","B.Tech")) 

2. gen_factor 

Output 

[1] BCA BCA BCA BCA BCA MCA MCA MCA MCA MCA 

[11] B.Tech B.Tech B.Tech B.Tech B.Tech 

Levels: BCA MCA B.Tech 

height <- c(132,151,162,139,166,147,122) 

weight <- c(48,49,66,53,67,52,40) 

gender <- c("male","male","female","female","male","female","male") 

input_data <- data.frame(height,weight,gender) 

print(input_data) 

print(is.factor(input_data$gender)) 

print(input_data$gender) 

When we execute the above code, it produces the following result − 

height weight gender 

1 132 48 male 
2 151 49 male 

3 162 66 female 

4 139 53 female 

5 166 67 male 

6 147 52 female 

7 122 40 male 

[1] TRUE 

[1] male male female female male female male 

Levels: female male 

Changing the Order of Levels 

The order of the levels in a factor can be changed by applying the factor function again with new order 

of the levels. 

data <- c("East","West","East","North","North","East","West", 

"West","West","East","North") 

factor_data <- factor(data) 

print(factor_data) 
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new_order_data <- factor(factor_data,levels = c("East","West","North")) 

print(new_order_data) 

When we execute the above code, it produces the following result − 

[1] East West East North North East West West West East North 
Levels: East North West 

[1] East West East North North East West West West East North 

Levels: East West North 

 
Subsetting R Objects 

There are three operators that can be used to extract subsets of R objects. 

 The [ operator always returns an object of the same class as the original. It can be used to select 

multiple elements of an object 

 The [[ operator is used to extract elements of a list or a data frame. It can only be used to 

extract a single element and the class of the returned object will not necessarily be a list or data 

frame. 

 The $ operator is used to extract elements of a list or data frame by literal name. Its semantics 

are similar to that of [[. 

Subsetting a Vector 

Vectors are basic objects in R and they can be subsetted using the [ operator. 

 
> x <- c("a", "b", "c", "c", "d", "a") 

> x[1] ## Extract the first element 

[1] "a" 

> x[2] ## Extract the second element 

[1] "b" 

The [ operator can be used to extract multiple elements of a vector by passing the operator an 

integer sequence. Here we extract the first four elements of the vector. 

 

> x[1:4] 

[1] "a""b""c""c" 

The sequence does not have to be in order; you can specify any arbitrary integer vector. 

 
> x[c(1, 3, 4)] 

[1] "a""c""c" 
We can also pass a logical sequence to the [ operator to extract elements of a vector that satisfy a 

given condition. For example, here we want the elements of x that come lexicographically after the 

letter “a”. 

 
> u <- x >"a" 

> u 

[1] FALSE TRUE TRUE TRUE TRUE FALSE 

> x[u] 

[1] "b""c""c""d" 
Another, more compact, way to do this would be to skip the creation of a logical vector and just 

subset the vector directly with the logical expression 
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> x[x >"a"] 

[1] "b""c""c""d" 

Subsetting a Matrix 

 
Matrices can be subsetted in the usual way with (i,j) type indices. Here, we create simple 2×3 

matrix with the matrix function. 

 
> x <- matrix(1:6, 2, 3) 

> x 

[,1] [,2] [,3] 

[1,] 1 3 5 

[2,] 2 4 6 

We can access the (1,2)or the (2,1)element of this matrix using the appropriate indices. 

 
> x[1, 2] 

[1] 3 

> x[2, 1] 

[1] 2 

Indices can also be missing. This behavior is used to access entire rows or columns of a matrix. 

 
> x[1, ] ## Extract the first row 

[1] 1 3 5 

> x[, 2] ## Extract the second column 

[1] 3 4 

 

Subsetting Lists 

Lists in R can be subsetted using all three of the operators mentioned above, and all three are used 

for different purposes. 

 

> x <- list(foo = 1:4, bar = 0.6) 

> x 

$foo 

[1] 1 2 3 4 

 

$bar 

[1] 0.6 

The [[ operator can be used to extract single elements from a list. Here we extract the first element 

of the list. 

 
> x[[1]] 

[1] 1 2 3 4 

The [[ operator can also use named indices so that you don’t have to remember the exact ordering of 

every element of the list. You can also use the $ operator to extract elements by name. 

 
> x[["bar"]] 

[1] 0.6 

> x$bar 

[1] 0.6 

Notice you don’t need the quotes when you use the $ operator. 
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One thing that differentiates the [[ operator from the $ is that the [[ operator can be used with 

computed indices. The $ operator can only be used with literal names. 

 
 

> x <- list(foo = 1:4, bar = 0.6, baz = "hello") 

> name <- "foo" 

> 

> ## computed index for "foo" 

> x[[name]] 

[1] 1 2 3 4 

> 

> ## element "name" doesn’t exist! (but no error here) 

> x$name 

NULL 

> 

> ## element "foo" does exist 

> x$foo 

[1] 1 2 3 4 

 
 

Partial Matching 

Partial matching of names is allowed with [[ and $. This is often very useful during interactive work 

if the object you’re working with has very long element names. You can just abbreviate those names 

and R will figure out what element you’re referring to. 

> x <- list(aardvark = 1:5) 

> x$a 

[1] 1 2 3 4 5 

> x[["a"]] 

NULL 

> x[["a", exact = FALSE]] 

[1] 1 2 3 4 5 

Removing NA Values 

A common task in data analysis is removing missing values (NAs). 

> x <- c(1, 2, NA, 4, NA, 5) 

> bad <- is.na(x) 

> print(bad) 

[1] FALSE FALSE TRUE FALSE TRUE FALSE 

> x[!bad] 

[1] 1 2 4 5 

What if there are multiple R objects and you want to take the subset with no missing values in any 

of those objects? 

> x <- c(1, 2, NA, 4, NA, 5) 

> y <- c("a", "b", NA, "d", NA, "f") 

> good <- complete.cases(x, y) 

> good 

[1] TRUE TRUE FALSE TRUE FALSE TRUE 

> x[good] 

[1] 1 2 4 5 

> y[good] 

[1] "a""b""d""f" 



21  

Control Structures 

 

if condition 

This control structure checks the expression provided in parenthesis is true or not. If true, the 

execution of the statements in braces {} continues. 

 

Syntax: 

if(expression) 

{ 

statements 

.... 

.... 

} 

Example: 

x <-100 

if(x > 10){ 

print(paste(x, "is greater than 10")) 

} 

 

Output: 

[1] "100 is greater than 10" 

if-else condition 

It is similar to if condition but when the test expression in if condition fails, then statements in else 

condition are executed. 

Syntax: 

if(expression) 

{ 

statements 

.... 

.... 

} 

else 

{ 

statements 

.... 

.... 

} 

Example: 

x <-5 

 
# Check value is less than or greater than 10 

if(x > 10){ 

print(paste(x, "is greater than 10")) 

}else{ 

print(paste(x, "is less than 10")) 

} 

 
Output: 

[1] "5 is less than 10" 
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for loop 

It is a type of loop or sequence of statements executed repeatedly until exit condition is reached. 

Syntax: 

for(value in vector) 

{ 

statements 

.... 

.... 

} 

Example: 

x <-letters[4:10] 

 

for(i inx){ 

print(i) 

} 

Output: 

[1] "d" 

[1] "e" 

[1] "f" 

[1] "g" 

[1] "h" 

[1] "i" 

[1] "j" 

Nested loops 

Nested loops are similar to simple loops. Nested means loops inside loop. Moreover, nested loops 

are used to manipulate the matrix. 

for(i in1:3) 

{ 

 

for(j in1:5) 

{ 
 

print(paste("This is iteration i =", i, "and j =", j))# Some output 

} 

} 

# [1] "This is iteration i = 1 and j = 1" 

# [1] "This is iteration i = 1 and j = 2" 

# [1] "This is iteration i = 1 and j = 3" 

# [1] "This is iteration i = 1 and j = 4" 

# [1] "This is iteration i = 1 and j = 5" 

# [1] "This is iteration i = 2 and j = 1" 

# [1] "This is iteration i = 2 and j = 2" 

# [1] "This is iteration i = 2 and j = 3" 

# [1] "This is iteration i = 2 and j = 4" 

# [1] "This is iteration i = 2 and j = 5" 

# [1] "This is iteration i = 3 and j = 1" 

# [1] "This is iteration i = 3 and j = 2" 

# [1] "This is iteration i = 3 and j = 3" 

# [1] "This is iteration i = 3 and j = 4" 

# [1] "This is iteration i = 3 and j = 5" 
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while loop 

while loop is another kind of loop iterated until a condition is satisfied. The testing expression is 

checked first before executing the body of loop. 

Syntax: 

while(expression) 

{ 

statement 

.... 

.... 

} 

Example: 

x =1 

 

# Print 1 to 5 

while(x <=5){ 

print(x) 

x =x +1 

} 

 
Output: 

[1] 1 

[1] 2 

[1] 3 

[1] 4 

[1] 5 

repeat loop and break statement 

repeat is a loop which can be iterated many number of times but there is no exit condition to come 

out from the loop. So, break statement is used to exit from the loop. break statement can be used in 

any type of loop to exit from the loop. 

Syntax: 

repeat { 

statements 

.... 

.... 

if(expression) { 

break 

} 

} 

Example: 

x =1 

 

# Print 1 to 5 

repeat{ 

print(x) 

x =x +1 

if(x > 5){ 

break 

} 

} 
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Output: 

[1] 1 

[1] 2 

[1] 3 

[1] 4 

[1] 5 

next statement 

next statement is used to skip the current iteration without executing the further statements and 

continues the next iteration cycle without terminating the loop. 

 
Example: 

# Defining vector 

x <-1:10 

 

# Print even numbers 

for(i inx){ 

if(i%%2!=0){ 

next#Jumps to next loop 

} 

print(i) 

} 
 

Output: 

[1] 2 

[1] 4 

[1] 6 

[1] 8 

[1] 10 

 

Functions 

 

name <- function(arguments) expression 

Where name can be any variable name, arguments is a list of formal arguments to the function, and 

expression is what the function will do when you call it. It says expression because you might as 

well thinkabout the body of a function as an expression, but typically it is a sequence of statements 

enclosed by curlybrackets: 

name <- function(arguments) { statements } 

It is just that such a sequence of statements is also an expression; the result of executing a series of 

statements is the value of the last statement. 

The following function will print a statement and return 5 because the statements in the function 

bodyare first a print statement and then just the value 5 that will be the return value of the function: 

f <- function() 

{ 

print("hello, world") 

5 

} 

f() 

## [1] "hello, world" 

## [1] 5 
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plus <- function(x, y) { 

print(paste(x, "+", y, "is", x + y)) 

x + y 

} 

div <- function(x, y) { 

print(paste(x, "/", y, "is", x / y)) 

x / y 

} 

plus(2, 2) 

## [1] "2 + 2 is 4" 

## [1] 4 

div(6, 2) 

## [1] "6 / 2 is 3" 

## [1] 3 
 
 

 

The assignment operator <- returns a value and that is passed along to the function as positional 

arguments. So in the second function call above you are assigning 2 to y and 6 to x in the scope out- 

side the function, but the values you pass to the function are positional so inside the function you 

have given 2 to x and 6 to y. 
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Return Value from R Function 

Method 1: R function with return value 

In this scenario, we will use the return statement to return some value 

Syntax: 

 
function_name <- function(parameters) 

{ 

statements 

return(value) 

} 
function_name(values) 

Where, 

 function_name is the name of the function 

 parameters are the values that are passed as arguments 

 return() is used to return a value 

 function_name(values) is used to pass values to the parameters 

addition= function(val1,val2) 

{ 

add=val1+val2 

return(add) 

} 

addition(10,20) 

 
Output: 

[1] 30 

Method 2: R function to return multiple values as a list 

In this scenario, we will use the list() function in the return statement to return multiple values. 

Syntax: 

function_name <- function(parameters) { 

statements 

return(list(value1,value2,.,value n) 

} 

function_name(values) 

where, 
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 function_name is the name of the function 

 parameters are the values that are passed as arguments 

 return() function takes list of values as input 

 function_name(values) is used to pass values to the parameters 

Example: R program to perform arithmetic operations and return those values 

arithmetic = function(val1,val2) 

{ 

add=val1+val2 

sub=val1-val2 

mul=val1*val2 

div=val2/val1 

return(list(add,sub,mul,div)) 

} 

arithmetic(10,20) 

Output: 

[[1]] 

[1] 30 

 

[[2]] 

[1] -10 

 

[[3]] 

[1] 200 

 

[[4]] 

[1] 2 

 

Write R Programming: Create a 5 × 4 matrix, 3 × 3 matrix with labels and fill the matrix by 

rows and 2 × 2 matrix with labels and fill the matrix by columns 

Program: 

m1 = matrix(1:20, nrow=5, ncol=4) 

print("5 × 4 matrix:") 

print(m1) 

cells = c(1,3,5,7,8,9,11,12,14) 

rnames = c("Row1", "Row2", "Row3") 

cnames = c("Col1", "Col2", "Col3") 

m2 = matrix(cells, nrow=3, ncol=3, byrow=TRUE, dimnames=list(rnames, cnames)) 

print("3 × 3 matrix with labels, filled by rows: ") 

print(m2) 

print("3 × 3 matrix with labels, filled by columns: ") 

m3 = matrix(cells, nrow=3, ncol=3, byrow=FALSE, dimnames=list(rnames, cnames)) 

print(m3) 
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Write a R program to create a Dataframes which contain details of 5 employees and display 

the details. 

 

Employees = data.frame(Name=c("Anastasia S","Dima R","Katherine S", "JAMES A","LAURA 
MARTIN"), 

Gender=c("M","M","F","F","M"), 

Age=c(23,22,25,26,32), 

Designation=c("Clerk","Manager","Exective","CEO","ASSISTANT"), 

SSN=c("123-34-2346","123-44-779","556-24-433","123-98-987","679-77-576") 

) 

print("Details of the employees:") 

print(Employees) 

 

Write a R program to create the system's idea of the current date with and without time. 

 

print("System's idea of the current date with and without time:") 

print(Sys.Date()) 

print(Sys.time()) 
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UNIT–II 

Loading, Exploring and Managing Data 

Working with data from files: Reading and Writing Data, Reading Data Files with read.table (), 

Reading in Larger Datasets with read.table.Working with relational databases. Data manipulation 

packages: dplyr, data.table, reshape2, tidyr, lubridate. 

 

Reading and Writing Data 

One of the important formats to store a file is in a text file. R provides various methods that one can 

read data from a text file. 

 read.delim(): This method is used for reading “tab-separated value” files (“.txt”). By default, 

point (“.”) is used as decimal points. 

 syntax: read.delim(file, header = TRUE, sep = “\t”, dec = “.”, …) 

 myData = read.delim("1.txt", header = FALSE) 

 print(myData) 

Output: 

1 A computer science portal. 

 read.delim2(): This method is used for reading “tab-separated value” files (“.txt”). By 

default, point (“,”) is used as decimal points. 

 Syntax: read.delim2(file, header = TRUE, sep = “\t”, dec = “,”, …) 

myData = read.delim2("1.txt", header = FALSE) 

print(myData) 

file.choose(): In R it’s also possible to choose a file interactively using the function file.choose. 

 
myFile = read.delim(file.choose(), header = FALSE) 

print(myFile) 

Output: 

1 A computer science portal. 

 read_tsv(): This method is also used for to read a tab separated (“\t”) values by using the 

help of readr package. 

Syntax: read_tsv(file, col_names = TRUE) 

library(readr) 

myData = read_tsv("1.txt", col_names = FALSE) 
print(myData) 

Output: 

# A tibble: 1 x 1 
X1 

1 A computer science portal . 

Reading one line at a time 

read_lines(): This method is used for the reading line of your own choice whether it’s one or two or 

ten lines at a time. To use this method we have to import reader package. 

Syntax: read_lines(file, skip = 0, n_max = -1L) 

library(readr) 

myData = read_lines("1.txt", n_max = 1) 

print(myData) 

myData = read_lines("1.txt", n_max = 2) 

print(myData) 

Output: 
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[1] "c." 

[1] "c++" 

[2] "java" 

Reading the whole file 

read_file(): This method is used for reading the whole file. To use this method we have to import 

reader package. 

Syntax: read_lines(file) 

file: the file path 

 
program: 

library(readr) 

myData = read_file("1.txt") 

print(myData) 

Output: 

[1] “cc++java” 

Reading a file in a table format 

Another popular format to store a file is in a tabular format. R provides various methods that one 

can read data from a tabular formatted data file. 

read.table(): read.table() is a general function that can be used to read a file in table format. The 

data will be imported as a data frame. 

Syntax: read.table(file, header = FALSE, sep = “”, dec = “.”) 
myData = read.table("basic.csv") 

print(myData) 

Output: 

1 Name,Age,Qualification,Address 

2 Amiya,18,MCA,BBS 

3 Niru,23,Msc,BLS 

4 Debi,23,BCA,SBP 

5 Biku,56,ISC,JJP 

read.csv(): read.csv() is used for reading “comma separated value” files (“.csv”). In this also the 

data will be imported as a data frame. 

Syntax: read.csv(file, header = TRUE, sep = “,”, dec = “.”, …) 

myData = read.csv("basic.csv") 

print(myData) 

Output: 

Name Age Qualification Address 

1 Amiya 18 MCA BBS 

2 Niru 23 Msc BLS 

3 Debi 23 BCA SBP 

4 Biku 56 ISC JJP 
read.csv2(): read.csv() is used for variant used in countries that use a comma “,” as decimal point 

and a semicolon “;” as field separators. 

Syntax: read.csv2(file, header = TRUE, sep = “;”, dec = “,”, …) 

myData = read.csv2("basic.csv") 

print(myData) 

Output: 

Name.Age.Qualification.Address 

1 Amiya,18,MCA,BBS 

2 Niru,23,Msc,BLS 
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3 Debi,23,BCA,SBP 

4 Biku,56,ISC,JJP 

file.choose(): You can also use file.choose() with read.csv() just like before. 

 
myData = read.csv(file.choose()) 

print(myData) 

Output: 

Name Age Qualification Address 

1 Amiya 18 MCA BBS 

2 Niru 23 Msc BLS 

3 Debi 23 BCA SBP 

4 Biku 56 ISC JJP 
read_csv(): This method is also used for to read a comma (“,”) separated values by using the help 

of readr package. 

Syntax: read_csv(file, col_names = TRUE) 
 

library(readr) 

myData = read_csv("basic.csv", col_names = TRUE) 

print(myData) 

Output: 

Parsed with column specification: 
cols( 

Name = col_character(), 

Age = col_double(), 

Qualification = col_character(), 

Address = col_character() 

) 

# A tibble: 4 x 4 

Name Age Qualification Address 

1 Amiya  18 MCA BBS 

2 Niru 23 Msc BLS 

3 Debi 23 BCA SBP 

4 Biku 56 ISC JJP 

Reading a file from the internet 

It’s possible to use the functions read.delim(), read.csv() and read.table() to import files from the 

web. 

 
myData = read.delim("http://www.sthda.com/upload/boxplot_format.txt") 

print(head(myData)) 

Output: 

Nom variable Group 

1 IND1 10 A 

2 IND2 7 A 

3 IND3 20 A 

4 IND4 14 A 

5 IND5 14 A 

6 IND6 12 A 

http://www.sthda.com/upload/boxplot_format.txt
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Reading a CSV File 

Following is a simple example of read.csv() function to read a CSV file available in your current 

working directory − 

data <- read.csv("input.csv") 

print(data) 

When we execute the above code, it produces the following result − 

id, name, salary, start_date, dept 

1 1 Rick 623.30 2012-01-01 IT 
2 2 Dan 515.20 2013-09-23 Operations 

3 3 Michelle 611.00 2014-11-15 IT 

4 4 Ryan 729.00 2014-05-11 HR 

5 NA Gary 843.25 2015-03-27 Finance 

6 6 Nina 578.00 2013-05-21 IT 

7 7 Simon 632.80 2013-07-30 Operations 
8 8 Guru 722.50 2014-06-17 Finance 

Analyzing the CSV File 

By default the read.csv() function gives the output as a data frame. This can be easily checked as 

follows. Also we can check the number of columns and rows. 

data <- read.csv("input.csv") 

print(is.data.frame(data)) 

print(ncol(data)) 

print(nrow(data)) 

When we execute the above code, it produces the following result − 

[1] TRUE 

[1] 5 

[1] 8 
Once we read data in a data frame, we can apply all the functions applicable to data frames as 

explained in subsequent section. 

Get the maximum salary 

# Create a data frame. 

data <- read.csv("input.csv") 

# Get the max salary from data frame. 

sal <- max(data$salary) 

print(sal) 
When we execute the above code, it produces the following result − 

[1] 843.25 

Get the details of the person with max salary 
We can fetch rows meeting specific filter criteria similar to a SQL where clause. 

# Create a data frame. 

data <- read.csv("input.csv") 
# Get the max salary from data frame. 
sal <- max(data$salary) 

# Get the person detail having max salary. 

retval <- subset(data, salary == max(salary)) 

print(retval) 

When we execute the above code, it produces the following result − 

id name salary start_date dept 

5 NA Gary 843.25 2015-03-27 Finance 
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Get all the people working in IT department 

# Create a data frame. 

data <- read.csv("input.csv") 

retval <- subset( data, dept == "IT") 

print(retval) 

When we execute the above code, it produces the following result − 

id name salary start_date dept 

1 1 Rick 623.3 2012-01-01   IT 
3 3 Michelle 611.0 2014-11-15 IT 
6 6 Nina 578.0 2013-05-21 IT 

Get the persons in IT department whose salary is greater than 600 

data <- read.csv("input.csv") 

info <- subset(data, salary > 600 & dept == "IT") 

print(info) 

When we execute the above code, it produces the following result − 

id name salary start_date dept 

1 1 Rick 623.3 2012-01-01   IT 
3 3 Michelle 611.0 2014-11-15 IT 

Get the people who joined on or after 2014 

data <- read.csv("input.csv") 

retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01")) 
print(retval) 

When we execute the above code, it produces the following result − 

id name salary start_date dept 

3 3 Michelle 611.00 2014-11-15 IT 
4 4 Ryan 729.00 2014-05-11 HR 

5 NA Gary 843.25   2015-03-27 Finance 

8 8 Guru 722.50 2014-06-17 Finance 

Writing into a CSV File 

R can create csv file form existing data frame. The write.csv() function is used to create the csv file. 

This file gets created in the working directory. 

data <- read.csv("input.csv") 

retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01")) 

write.csv(retval,"output.csv") 

newdata <- read.csv("output.csv") 

print(newdata) 

When we execute the above code, it produces the following result − 

X id name salary start_date dept 

1 3 3 Michelle 611.00 2014-11-15 IT 
2 4 4 Ryan 729.00 2014-05-11 HR 

3 5 NA Gary 843.25   2015-03-27 Finance 

4 8 8 Guru 722.50 2014-06-17 Finance 

Install xlsx Package 

You can use the following command in the R console to install the "xlsx" package. It may ask to 

install some additional packages on which this package is dependent. Follow the same command 

with required package name to install the additional packages. 

install.packages("xlsx") 
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Verify and Load the "xlsx" Package 

Use the following command to verify and load the "xlsx" package. 

any(grepl("xlsx",installed.packages())) 

library("xlsx") 
When the script is run we get the following output. 

[1] TRUE 

Loading required package: rJava 

Loading required package: methods 

Loading required package: xlsxjars 

Input as xlsx File 

Open Microsoft excel. Copy and paste the following data in the work sheet named as sheet1. 

id name salary start_date dept  

1 Rick 623.3 1/1/2012 IT 

2 Dan 515.2 9/23/2013 Operations 

3 Michelle 611 11/15/2014 IT 

4 Ryan 729 5/11/2014 HR 

5 Gary 43.25 3/27/2015 Finance 

6 Nina 578 5/21/2013 IT 

7 Simon  632.8  7/30/2013  Operations 

8 Guru 722.5 6/17/2014 Finance 

Also copy and paste the following data to another worksheet and rename this worksheet to "city". 

name city 

Rick Seattle 
Dan Tampa 

Michelle Chicago 

Ryan  Seattle 

Gary Houston 

Nina Boston 

Simon Mumbai 

Guru Dallas 
Save the Excel file as "input.xlsx". You should save it in the current working directory of the R 

workspace. 

Reading the Excel File 

The input.xlsx is read by using the read.xlsx() function as shown below. The result is stored as a 

data frame in the R environment. 

data <- read.xlsx("input.xlsx", sheetIndex = 1) 

print(data) 

When we execute the above code, it produces the following result − 

id, name, salary, start_date, dept 

1 1 Rick 623.30 2012-01-01 IT 
2 2 Dan 515.20 2013-09-23 Operations 

3 3 Michelle 611.00 2014-11-15 IT 

4 4 Ryan 729.00 2014-05-11 HR 

5 NA Gary 843.25 2015-03-27 Finance 

6 6 Nina 578.00 2013-05-21 IT 

7 7 Simon 632.80 2013-07-30 Operations 

8 8 Guru 722.50 2014-06-17 Finance 
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XML is a file format which shares both the file format and the data on the World Wide Web, 

intranets, and elsewhere using standard ASCII text. It stands for Extensible Markup Language 

(XML). Similar to HTML it contains markup tags. But unlike HTML where the markup tag 

describes structure of the page, in xml the markup tags describe the meaning of the data contained 

into the file. 

install.packages("XML") 

Input Data 

Create a XMl file by copying the below data into a text editor like notepad. Save the file with a .xml 

extension and choosing the file type as all files(*.*). 

<RECORDS> 

<EMPLOYEE> 

<ID>1</ID> 

<NAME>Rick</NAME> 

<SALARY>623.3</SALARY> 

<STARTDATE>1/1/2012</STARTDATE> 

<DEPT>IT</DEPT> 

</EMPLOYEE> 

 

<EMPLOYEE> 

<ID>2</ID> 

<NAME>Dan</NAME> 

<SALARY>515.2</SALARY> 

<STARTDATE>9/23/2013</STARTDATE> 

<DEPT>Operations</DEPT> 

</EMPLOYEE> 

 

<EMPLOYEE> 

<ID>3</ID> 

<NAME>Michelle</NAME> 

<SALARY>611</SALARY> 

<STARTDATE>11/15/2014</STARTDATE> 

<DEPT>IT</DEPT> 

</EMPLOYEE> 

 

<EMPLOYEE> 

<ID>4</ID> 

<NAME>Ryan</NAME> 

<SALARY>729</SALARY> 

<STARTDATE>5/11/2014</STARTDATE> 

<DEPT>HR</DEPT> 

</EMPLOYEE> 

 

<EMPLOYEE> 

<ID>5</ID> 

<NAME>Gary</NAME> 

<SALARY>843.25</SALARY> 

<STARTDATE>3/27/2015</STARTDATE> 

<DEPT>Finance</DEPT> 

</EMPLOYEE> 
 

<EMPLOYEE> 
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<ID>6</ID> 

<NAME>Nina</NAME> 

<SALARY>578</SALARY> 

<STARTDATE>5/21/2013</STARTDATE> 

<DEPT>IT</DEPT> 

</EMPLOYEE> 

 

<EMPLOYEE> 

<ID>7</ID> 

<NAME>Simon</NAME> 

<SALARY>632.8</SALARY> 

<STARTDATE>7/30/2013</STARTDATE> 

<DEPT>Operations</DEPT> 

</EMPLOYEE> 

 

<EMPLOYEE> 

<ID>8</ID> 

<NAME>Guru</NAME> 

<SALARY>722.5</SALARY> 

<STARTDATE>6/17/2014</STARTDATE> 

<DEPT>Finance</DEPT> 

</EMPLOYEE> 

 

</RECORDS> 

Reading XML File 

The xml file is read by R using the function xmlParse(). It is stored as a list in R. 

library("XML") 

library("methods") 
result <- xmlParse(file = "input.xml") 

print(result) 

When we execute the above code, it produces the following result − 

1 

Rick 
623.3 

1/1/2012 

IT 

 

2 

Dan 

515.2 

9/23/2013 

Operations 

 

3 

Michelle 

611 

11/15/2014 

IT 

 

4 

Ryan 

729 
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5/11/2014 

HR 

 

5 

Gary 

843.25 

3/27/2015 

Finance 

 

6 

Nina 

578 

5/21/2013 

IT 

 

7 

Simon 

632.8 

7/30/2013 

Operations 

 

8 

Guru 

722.5 

6/17/2014 

Finance 

Get Number of Nodes Present in XML File 

# Load the packages required to read XML files. 
library("XML") 

library("methods") 

# Give the input file name to the function. 

result <- xmlParse(file = "input.xml") 

# Exract the root node form the xml file. 

rootnode <- xmlRoot(result) 

# Find number of nodes in the root. 

rootsize <- xmlSize(rootnode) 

# Print the result. 

print(rootsize) 

When we execute the above code, it produces the following result − 

output 

[1] 8 

Details of the First Node 

Let's look at the first record of the parsed file. It will give us an idea of the various elements present 

in the top level node. 

# Load the packages required to read XML files. 

library("XML") 

library("methods") 

# Give the input file name to the function. 

result <- xmlParse(file = "input.xml") 

# Exract the root node form the xml file. 

rootnode <- xmlRoot(result) 

# Print the result. 
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print(rootnode[1]) 

When we execute the above code, it produces the following result − 

$EMPLOYEE 

1 

Rick 
623.3 

1/1/2012 

IT 

attr(,"class") 

[1] "XMLInternalNodeList" "XMLNodeList" 

Get Different Elements of a Node 

# Load the packages required to read XML files. 

library("XML") 

library("methods") 
# Give the input file name to the function. 

result <- xmlParse(file = "input.xml") 

# Exract the root node form the xml file. 

rootnode <- xmlRoot(result) 

# Get the first element of the first node. 

print(rootnode[[1]][[1]]) 

# Get the fifth element of the first node. 

print(rootnode[[1]][[5]]) 

# Get the second element of the third node. 

print(rootnode[[3]][[2]]) 

When we execute the above code, it produces the following result − 

1 

IT 
Michelle 
JSON file stores data as text in human-readable format. Json stands for JavaScript Object Notation. 

R can read JSON files using the rjson package. 

Install rjson Package 

In the R console, you can issue the following command to install the rjson package. 

install.packages("rjson") 

Input Data 
Create a JSON file by copying the below data into a text editor like notepad. Save the file with 

a .json extension and choosing the file type as all files(*.*). 

{ 

"ID":["1","2","3","4","5","6","7","8" ], 

"Name":["Rick","Dan","Michelle","Ryan","Gary","Nina","Simon","Guru" ], 

"Salary":["623.3","515.2","611","729","843.25","578","632.8","722.5" ], 

"StartDate":[ "1/1/2012","9/23/2013","11/15/2014","5/11/2014","3/27/2015","5/21/2013", 

"7/30/2013","6/17/2014"], 

"Dept":[ "IT","Operations","IT","HR","Finance","IT","Operations","Finance"] 

} 

Read the JSON File 

The JSON file is read by R using the function from JSON(). It is stored as a list in R. 

# Load the package required to read JSON files. 

library("rjson") 
# Give the input file name to the function. 

result <- fromJSON(file = "input.json") 

# Print the result. 
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print(result) 

When we execute the above code, it produces the following result − 

$ID 

[1] "1" "2" "3" "4" "5" "6"   "7" "8" 

$Name 

[1] "Rick" "Dan" "Michelle" "Ryan" "Gary" "Nina" "Simon" "Guru" 

$Salary 

[1] "623.3" "515.2" "611" "729" "843.25" "578" "632.8" "722.5" 

$StartDate 

[1] "1/1/2012" "9/23/2013" "11/15/2014" "5/11/2014" "3/27/2015" "5/21/2013" 

"7/30/2013" "6/17/2014" 

$Dept 

[1] "IT" "Operations" "IT" "HR" "Finance" "IT" 

"Operations" "Finance" 

Convert JSON to a Data Frame 

We can convert the extracted data above to a R data frame for further analysis using the 

as.data.frame() function. 

# Load the package required to read JSON files. 
library("rjson") 

# Give the input file name to the function. 

result <- fromJSON(file = "input.json") 

# Convert JSON file to a data frame. 

json_data_frame <- as.data.frame(result) 

print(json_data_frame) 

When we execute the above code, it produces the following result − 

id, name, salary, start_date, dept 

1 1 Rick 623.30 2012-01-01 IT 
2 2 Dan 515.20 2013-09-23 Operations 

3 3 Michelle 611.00 2014-11-15 IT 

4 4 Ryan 729.00 2014-05-11 HR 

5 NA Gary 843.25 2015-03-27 Finance 

6 6 Nina 578.00 2013-05-21 IT 

7 7 Simon 632.80 2013-07-30 Operations 

8 8 Guru 722.50 2014-06-17 Finance 

Reading in Larger Datasets with read.table 

R is known to have difficulties handling large data files. Here we will explore some tips that make 

working with such files in R less painfull. 

 If you can comfortably work with the entire file in memory, but reading the file is rather 

slow, consider using the data.table package and read the file with its fread function. 

 If your file does not comfortably fit in memory: 

 Use sqldf if you have to stick to csv files. 

 Use a SQLite database and query it using either SQL queries or dplyr. 

 Convert your csv file to a sqlite database in order to query 

Loading a large dataset: use fread() or functions from readr instead of read.xxx(). 

library("data.table") 

library("readr") 

Tto read an entire csv in memory, by default, R users use the read.table method or variations thereof 

(such as read.csv). However, fread from the data.table package is a lot faster. Furthermore, the readr 

package also provides more optimized reading functions (read_csv, read_delim,…). Let’s measure 

the time to read in the data using these three different methods. 

https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#loadentire
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#loadentire
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#loadentire
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#sqldftit
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#sqldftit
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#sqlitestrat
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#dplyrstrat
https://inbo.github.io/tutorials/tutorials/r_large_data_files_handling/#convertsqlite
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read.table.timing <- system.time(read.table(csv.name, header = TRUE, sep = ",")) 

readr.timing <- system.time(read_delim(csv.name, ",", col_names = TRUE)) 

data.table.timing <- system.time(allData <- fread(csv.name, showProgress = FALSE)) 

data <- data.frame(method = c('read.table', 'readr', 'fread'), 

timing = c(read.table.timing[3], readr.timing[3], data.table.timing[3])) 

## 1 read.table 183.732 

## 2 readr 3.625 

## 3 fread 12.564 

Data files that don’t fit in memory 

If you are not able to read in the data file, because it does not fit in memory (or because R becomes 

too slow when you load the entire dataset), you will need to limit the amount of data that will 

actually be stored in memory. There are a couple of options which we will investigate: 

1. limit the number of lines you are trying to read for some exploratory analysis. Once you are 

happy with the analysis you want to run on the entire dataset, move to another machine. 

2. limit the number of columns you are reading to reduce the memory required to store the data. 

3. limit both the number of rows and the number of columns using sqldf. 

4. stream the data. 

1. Limit the number of lines you read (fread) 

Limiting the number of lines you read is easy. Just use the nrows and/or skip option (available to 

both read.table and fread). skip can be used to skip a number of rows, but you can also pass a string 

to this parameter causing fread to only start reading lines from the first line matching that string. 

Let’s say we only want to start reading lines after we find a line matching the pattern 2015-06-12 

15:14:39. We can do that like this: 

sprintf("Number of lines in full data set: %s", nrow(allData)) 

## [1] "Number of lines in full data set: 3761058" 

subSet <- fread(csv.name, skip = "2015-06-12 15:14:39", showProgress = FALSE) 
sprintf("Number of lines in data set with skipped lines: %s", nrow(subSet)) 

## [1] "Number of lines in data set with skipped lines: 9998" 

Skipping rows this way is obviously not giving you the entire dataset, so this strategy is only useful 

for doing exploratory analysis on a subset of your data. Note that also read_delim provides a n_max 

argument to limit the number of lines to read. If you want to explore the whole dataset, limiting the 

number of columns you read can be a more useful strategy. 

2. Limit the number of columns you read (fread) 

If you only need 4 columns of the 21 columns present in the file, you can tell fread to only select 

those 4. This can have a major impact on the memory footprint of your data. The option you need 

for this is: select. With this, you can specify a number of columns to keep. The opposite - specifying 

the columns you want to drop - can be accomplished with the drop option. 

fourColumns = fread(csv.name, select = c("device_info_serial", "date_time", "latitude", 

"longitude"), showProgress = FALSE) 

sprintf("Size of total data in memory: %s MB", utils::object.size(allData)/1000000) 
## [1] "Size of total data in memory: 1173.480728 MB" 

sprintf("Size of only four columns in memory: %s MB", utils::object.size(fourColumns)/1000000) 

## [1] "Size of only four columns in memory: 105.311936 MB" 

The difference might not be as large as you would expect. R objects claim more memory than 

needed to store the data alone, as they keep pointers, and other object attributes. But still, the 

difference could save you. 

3. Limiting both the number of rows and the number of columns using sqldf 

The sqldf package allows you to run SQL-like queries on a file, resulting in only a selection of the 

file being read. It allows you to limit both the number of lines and the number of rows at the same 

https://cran.r-project.org/web/packages/sqldf/sqldf.pdf
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time. In the background, this actually creates a sqlite database on the fly to execute the query. 

Consider using the package when starting from a csv file, but the actual strategy boils down to 

making a sqlite database file of your data. 

4. Streaming data 

Streaming a file means reading it line by line and only keeping the lines you need or do stuff with 

the lines while you read through the file. It turns out that R is really not very efficient in streaming 

files. The main reason is the memory allocation process that has difficulties with a constantly 

growing object (which can be a dataframe containing only the selected lines). 

Working with relational databases 

In many production environments, the data you want lives in a relational or SQL database, not in 

files. Public data is often in files (as they are easier to share), but your most important client data is 

often in databases. Relational databases scale easily to the millions of records and supply important 

production features such as parallelism, consistency, transactions, logging, and audits. When you’re  

working with transaction data, you’re likely to find it already stored in a relational database, as 

relational data- bases excel at online transaction processing ( OLTP ). Often you can export the 

data into a structured file and use the methods of our previous sections to then transfer the data into 

R. But this is generally not the right way to do things. Exporting from databases to files is often 

unreliable and idiosyn- cratic due to variations in database tools and the typically poor job these 

tools do when quoting and escaping characters that are confused with field separators. Data in a 

database is often stored in what is called a normalized form, which requires relational 

preparations called joins before the data is ready for analysis. Also, you often don’t want a dump of 

the entire database, but instead wish to freely specify which columns and aggregations you need 

during analysis. 

Loading data with SQL Screwdriver 

java -classpath SQLScrewdriver.jar:h2-1.3.170.jar \ com.winvector.db.LoadFiles \ file:dbDef.xml \ 

, \ hus \ file:csv_hus/ss11husa.csv file:csv_hus/ss11husb.csv java -classpath SQLScrewdriver.jar:h2- 

1.3.170.jar \ com.winvector.db.LoadFiles \ file:dbDef.xml , pus \ file:csv_pus/ss11pusa.csv 

file:csv_pus/ss11pusb.csv 

Loading data from a database into R 

To load data from a database, we use a database connector. Then we can directly issueSQL queries 

from R. SQL is the most common database query language and allows usto specify arbitrary joins 

and aggregations. SQL is called a declarative language (asopposed to a procedural language) 

because in SQL we specify what relations we wouldlike our data sample to have, not how to 

compute them. For our example, we load asample of the household data from the hus table and the 

rows from the person table( pus ) that are associated with those households. 

options( java.parameters = "-Xmx2g" ) 

drv <- JDBC("org.h2.Driver","h2-1.3.170.jar",identifier.quote="'") 

options<-";LOG=0;CACHE_SIZE=65536;LOCK_MODE=0;UNDO_LOG=0" 

conn <- dbConnect(drv,paste("jdbc:h2:H2DB",options,sep=''),"u","u") 

dhus <- dbGetQuery(conn,"SELECT * FROM hus WHERE ORIGRANDGROUP<=1") 

dpus <- dbGetQuery(conn,"SELECT pus.* FROM pus WHERE pus.SERIALNO IN \ 

(SELECT DISTINCT hus.SERIALNO FROM hus \ 

WHERE hus.ORIGRANDGROUP<=1)") 

dbDisconnect(conn) 

save(dhus,dpus,file='phsample.RData') 
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And we’re in business; the data has been unpacked from the Census-supplied .csv filesinto our 

database and a useful sample has been loaded into R for analysis. We haveactually accomplished a 

lot. Generating, as we have, a uniform sample of householdsand matching people would be tedious 

using shell tools. It’s exactly what SQL data-bases are designed to do well. 

 
Data manipulation packages 

Data Manipulation is a loosely used term with ‘Data Exploration’. It involves ‘manipulating’ data 

using available set of variables. This is done to enhance accuracy and precision associated with data. 

1.dplyr Package 

This packages is created and maintained by Hadley Wickham. This package has everything (almost) 

to accelerate your data manipulation efforts. It is known best for data exploration and 

transformation. It’s chaining syntax makes it highly adaptive to use. It includes 5 major data 

manipulation commands: 

1. filter – It filters the data based on a condition 

2. select – It is used to select columns of interest from a data set 

3. arrange – It is used to arrange data set values on ascending or descending order 

4. mutate – It is used to create new variables from existing variables 

5. summarise (with group_by) – It is used to perform analysis by commonly used operations 

such as min, max, mean count etc 

Simple focus on these commands and do great in data exploration. Let’s understand these 

commands one by one. I have used 2 pre-installed R data sets namely mtcars and iris. 

> library(dplyr) 

> data("mtcars") 

> data('iris') 

> mydata <- mtcars 

#read data 

> head(mydata) 

 
#creating a local dataframe. Local data frame are easier to read 

 

> mynewdata <- tbl_df(mydata) 

> myirisdata <- tbl_df(iris) 

 

#now data will be in tabular structure 

> mynewdata 

https://en.wikipedia.org/wiki/Hadley_Wickham#_blank
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> myirisdata 
 

#use filter to filter data with required condition 
> filter(mynewdata, cyl > 4 & gear > 4 ) 

 

 

> filter(mynewdata, cyl > 4) 
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> filter(myirisdata, Species %in% c('setosa', 'virginica')) 
 

#use select to pick columns by name 
> select(mynewdata, cyl,mpg,hp) 

 

 

#here you can use (-) to hide columns 

> select(mynewdata, -cyl, -mpg ) 
 

#hide a range of columns 
> select(mynewdata, -c(cyl,mpg)) 
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#select series of columns 

 

> select(mynewdata, cyl:gear) 
 

#chaining or pipelining - a way to perform multiple operations 

#in one line 
> mynewdata %>% 

select(cyl, wt, gear)%>% 

filter(wt > 2) 
 

 

#arrange can be used to reorder rows 

> mynewdata%>% 

select(cyl, wt, gear)%>% 

arrange(wt) 
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> mynewdata %>% 

select(mpg, cyl)%>% 

mutate(newvariable = mpg*cyl) 
 

#or 
> newvariable <- mynewdata %>% mutate(newvariable = mpg*cyl) 

#summarise - this is used to find insights from data 

> myirisdata%>% 

group_by(Species)%>% 

summarise(Average = mean(Sepal.Length, na.rm = TRUE)) 

 
#or use summarise each 
> myirisdata%>% 

group_by(Species)%>% 

summarise_each(funs(mean, n()), Sepal.Length, Sepal.Width) 
 

 

#You can create complex chain commands using these 5 verbs. 

#you can rename the variables using rename command 

> mynewdata %>% rename(miles = mpg) 
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2. data.table Package 
This package allows you to perform faster manipulation in a data set. Leave your traditional ways 

of sub setting rows and columns and use this package. With minimum coding, you can do much 

more. Using data.table helps in reducing computing time as compared to data.frame. You’ll be 

astonished by the simplicity of this package. 

A data table has 3 parts namely DT[i,j,by]. You can understand this as, we can tell R to subset the 

rows using ‘i’, to calculate ‘j’ which is grouped by ‘by’. Most of the times, ‘by’ relates to 

categorical variable. In the code below, I’ve used 2 data sets (airquality and iris). 

#load data 

> data("airquality") 

> mydata <- airquality 

> head(airquality,6) 
 

> data(iris) 
> myiris <- iris 

#load package 

> library(data.table) 

> mydata <- data.table(mydata) 

> mydata 
 

 

> mydata[2:4,] 
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#select columns with particular values 

> myiris[Species == 'setosa'] 
 

#select columns with multiple values. This will give you columns with Setosa 
#and virginica species 

> myiris[Species %in% c('setosa', 'virginica')] 

 

#select columns. Returns a vector 

> mydata[,Temp] 
 

 

 

 

 

 

 

 

> mydata[,.(Temp,Month)] 
 

 

#returns sum of selected column 

> mydata[,sum(Ozone, na.rm = TRUE)] 

 

[1]4887 

#returns sum and standard deviation 

> mydata[,.(sum(Ozone, na.rm = TRUE), sd(Ozone, na.rm = TRUE))] 
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#print and plot 

> myiris[,{print(Sepal.Length) 

> plot(Sepal.Width) 

NULL}] 
 

 

 
 

 

 

 

 

 

 

 

#grouping by a variable 

> myiris[,.(sepalsum = sum(Sepal.Length)), by=Species] 
 

#select a column for computation, hence need to set the key on column 
> setkey(myiris, Species) 

 

#selects all the rows associated with this data point 

> myiris['setosa'] 

> myiris[c('setosa', 'virginica')] 

3. reshape2 Package 

As the name suggests, this package is useful in reshaping data. We all know the data come in many 

forms. Hence, we are required to tame it according to our need. Usually, the process of reshaping 

data in R is tedious and worrisome. R base functions consist of ‘Aggregation’ option using which 

data can be reduced and rearranged into smaller forms, but with reduction in amount of information. 

Aggregation includes tapply, by and aggregate base functions. The reshape package overcome these 

problems. Here we try to combine features which have unique values. It has 2 functions namely 

melt and cast. 

melt : This function converts data from wide format to long format. It’s a form of restructuring 

where multiple categorical columns are ‘melted’ into unique rows. Let’s understand it using the 

code below. 

#create a data 

> ID <- c(1,2,3,4,5) 

> Names <- c('Joseph','Matrin','Joseph','James','Matrin') 

> DateofBirth <- c(1993,1992,1993,1994,1992) 

> Subject<- c('Maths','Biology','Science','Psycology','Physics') 

> thisdata <- data.frame(ID, Names, DateofBirth, Subject) 

> data.table(thisdata) 
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#load package 

> install.packages('reshape2') 

> library(reshape2) 

#melt 

> mt <- melt(thisdata, id=(c('ID','Names'))) 

> mt 
 

 

cast : This function converts data from long format to wide format. It starts with melted data and 

reshapes into long format. It’s just the reverse of melt function. It has two functions namely, dcast 

and acast. dcast returns a data frame as output. acast returns a vector/matrix/array as the output. 

Let’s understand it using the code below. 

#cast 

> mcast <- dcast(mt, DateofBirth + Subject ~ variable) 

> mcast 

 
Note: While doing research work, I found this image which aptly describes reshape package. 
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4. tidyr Package 

This package can make your data look ‘tidy’. It has 4 major functions to accomplish this task. 

Needless to say, if you find yourself stuck in data exploration phase, you can use them anytime 

(along with dplyr). This duo makes a formidable team. They are easy to learn, code and implement. 

These 4 functions are: 

 gather() – it ‘gathers’ multiple columns. Then, it converts them into key:value pairs. This 

function will transform wide from of data to long form. You can use it as in alternative to 

‘melt’ in reshape package. 

 spread() – It does reverse of gather. It takes a key:value pair and converts it into separate 

columns. 

 separate() – It splits a column into multiple columns. 

 unite() – It does reverse of separate. It unites multiple columns into single 

column Let’s understand it closely using the code below: 

#load package 

> library(tidyr) 

#create a dummy data set 

> names <- c('A','B','C','D','E','A','B') 

> weight <- c(55,49,76,71,65,44,34) 

> age <- c(21,20,25,29,33,32,38) 

> Class <- c('Maths','Science','Social','Physics','Biology','Economics','Accounts') 

#create data frame 

> tdata <- data.frame(names, age, weight, Class) 

> tdata 
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#using gather function 

> long_t <- tdata %>% gather(Key, Value, weight:Class) 

> long_t 
 

Separate function comes best in use when we are provided a date time variable in the data set. Since, 

the column contains multiple information, hence it makes sense to split it and use those values 

individually. Using the code below, I have separated a column into date, month and year. 

#create a data set 

> Humidity <- c(37.79, 42.34, 52.16, 44.57, 43.83, 44.59) 
> Rain <- c(0.971360441, 1.10969716, 1.064475853, 0.953183435, 0.98878849, 0.939676146) 

> Time <- c("27/01/2015 15:44","23/02/2015 23:24", "31/03/2015 19:15", "20/01/2015 20:52", 

"23/02/2015 07:46", "31/01/2015 01:55") 

 

#build a data frame 

> d_set <- data.frame(Humidity, Rain, Time) 

 

#using separate function we can separate date, month, year 

> separate_d <- d_set %>% separate(Time, c('Date', 'Month','Year')) 

> separate_d 
 

 

#using unite function - reverse of separate 

> unite_d <- separate_d%>% unite(Time, c(Date, Month, Year), sep = "/") 

> unite_d 



53  

 
 

#using spread function - reverse of gather 

> wide_t <- long_t %>% spread(Key, Value) 

> wide_t 

 

5. Lubridate Package 

Lubridate package reduces the pain of working of data time variable in R. This includes update 

function, duration function and date extraction. 

> install.packages('lubridate') 

> library(lubridate) 

#current date and time 

> now() 

[1] "2015-12-11 13:23:48 IST" 

#assigning current date and time to variable n_time 
> n_time <- now() 

#using update function 

> n_update <- update(n_time, year = 2013, month = 10) 

> n_update 

[1] "2013-10-11 13:24:28 IST" 

#add days, months, year, seconds 

> d_time <- now() 

> d_time + ddays(1) 

[1] "2015-12-12 13:24:54 IST" 

> d_time + dweeks(2) 

[1] "2015-12-12 13:24:54 IST" 

> d_time + dyears(3) 

[1] "2018-12-10 13:24:54 IST" 

> d_time + dhours(2) 

[1] "2015-12-11 15:24:54 IST" 

> d_time + dminutes(50) 

[1] "2015-12-11 14:14:54 IST" 

> d_time + dseconds(60) 

[1] "2015-12-11 13:25:54 IST" 

#extract date,time 

> n_time$hour <- hour(now()) 

> n_time$minute <- minute(now()) 

> n_time$second <- second(now()) 

> n_time$month <- month(now()) 

> n_time$year <- year(now()) 

#check the extracted dates in separate columns 
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> new_data <- data.frame(n_time$hour, n_time$minute, n_time$second, n_time$month, 

n_time$year) 

> new_data 

 
 
 

Write R program to illustrate working with binary file 

 

# Creating a data frame 

df =data.frame( 

"ID"=c(1, 2, 3, 4), 

"Name"=c("Tony", "Thor", "Loki", "Hulk"), 
"Age"=c(20, 34, 24, 40), 

"Pin"=c(756083, 756001, 751003, 110011) 

) 
 

# Creating a connection object 

# to write the binary file using mode "wb" 

con =file("myfile.dat", "wb") 

 

# Write the column names of the data frame 

# to the connection object 

writeBin(colnames(df), con) 

 
# Write the records in each of the columns to the file 

writeBin(c(df$ID, df$Name, df$Age, df$Pin), con) 

 

# Close the connection object 

close(con) 

 

output: 
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UNIT-III 

 

Exploratory Data Analysis and Validation Approaches 

Data validation: handling missing values, null values, duplicate values, outlier detection, data 

cleaning, data loading and inspection, data transformation. 

Cross validation:Validaton set approach, leave one out cross validation, k-fold cross valida- 

tion, repeated k -fold cross validation. 
 

DATA VALIDATION 

 

Data validation is a critical process in data science, as it ensures the quality and reliability of your 

data before using it for analysis, modeling, or decision-making. In a data science context, data 

validation goes beyond simple checks like those used in data entry forms. It involves a deeper 

understanding of the data, the context of the problem, and the intended use of the data. 

 

Why Data Validation is Essential in Data Science: 

 

 Accurate Results: Invalid data can lead to incorrect conclusions and faulty models. Data 

validation helps ensure the accuracy of your analysis and predictions. 

 Data Integrity: By identifying and correcting errors, inconsistencies, and outliers, you 

maintain the integrity of your datasets, making them more reliable for future use. 

 Time and Resource Savings: Early detection and correction of data issues prevent wasted 

time and resources spent on analysis based on faulty data. 

 Reproducibility: Validated datasets are easier to reproduce, which is crucial for scientific 

rigor and collaborative projects. 

 

Types of Data Validation in Data Science: 

 

1. Data Type Validation: 

o Ensures that variables are of the correct data type (e.g., numeric, categorical, 
date/time). 

o Checks for type mismatches, such as numeric values stored as strings. 
2. Range and Constraint Validation: 

o Verifies that numeric values fall within expected ranges (e.g., ages, temperatures). 

o Checks that categorical values belong to a predefined set of options. 

3. Consistency Checks: 

o Identifies logical inconsistencies within or between datasets. 

o Example: Ensuring a birth date is not later than a hire date. 
4. Outlier Detection and Handling: 

o Identifies extreme or unusual values that could distort analysis. 

o Decides whether to remove, correct, or impute outliers based on the context. 

5. Missing Value Identification and Imputation: 

o Detects and handles missing data appropriately. 
o Options include removing rows/columns with missing values, imputing values, or 

using algorithms that can handle missing data. 

6. Uniqueness Validation: 

o Ensures that unique identifiers (e.g., ID numbers) are indeed unique. 

o Identifies and addresses duplicate records. 
 

Tools and Techniques for Data Validation: 
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 Python Libraries: 

o Pandas: Provides powerful data manipulation and cleaning functions. 

o NumPy: Offers mathematical operations for numerical data validation. 

o Scikit-learn: Includes tools for outlier detection and missing value imputation. 

 R Libraries: 

o dplyr, tidyr: For data manipulation and cleaning. 

o validate: A package specifically designed for data validation. 

o ggplot2: For visualizing data distributions and potential issues. 

 SQL Queries: 

o Can be used to perform validation checks directly in a database. 

 Domain Knowledge: 

o Understanding the context and expected values of your data is crucial for effective 
validation. 

 

Handling Missing Values 
 

Handling missing values is a crucial part of data validation in data science. Missing values can arise 

due to various reasons, such as data entry errors, sensor malfunctions, or incomplete surveys. Leav- 

ing them unaddressed can lead to biased analysis and incorrect conclusions. 

 

Here are several approaches to handling missing values during data validation: 

 

1. Deletion: 

 

 Listwise Deletion: Remove entire rows or observations with missing values. 

 Pairwise Deletion: Exclude only the specific missing values from calculations involving 

that variable. 

 

Pros: Simple to implement. 

 

Cons: Potential loss of valuable information if a significant portion of the data is missing. Can in- 

troduce bias if missing values are not random. 

 

2. Imputation: 

 

 Mean/Median/Mode Imputation: Replace missing values with the mean, median, or mode 

(most frequent value) of the non-missing values in that variable. 

 Regression Imputation: Predict missing values based on other variables in the dataset. 

 Multiple Imputation: Create multiple imputed datasets, each with different plausible val- 

ues for missing data, and combine results from the analyses of these datasets. 

 

Pros: Preserves data and can be effective if the imputation method is appropriate. 

 

Cons: May introduce bias or reduce the variability of the data if the imputation method is not well- 

suited. 

 

3. Advanced Techniques: 

 

 k-Nearest Neighbors (kNN) Imputation: Impute missing values based on the values of the 

k most similar neighbors. 

 Maximum Likelihood Estimation (MLE): Estimate missing values based on a statistical 

model that maximizes the likelihood of the observed data. 
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 Expectation-Maximization (EM): An iterative algorithm that alternates between estimat- 

ing missing values and model parameters. 

 

Pros: Can be more accurate than simpler methods. 

 

Cons: More complex to implement and may require more computational resources. 

 

Choosing the Right Approach 

 

The choice of handling missing values depends on various factors: 

 

 Amount of missing data: If a small percentage of data is missing, deletion might be ac- 

ceptable. For larger proportions, imputation is often preferred. 

 Pattern of missingness: If missing values are not random, simply deleting or imputing 

them can introduce bias. You might need more sophisticated methods like multiple imputa- 

tion. 

 Type of variable: The type of variable with missing values (categorical, numerical) influ- 

ences the choice of imputation method. 

 Purpose of analysis: The specific goals of your analysis will also guide your decision. For 

example, if the analysis is sensitive to outliers, you might avoid imputation methods that can 

introduce artificial values. 

 

Example: Handling Missing Age in a Survey Dataset 

 

Let's say you have a survey dataset where some respondents didn't provide their age. 

 
 Deletion: If only a few respondents have missing age values, you might consider deleting 

those rows. 

 Mean/Median Imputation: If the missingness is random, you could replace missing age 

values with the mean or median age of the respondents who provided their age. 

 Regression Imputation: If you have other variables (e.g., income, education level) that are 

correlated with age, you could build a regression model to predict missing age values based 

on those variables. 

 

Handling Null Values 
 

In data science, null values represent missing or unknown data points within a dataset. They are a 

common occurrence in real-world data and can pose significant challenges during analysis and 

modeling. 

 

Representations of Null Values: 

 

 NaN (Not a Number): Commonly used in numerical datasets to represent missing or unde- 

fined values. 

 NULL or None: Often used in databases and programming languages like SQL or Python 

to denote missing values. 

 Blank or Empty Cells: In spreadsheets or flat files, null values may be represented as simp- 

ly blank or empty cells. 

 

Impact on Data Analysis: 
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 Reduced Sample Size: Null values can reduce the effective sample size of your dataset, 

leading to less reliable statistical analysis. 

 Biased Results: If the missingness of data is not random, ignoring null values can introduce 

bias and lead to incorrect conclusions. For instance, if respondents with lower income are 

less likely to report their salary, your analysis might overestimate the average income. 

 Algorithm Issues: Many machine learning algorithms cannot handle null values directly 

and may require preprocessing steps like imputation or removal. 

 

Strategies for Handling Null Values: 

 

The appropriate strategy depends on the amount of missing data, the pattern of missingness, the 

type of variable, and the purpose of your analysis. Here are some common approaches: 

 

1. Deletion: 

o Listwise Deletion: Remove entire rows with any null values. Suitable when the pro- 
portion of missing data is small and the missingness is random. 

o Pairwise Deletion: Exclude only the missing values from specific calculations. This 
preserves more data but can lead to inconsistencies in results. 

2. Imputation: 

o Mean/Median/Mode Imputation: Replace missing values with the mean, median, 

or mode of the non-missing values for that variable. Simple but may introduce bias if 
missingness is not random. 

o Regression Imputation: Predict missing values based on other variables using re- 
gression models. Can be effective if there are strong relationships between variables. 

o Multiple Imputation: Create multiple imputed datasets, each with different plausi- 

ble values for missing data, and combine results from the analyses. This is a more 

robust approach that accounts for the uncertainty in imputation. 
o K-Nearest Neighbors (kNN) Imputation: Impute missing values based on the val- 

ues of the k most similar neighbors. 

3. Advanced Techniques: 
o Maximum Likelihood Estimation (MLE): Estimate missing values based on a sta- 

tistical model that maximizes the likelihood of the observed data. 

o Expectation-Maximization (EM): An iterative algorithm that alternates between 
estimating missing values and model parameters. 

 

Example: Handling Null Values in House Price Prediction 

 

If you are building a model to predict house prices, and you have some null values in the "square 

footage" variable, you have a few options: 

 

 Deletion: Remove rows with missing square footage. This may be acceptable if only a few 

rows are affected. 

 Imputation: 

o Mean/Median Imputation: Replace missing values with the average or median 

square footage of similar houses (e.g., those with the same number of bedrooms and 

bathrooms). 

o Regression Imputation: Build a model to predict square footage based on other fea- 

tures like the number of bedrooms, bathrooms, and location. 
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Duplicate Values 
 

In data science, duplicate values refer to the occurrence of identical or nearly identical records with- 

in a dataset. These duplicates can arise due to various reasons, such as data entry errors, multiple 

data sources, or intentional data collection methods. 

 

Impact of Duplicate Values on Data Analysis: 

 

 Overrepresentation: Duplicate values can lead to overrepresentation of certain observa- 
tions, skewing statistical analysis and potentially leading to biased conclusions. 

 Model Overfitting: In machine learning, duplicate values can cause models to overfit to 

specific patterns in the data, resulting in poor generalization to new data. 

 Misleading Metrics: Duplicates can artificially inflate metrics like counts or sums, making 

it difficult to assess the true distribution of the data. 

 

Identifying Duplicate Values: 

 

1. Exact Duplicates: 

o Python: Use the duplicated() method in pandas to identify exact duplicate rows. 

o SQL: Use the DISTINCT keyword or GROUP BY clause to find duplicates in a data- 
base table. 

2. Near Duplicates: 

o Fuzzy Matching: Use techniques like fuzzy string matching or similarity measures 

to identify near-duplicates, where values might differ slightly due to typos or varia- 

tions. 

 
Handling Duplicate Values: 

 

The approach to handling duplicates depends on the context and the reasons for their occurrence. 

 

1. Removal: 

o Drop Duplicates: If duplicates are true errors, remove them using methods like 

drop_duplicates() in pandas or DELETE statements in SQL. 
o Keep First/Last: If duplicates represent valid but redundant information, you can 

keep the first or last occurrence of a duplicate. 

2. Aggregation: 

o Group and Aggregate: If duplicates represent multiple measurements of the same 

entity, you can group the data by unique identifiers and aggregate relevant columns 

(e.g., sum, average). 

3. Investigation: 

o Analyze Causes: If duplicates are unexpected, investigate the data collection pro- 
cess to understand the reasons for their occurrence. 

o Correct Errors: If duplicates are due to errors, correct the data at the source. 

 

Example: Handling Duplicate Customer Records 

 

Imagine you have a customer dataset where some customers appear multiple times due to data entry 

errors. You could: 

 

1. Identify Duplicates: Use pandas to identify rows with identical values in key fields like 

customer ID or email. 

2. Investigate: Look for patterns in the duplicates to understand why they occurred. 
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3. Remove Duplicates: Drop the duplicate rows, keeping only one unique record for each cus- 

tomer. 

4. Correct Errors: If the duplicates were caused by typos or inconsistencies in data entry, cor- 

rect the original data source. 

 

Tools for Handling Duplicates: 

 

 Python: pandas library (e.g., duplicated(), drop_duplicates()) 

 SQL: DISTINCT, GROUP BY, DELETE statements 

 R: dplyr package (e.g., distinct(), group_by(), summarise()) 
 

Outlier Detection, Data Cleaning 
 

1. Outlier Detection 

 

Outliers are data points that significantly deviate from the rest of your dataset. They can be legiti- 

mate extreme values or errors that crept into your data during collection or processing. Detecting 

and handling outliers is crucial because they can distort analysis results and undermine model per- 

formance. 

 

Types of Outliers: 

 

 Global Outliers: Data points that are significantly different from the overall distribution of 

the data.

 Contextual Outliers: Data points that are unusual within a specific context or subgroup of 

the data.

 Collective Outliers: A subset of data points that, when considered together, deviate signifi- 

cantly from the rest of the data.

 

Outlier Detection Techniques: 

 

 Statistical Methods:

o Z-score: Calculates how many standard deviations a data point is from the mean. 

Points beyond a certain threshold (e.g., +/- 3 standard deviations) are considered out- 

liers. 

o Modified Z-score: Similar to Z-score but more robust to outliers in the data itself. 
o Interquartile Range (IQR): Outliers are points that fall below Q1 - 1.5 * IQR or 

above Q3 + 1.5 * IQR. 

o Statistical tests: Grubbs' test, Dixon's Q test, etc., for formally testing if a data point 
is an outlier. 

 Visual Methods:

o Boxplots: Visually identify outliers as points outside the whiskers. 

o Scatterplots: Outliers can be visually spotted as isolated points. 

 Machine Learning:

o Isolation Forest: A tree-based algorithm that isolates outliers by randomly partition- 
ing the data. 

o Local Outlier Factor (LOF): Measures the local density deviation of a data point 
compared to its neighbors. 

 
2. Data Cleaning 
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Data cleaning is the process of identifying and rectifying errors, inconsistencies, and inaccuracies in 

your data. It's a crucial preprocessing step in data science to ensure the reliability and quality of 

your analysis. 

 

Common Data Cleaning Tasks: 

 

 Handling Missing Values:

o Deletion: Remove rows or columns with missing values. 
o Imputation: Replace missing values with estimated values (mean, median, mode, 

regression, k-NN, etc.). 

 Handling Outliers: (As discussed above)

 Removing Duplicates: Identify and remove identical or near-identical records.

 Correcting Errors: Fix typos, incorrect data types, inconsistencies in units, and violations 

of business rules.

 Standardization/Normalization: Scale numerical data to have a mean of 0 and standard 
deviation of 1 or to a specific range (e.g., 0-1).

 Data Transformation: Apply transformations (e.g., log, square root) to make the data more 

suitable for analysis.

 Feature Engineering: Create new features from existing ones to improve model perfor- 

mance.

 

Tools and Libraries for Outlier Detection and Data Cleaning: 

 

 Python: Pandas, NumPy, SciPy, Scikit-learn

 R: dplyr, tidyr, outliers package

 SQL: For cleaning data directly in databases

 

Example: Analyzing Customer Data 

 

1. Outlier Detection: Identify customers with unusual spending patterns or extreme demo- 

graphic values. 

2. Data Cleaning: 

o Impute missing income values using the median income for similar demographics. 

o Correct invalid zip codes or email addresses. 

o Remove duplicate customer records. 
o Standardize spending amounts for comparison across customers. 

 
 

Data Loading And Inspection 
 

In data science, data loading and inspection are fundamental steps in the data analysis pipeline. 

They involve importing data from various sources and examining its structure, content, and quality 

to prepare it for further analysis and modeling. 

 

Data Loading 

 

Data loading is the process of bringing data from external sources into your data analysis environ- 

ment. Common sources include: 

 

 Files: CSV, Excel, JSON, XML, etc.

 Databases: SQL databases (MySQL, PostgreSQL), NoSQL databases (MongoDB, Cassan- 

dra).
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 APIs: Web APIs that provide structured data (e.g., Twitter API, Google Maps API).

 Cloud Storage: Amazon S3, Google Cloud Storage, Azure Blob Storage.

 

Tools for Data Loading 

 

 Python:

o pandas: The primary library for data loading and manipulation in Python. It provides 

functions like read_csv, read_excel, read_json, read_sql, and more. 

o sqlalchemy: For connecting to and querying SQL databases. 

o requests: For interacting with web APIs. 

 R:

o readr, readxl: For reading files. 

o DBI: For connecting to databases. 

o httr: For working with APIs. 

 Other Tools:
o Database Clients: Tools like SQL Server Management Studio or MySQL Work- 

bench can be used to directly load data from databases. 

o Cloud Storage Clients: Cloud providers offer tools to access and download data 

from their storage services. 

 

Data Inspection 

 

Data inspection involves examining the loaded data to understand its characteristics, identify poten- 

tial issues, and prepare it for cleaning and analysis. Common inspection tasks include: 

 

 Displaying Data:

o Viewing the first few rows (e.g., using df.head() in pandas) to get a quick over- 
view of the data. 

o Checking the dimensions (number of rows and columns) of the dataset. 

o Displaying column names to understand the variables present. 
 Checking Data Types:

o Verifying that each column is of the expected data type (numeric, categorical, 
date/time). 

o Identifying any columns that might need type conversion (e.g., converting string 
dates to datetime objects). 

 Summarizing Data:

o Calculating descriptive statistics (mean, median, standard deviation, etc.) for numer- 
ical variables. 

o Getting frequency counts for categorical variables. 

 Detecting Missing Values:

o Identifying columns or rows with missing data. 

o Deciding on a strategy to handle missing values (deletion, imputation, etc.). 
 Identifying Outliers:

o Checking for values that are far from the rest of the data distribution. 

o Investigating the cause of outliers (errors, unusual events, natural variation). 

 Checking for Duplicates:

o Identifying and potentially removing duplicate rows. 

 Data Visualization:

o Creating histograms, scatterplots, boxplots, or other visualizations to explore the dis- 
tribution and relationships between variables. 

 

Tools for Data Inspection: 
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 Python:

o pandas: Provides functions like describe(), info(), isnull(), value_counts(), 
and many others for data inspection. 

o matplotlib, seaborn: For creating visualizations. 

 R:

o summary(), str(), table(): For summary statistics and data type information. 

o ggplot2: For creating visualizations. 
 

Data Transformation 

 

Data transformation is a crucial step in data science where you modify or convert raw data into a 

format that is more suitable for analysis, modeling, or visualization. It's a key component of the data 

preprocessing pipeline, helping to improve the quality and usability of your data. 

 

Why Data Transformation is Important: 

 

 Feature Engineering: Creating new features or modifying existing ones to improve the per- 

formance of machine learning models.

 Data Cleaning: Addressing issues like missing values, outliers, or inconsistent formats.

 Normalization and Scaling: Transforming data to a common scale to ensure fair compari- 

son and prevent certain features from dominating others in models.

 Dimensionality Reduction: Reducing the number of features while retaining essential in- 

formation. This can simplify models, improve performance, and reduce computational com- 

plexity.

 Data Integration: Combining data from multiple sources and converting them into a uni- 

fied format for analysis.

 

Common Data Transformation Techniques: 

 

1. Scaling: 

o Standardization: Transforms data to have a mean of 0 and a standard deviation of 

1. Useful for algorithms that are sensitive to the scale of features, like linear regres- 

sion and k-means clustering. 
o Normalization: Rescales data to a specific range (e.g., 0 to 1). Useful when the dis- 

tribution of the data is not Gaussian. 

2. Encoding: 
o One-Hot Encoding: Converts categorical variables into binary (0/1) dummy varia- 

bles. Useful for algorithms that require numerical input. 

o Label Encoding: Assigns a unique numerical label to each category. Suitable for 
ordinal variables where the order of categories matters. 

o Ordinal Encoding: Converts ordinal categorical variables into numerical represen- 
tations while preserving their order. 

3. Log Transformation: 
o Log Transformation: Compresses the range of skewed data, making it more nor- 

mally distributed. Useful for features with a long tail, such as income or population. 

4. Power Transformation: 

o Box-Cox Transformation: Finds an optimal power transformation to make data 
more normally distributed. 

o Yeo-Johnson Transformation: Similar to Box-Cox but can handle negative values. 

5. Aggregation: 

o Grouping: Combining data points based on a categorical variable and calculating 
summary statistics (mean, sum, count, etc.). 
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o Rolling: Calculating statistics over a moving window of time or observations. 
6. Discretization: 

o Binning: Dividing continuous data into discrete intervals or bins. Can help capture 
non-linear relationships. 

7. Feature Creation: 

o Creating Interaction Terms: Combining two or more features to capture their 
combined effect on the target variable. 

o Polynomial Features: Adding polynomial terms (e.g., x^2, x^3) to capture non- 
linear relationships. 

 

Tools and Libraries for Data Transformation: 

 

 Python: Pandas, NumPy, Scikit-learn

 R: dplyr, tidyr, caret

 

Example: Transforming Housing Data 

 

 Scaling: Standardize the "square footage" and "number of bedrooms" features to have a 

mean of 0 and a standard deviation of 1.

 Encoding: One-hot encode categorical features like "neighborhood" and "house style."

 Log Transformation: Apply a log transformation to the "price" feature, which is typically 
right-skewed.

 Feature Creation: Create a new feature "age of house" by subtracting the year built from 

the current year.

 

Cross-validation 
 

Cross-validation (CV) is a resampling technique widely used in data science to assess the perfor- 

mance of machine learning models, especially in cases where you have limited data. It helps to 

avoid overfitting and provides a more reliable estimate of how well your model will generalize to 

new, unseen data. 

 
Key Idea: 

 

The core idea behind cross-validation is to divide your dataset into multiple subsets (folds). You 

then train your model on a combination of these folds and evaluate its performance on the remain- 

ing fold. This process is repeated multiple times, using a different fold as the test set each time. Fi- 

nally, you average the performance metrics across all folds to get a more robust estimate of your 

model's performance. 

 
Types of Cross-Validation: 

 

1. K-Fold Cross-Validation: 

o The most common type. 

o Divides the dataset into K equally sized folds. 

o Trains the model on K-1 folds and tests it on the remaining fold. 

o Repeats this process K times, using each fold as the test set once. 

o Averages the performance metrics across all K folds. 

2. Stratified K-Fold Cross-Validation: 

o Similar to K-fold but ensures that the distribution of classes (in classification prob- 

lems) is preserved in each fold. This is particularly important when dealing with im- 
balanced datasets. 
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3. Leave-One-Out Cross-Validation (LOOCV): 

o A special case of K-fold where K is equal to the number of data points. 

o Each fold consists of a single data point. 

o Computationally expensive for large datasets. 

4. Leave-P-Out Cross-Validation: 

o A generalization of LOOCV where you leave out P data points for testing. 

o Computationally even more expensive than LOOCV. 
5. Time Series Cross-Validation: 

o Specifically designed for time series data. 
o Splits the data into training and test sets based on time, preserving the temporal or- 

der. 

 

Benefits of Cross-Validation: 

 

 Reduced Overfitting: By evaluating the model on multiple test sets, cross-validation reduc- 

es the risk of overfitting.

 Better Generalization Estimate: Provides a more reliable estimate of how the model will 

perform on unseen data.

 Efficient Use of Data: Makes better use of limited data compared to a simple train-test split.
 Hyperparameter Tuning: Can be used to select the best hyperparameters for your model 

by comparing performance across different folds.

 

Applications in Data Science: 

 

 Model Selection: Choose the best model among different algorithms or configurations.

 Model Evaluation: Assess the performance of your final model on unseen data.

 Feature Selection: Determine which features are most important for your model.
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UNIT–IV 

Modelling Methods 

Supervised: Regression Analysis in R, linear regression, logistic regression,naive bayes classifier, 

decision tree, random forest, knn classifier, 

Unsupervised: kmeans clustering, association rule mining, apriori algorithm. 

 
 

Supervised and unsupervised learning are two fundamental paradigms in data science and machine 

learning. They differ primarily in how they approach the learning process and the types of tasks 

they are suited for. 

 

Supervised Learning 

 

 Data: Uses labeled data, where each input data point has a corresponding output label or 

value.

 Goal: Learn a function that maps inputs to outputs, enabling predictions on new, unseen da- 

ta.

 Examples:

o Classification: Predicting if an email is spam or not (label is "spam" or "not spam"). 
o Regression: Predicting the price of a house based on its features (label is the house 

price). 
 

Unsupervised Learning 

 

 Data: Uses unlabeled data, where data points do not have associated labels.

 Goal: Discover patterns, relationships, or structures in the data.

 Examples:

o Clustering: Grouping similar customers based on their purchasing behavior. 
o Dimensionality Reduction: Finding a lower-dimensional representation of high- 

dimensional data. 

o Association Rule Mining: Discovering relationships between items in a shopping 

cart (e.g., people who buy bread also buy butter). 

 

 
 

Regression Analysis 
 

What is Regression Analysis? 

 

Regression analysis is a statistical technique used to model the relationship between a dependent 

variable (the outcome you want to predict) and one or more independent variables (predictors). It's a 

cornerstone of supervised machine learning, where you have labeled data to train your model. 

 

Types of Regression in R 

 

R provides extensive support for various regression techniques, including: 

 
 Linear Regression (lm): Models a linear relationship between the dependent and independ- 

ent variables.

 Generalized Linear Models (glm): Extends linear regression to accommodate non-normal 

response distributions (e.g., logistic regression for binary outcomes, Poisson regression for 

count data).
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 Polynomial Regression: Models non-linear relationships using polynomial functions of the 

predictors.

 Robust Regression: Deals with outliers by using robust estimation techniques.

 Ridge Regression and Lasso Regression: Linear regression methods that add regulariza- 
tion terms to prevent overfitting.

 Elastic Net Regression: Combines the features of Ridge and Lasso regression.

 

Key Steps in Regression Analysis in R 

 

1. Data Preparation: 

o Load your data into an R data frame. 

o Clean the data: Handle missing values, outliers, and inconsistencies. 
o Explore the data: Visualize relationships between variables using scatterplots, histo- 

grams, etc. 

2. Model Building: 

o Choose the appropriate regression type based on your data and research question. 

o Fit the model using functions like lm() or glm(). 
o Specify the formula, which defines the relationship between the dependent and inde- 

pendent variables. 

3. Model Evaluation: 

o Assess the model's goodness of fit using metrics like R-squared, adjusted R-squared, 
AIC, or BIC. 

o Check model assumptions (e.g., linearity, normality of residuals, homoscedasticity) 
using diagnostic plots. 

4. Model Interpretation: 
o Examine the estimated coefficients to understand the direction and magnitude of the 

relationship between predictors and the outcome. 

o Use confidence intervals and p-values to assess the statistical significance of the co- 
efficients. 

5. Prediction (Optional): 

o If your goal is prediction, use the fitted model to predict the outcome for new values 

of the predictors. 

 

Example: Linear Regression in R 

 

Code snippet 
# Load required library 

library(datasets) 

 

# Load and explore the data (using built-in 'mtcars' dataset) 

data(mtcars) 

head(mtcars) 

 

# Fit a linear regression model 

model <- lm(mpg ~ wt + hp, data = mtcars) 

# mpg (miles per gallon) is predicted based on weight (wt) and horsepower (hp) 

 

# View the model summary 

summary(model) 

 

# Make predictions on new data (e.g., a car with wt = 2.5 and hp = 120) 

new_data <- data.frame(wt = 2.5, hp = 120) 

predicted_mpg <- predict(model, new_data) 

Use code with caution. 

content_copy 
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Additional Libraries in R 

 

 caret: For streamlined model training, evaluation, and tuning.

 glmnet: For Ridge, Lasso, and Elastic Net regression.

 MASS: For robust regression.

 

Naive Bayes 
 

What is Naive Bayes? 

 

Naive Bayes is a probabilistic machine learning algorithm based on Bayes' Theorem. It's called "na- 

ive" because it makes a strong assumption: it assumes that all features (attributes) in your data are 

conditionally independent of each other given the class label. This means that the presence of one 

feature doesn't affect the presence of another when you know the class. While this assumption may 

not always hold true in real-world data, it often works surprisingly well in practice. 

 

How Naive Bayes Works: 

 

1. Training: 

o The algorithm learns the probabilities of each feature value occurring within each 
class. 

o It also learns the prior probabilities of each class (how likely each class is to occur 
overall). 

2. Prediction: 

o Given a new data point, Naive Bayes calculates the probability of it belonging to 

each class using Bayes' Theorem: 

 
P(class | features) = (P(features | class) * P(class)) / P(features) 

 

 Where:
o P(class | features) is the posterior probability (the probability of the class given the 

features). 

o P(features | class) is the likelihood (the probability of the features given the class). 

o P(class) is the prior probability of the class. 

o P(features) is the evidence (the probability of the features occurring at all). 

 It then predicts the class with the highest posterior probability.

 

Types of Naive Bayes: 

 

 Gaussian Naive Bayes: Assumes that continuous features follow a normal (Gaussian) dis- 

tribution.

 Multinomial Naive Bayes: Suitable for discrete data (e.g., text classification, where fea- 

tures represent word counts).

 Bernoulli Naive Bayes: Used for binary data (features are either present or absent).

 

Advantages: 

 

 Simple and Easy to Implement: The algorithm is easy to understand and code.

 Fast: It's computationally efficient, making it suitable for large datasets.

 Works well with high-dimensional data: It can handle datasets with many features.

 Good for text classification: Commonly used for tasks like spam filtering and sentiment 

analysis.
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Disadvantages: 

 

 Naive Assumption of Independence: The assumption that features are independent may 

not hold true in real-world data.

 Zero Frequency Problem: If a feature value is not seen in the training data, it will have a 

zero probability, which can affect the model's predictions.

 

Example: Text Classification in R 

 

Code snippet 
library(e1071) 

 

# Assuming you have your data in a data frame called 'data' with a text column 

'text' and a category column 'label' 

 

# Train the model 

model <- naiveBayes(label ~ text, data = data) 

 

# Make predictions on new data (e.g., a data frame called 'new_data') 

predictions <- predict(model, new_data) 

Use code with caution. 

content_copy 

 

Applications in Data Science: 

 

 Spam filtering

 Sentiment analysis

 Document classification

 Medical diagnosis

 Fraud detection 

Decision Trees

What are Decision Trees? 
 

A decision tree is a versatile supervised machine learning algorithm used for both classification and 

regression tasks. It's a flowchart-like model where each internal node represents a feature (or attrib- 

ute), each branch represents a decision rule based on that feature, and each leaf node represents the 

outcome or prediction. 

 

How Decision Trees Work: 

 

1. Recursive Partitioning: 

o The algorithm starts at the root node, which represents the entire dataset. 
o It selects the feature that best splits the data based on a purity criterion (like Gini im- 

purity or information gain). 

o The data is then split into subsets based on the values of the selected feature. 
o This process is repeated recursively on each subset until a stopping criterion is met 

(e.g., all data points in a node belong to the same class, or a maximum tree depth is 

reached). 

2. Prediction: 

o To predict the outcome for a new data point, start at the root node and follow the 
branches based on the feature values of the data point until you reach a leaf node. 

o The value in the leaf node represents the predicted outcome. 
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Example: Predicting Customer Churn 

 

Imagine you have a dataset of customers with features like age, income, and contract length. You 

want to build a decision tree to predict whether a customer will churn (stop using your service). 

 

The decision tree might look like this: 

 
Is Contract Length > 12 months? 

/ \ 

Yes No 

/ \ 

Is Age > 30? Is Income > $50,000? 

/ \ / \ 

Yes No Yes No 

/  \  /  \ 

Churn No Churn Churn No Churn 

 

Advantages of Decision Trees: 

 

 Interpretability: Decision trees are easy to visualize and understand, making them valuable 

for explaining model predictions to stakeholders.

 Handles Both Categorical and Numerical Data: You don't need to preprocess categorical 

features.

 Non-Linear Relationships: Can capture complex non-linear relationships between features 

and the target variable.

 Feature Importance: The algorithm implicitly performs feature selection by prioritizing the 

most informative features at the top of the tree.
 

Disadvantages of Decision Trees: 

 

 Overfitting: Prone to overfitting, especially with deep trees. Pruning techniques can help 

mitigate this.

 Instability: Small changes in the data can lead to significantly different tree structures.

 Greedy Algorithm: The algorithm makes locally optimal decisions at each node, which 

may not lead to the globally optimal tree.

 

Libraries for Decision Trees in R: 

 

 rpart: For recursive partitioning and regression trees.

 party: For conditional inference trees.

 C50: For generating C5.0 decision trees and rule-based models.

 tree: For classification and regression trees.

 

Example: Decision Tree in R 

 

Code snippet 
library(rpart) 

# Assuming you have a data frame 'data' with a target variable 'churn' 

 

model <- rpart(churn ~ age + income + contract_length, data = data) 

summary(model) 

 

# Visualize the decision tree 

plot(model) 

text(model) 
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Random Forest 
 

What is Random Forest? 

 

A Random Forest is a supervised machine learning algorithm that combines the output of multiple 

decision trees to reach a single, more accurate prediction. It's a type of ensemble learning, where the 

predictions of several individual models are combined to produce a final result. The "randomness" 

in Random Forest comes from two main sources: 

 

1. Bootstrapping: Each decision tree in the forest is trained on a random subset (bootstrap 

sample) of the original training data. This introduces diversity among the trees, as each one 

sees slightly different data. 

2. Feature Randomness: At each node of the decision tree, the algorithm randomly selects a 

subset of the available features for splitting. This further decorrelates the trees and helps to 

prevent overfitting. 

 

How Random Forest Works: 

 

1. Building the Forest: The algorithm creates multiple decision trees (the number is a hy- 

perparameter). Each tree is trained on a different bootstrap sample of the data, and at each 

node, a random subset of features is considered for splitting. 

2. Making Predictions (Classification): 

o Each tree makes a prediction (e.g., the class label for a new data point). 
o The final prediction is determined by majority vote (the class that receives the most 

votes among the trees). 

3. Making Predictions (Regression): 

o Each tree makes a prediction (e.g., a numerical value). 

o The final prediction is the average of the predictions from all the trees. 

 

Advantages of Random Forest: 
 

 High Accuracy: Often achieves state-of-the-art performance in both classification and re- 

gression tasks.

 Handles Large Datasets and High-Dimensional Data: Can handle datasets with many 

features and observations.

 Reduces Overfitting: The randomness in the algorithm helps to reduce overfitting and im- 

prove generalization to new data.

 Robust to Noise and Outliers: Less sensitive to outliers and noisy data compared to indi- 

vidual decision trees.

 Provides Feature Importance: Gives an estimate of the importance of each feature in mak- 

ing predictions.
 

Disadvantages of Random Forest: 

 

 Complexity: Can be more complex to interpret compared to individual decision trees.
 Computational Cost: Training multiple trees can be computationally expensive, especially 

for large datasets.

 

Applications in Data Science: 

 

 Classification: Identifying customer churn, detecting fraud, image classification.

 Regression: Predicting house prices, stock prices, or customer lifetime value.
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 Recommendation Systems: Recommending products or movies to users.

 Anomaly Detection: Identifying unusual patterns or outliers in data.

 

Example: Random Forest in R 

 

Code snippet 
library(randomForest) 

 

# Assuming you have your data in a data frame called 'data' with a target varia- 

ble 'label' 

 

# Train the model 

model <- randomForest(label ~ ., data = data) 

 

# Make predictions on new data (e.g., a data frame called 'new_data') 

predictions <- predict(model, new_data) 

 

Knn Classifiers 
 

What is KNN? 

 

KNN is a supervised machine learning algorithm commonly used for both classification and regres- 

sion tasks. It's a non-parametric algorithm, meaning it doesn't make any assumptions about the un- 

derlying data distribution. Instead, it relies on the concept of similarity (or distance) between data 

points. 

 
How KNN Works (Classification): 

 

1. Choose K: The first step is to choose the value of K, which represents the number of nearest 

neighbors to consider. 

2. Calculate Distances: For a new data point you want to classify, calculate the distance be- 

tween this point and all other points in the training dataset. Common distance measures in- 

clude Euclidean distance, Manhattan distance, and others. 

3. Identify K-Nearest Neighbors: Select the K data points closest to the new data point based 

on the calculated distances. 

4. Majority Voting: In classification, the new data point is assigned the class label that is most 

common among its K nearest neighbors. 

 

How KNN Works (Regression): 

 

1. Choose K: Similar to classification, you choose the value of K. 

2. Calculate Distances: Calculate the distance between the new data point and all other points 

in the training dataset. 

3. Identify K-Nearest Neighbors: Select the K closest data points. 

4. Average or Weighted Average: The prediction for the new data point is either the average 

or weighted average of the target values of its K nearest neighbors. 

 

Illustrative Diagram: 
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Opens in a new window www.researchgate.net 
scatter plot of data points with different classes, highlighting the knearest neighbors of a new data 

point. 

 
Advantages of KNN: 

 

 Simple and Easy to Understand: The concept of KNN is intuitive and easy to grasp.

 No Training Time: The model doesn't need to be explicitly trained; it simply stores the 

training data.

 Versatile: Can be used for both classification and regression.

 Non-Parametric: Doesn't make assumptions about the data distribution.

 Works Well with Small Datasets: Can be effective even with limited data.

 

Disadvantages of KNN: 

 

 Computationally Expensive: Calculating distances to all data points for each prediction 

can be computationally expensive, especially for large datasets.

 Sensitive to Irrelevant Features: If your dataset has many irrelevant features, KNN per- 

formance can suffer. Feature selection or dimensionality reduction might be necessary.

 Sensitive to the Scale of Features: Features with larger ranges can dominate the distance 

calculations. Scaling or normalization of features is often needed.

 Choosing the Right K: The value of K can significantly impact model performance. It's of- 

ten determined through cross-validation.
 

Common Applications of KNN: 

 

 Recommendation Systems: Recommending items based on user similarity.

 Image Classification: Classifying images based on similar features.

 Anomaly Detection: Identifying outliers or unusual patterns in data.

 

Example: KNN in R (Classification) 

 

Code snippet 
library(class) 

 

# Assuming you have your data in a data frame called 'data' with a target varia- 

ble 'label' 

 

# Split the data into training and testing sets 

train_indices <- sample(1:nrow(data), 0.7 * nrow(data)) 

train_data <- data[train_indices, ] 

test_data <- data[-train_indices, ] 

 

# Train the KNN model (no explicit training step for KNN) 

https://www.researchgate.net/figure/Classification-of-new-data-point-using-k-nearest-neighbour_fig1_329391406
https://www.researchgate.net/figure/Classification-of-new-data-point-using-k-nearest-neighbour_fig1_329391406
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# Make predictions on the test set (using k = 5) 

predictions <- knn(train_data[, -ncol(train_data)], test_data[, - 

ncol(test_data)], train_data$label, k = 5) 

 

# Evaluate accuracy 

accuracy <- mean(predictions == test_data$label) 

 

K-means Clustering 
 

What is K-means Clustering? 

 

K-means clustering is an algorithm that aims to partition a dataset into a pre-defined number of 

clusters (denoted by 'K') in such a way that: 
 

 Data points within a cluster are similar to each other.

 Data points in different clusters are dissimilar.

 

The similarity between data points is usually measured using distance metrics like Euclidean dis- 

tance or Manhattan distance. 

 

How K-means Clustering Works: 

 

1. Initialization: Randomly choose K points as initial cluster centers (centroids). 

2. Assignment: Assign each data point to the nearest centroid based on the chosen distance 

metric. 

3. Update: Recalculate the centroids by taking the mean (average) of all the data points as- 

signed to each cluster. 

4. Iteration: Repeat steps 2 and 3 until the centroids no longer change significantly or a max- 

imum number of iterations is reached. 

 

Illustrative Diagram: 

 

Opens in a new window www.researchgate.net 

Kmeans clustering diagram showing data points assigned to different clusters and centroids being 

updated iteratively. 

 
Choosing the Value of K: 

 

The optimal value of K is not always obvious and often requires experimentation. Common meth- 

ods include: 

https://www.researchgate.net/figure/K-means-example-in-2D-space-a-Cluster-centroids-are-initialized-at-random-positions_fig1_318042263
https://www.researchgate.net/figure/K-means-example-in-2D-space-a-Cluster-centroids-are-initialized-at-random-positions_fig1_318042263
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 Elbow Method: Plot the sum of squared distances (within-cluster sum of squares - WCSS) 

against different values of K. The "elbow" point where the WCSS starts to decrease more 

slowly is often a good choice for K.

 Silhouette Analysis: Measures how well each data point fits within its assigned cluster. 

Higher silhouette scores indicate better clustering quality.

 

Advantages of K-means Clustering: 

 

 Simple and Easy to Understand: The algorithm is relatively straightforward and easy to 
implement.

 Efficient: It scales well to large datasets.

 Versatile: Can be applied to various types of data.

 

Disadvantages of K-means Clustering: 

 

 Requires Specifying K in Advance: You need to pre-determine the number of clusters, 

which may not always be known.

 Sensitive to Initialization: The initial choice of centroids can affect the final clustering re- 

sults. Running the algorithm multiple times with different initializations can help mitigate 

this.

 Assumes Spherical Clusters: K-means works best when clusters are roughly spherical and 
of similar sizes.

 Outlier Sensitivity: Outliers can significantly influence the placement of centroids.

 

Applications in Data Science: 

 

 Customer Segmentation: Grouping customers based on their purchasing behavior or de- 

mographics.

 Image Segmentation: Dividing images into meaningful regions (e.g., foreground and back- 

ground).

 Anomaly Detection: Identifying unusual patterns or outliers in data.

 Document Clustering: Grouping documents based on their content or topics.

 

Association Rule Mining 
 

What is Association Rule Mining? 

 

Association rule mining (ARM), also known as market basket analysis, is an unsupervised machine 

learning method used to discover interesting relationships (affinities) between variables in large da- 

tabases. It's particularly useful for analyzing transactional data, where you have records of items 

that are often purchased or used together. 
 

The key concept in ARM is to find association rules, which are if-then statements that express the 

likelihood of certain items occurring together in a transaction. For example, a classic association 

rule might be: 

 

"If a customer buys bread, then they are also likely to buy butter (with 80% confidence)." 

 

Key Concepts in Association Rule Mining: 



76  

1. Support: The proportion of transactions that contain both the antecedent (the "if" part) and 

the consequent (the "then" part) of the rule. It indicates how frequently the itemset appears 

in the dataset. 

2. Confidence: The proportion of transactions containing the antecedent that also contain the 
consequent. It measures how often the rule is found to be true. 

3. Lift: The ratio of the observed support of the rule to the expected support if the antecedent 

and consequent were independent. A lift greater than 1 indicates that the items are associat- 

ed more often than would be expected by chance. 

 

Apriori Algorithm 
 

One of the most well-known algorithms for association rule mining is the Apriori algorithm. It uses 

a "bottom-up" approach, starting by identifying frequent individual items and then iteratively gen- 

erating larger and larger itemsets until no more frequent itemsets can be found. 

 

Applications of Association Rule Mining: 

 

 Market Basket Analysis: Understanding customer purchasing patterns to improve product 

placement, promotions, and recommendations.

 Web Usage Mining: Analyzing user navigation patterns on websites to personalize recom- 

mendations or optimize website layout.

 Medical Diagnosis: Identifying patterns in patient symptoms or medical history to assist in 
diagnosis.

 Fraud Detection: Discovering unusual patterns in financial transactions to detect potential 

fraud.

 

Example: Market Basket Analysis 

 

Imagine a grocery store wants to analyze its transaction data to identify which products are fre- 

quently bought together. Using association rule mining, they might find rules like: 

 

 If a customer buys diapers, they are also likely to buy baby wipes (with 70% confidence).

 If a customer buys beer, they are also likely to buy chips (with 60% confidence).

 

This information could be used to create targeted promotions or adjust store layouts to increase 

sales. 

 

Challenges and Considerations: 

 

 Scalability: ARM can become computationally expensive for very large datasets.

 Interpreting Results: It's important to consider the context and business knowledge when 

interpreting association rules. Not all rules may be actionable or meaningful.

 Rare Itemsets: It can be challenging to find rules for items that occur infrequently.

 

Libraries and Tools: 

 

 Python: mlxtend, apyori libraries

 R: arules, arulesViz packages
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Linear and Logistic Regression : 

 

Linear models are especially useful when you don’t want only to predict an outcome, but also to 

know the relationship between the input variables and the outcome. This knowledge can prove 

useful because this relationship can often be used as advice on how to get the outcome that you 

want. We’ll first define linear regression and then use it to predict customer income. Later, we will 

use logistic regression to predict the probability that a newborn baby will need extra medical 

attention. We’ll also walk through the diagnostics that R produces when you fit a linear or logistic 

model.Linear methods can work well in a surprisingly wide range of situations. However, there can 

be issues when the inputs to the model are correlated or collinear. In the case of logistic regression, 

there can also be issues (ironically) when a subset of the variables predicts a classification output 

perfectly in a subset of the training data. 

 
USING LINEAR REGRESSION : 

 

Linear regression is the bread and butter prediction method for statisticians and data scientists. If 

you’re trying to predict a numerical quantity like profit, cost, or sales volume, you should always 

try linear regression first. If it works well, you’re done; if it fails, the detailed diagnostics produced 

can give you a good clue as to what methods you should try next. 

 
UNDERSTANDING LINEAR REGRESSION : 

Example Suppose you want to predict how many pounds a person on a diet and exercise plan will 

lose in a month. You will base that prediction on other facts about that person, like how much they 

reduce their average daily caloric intake over that month and how many hours a day they exercised. 

In other words, for every person i, you want to predict pounds lost[i] based on daily_cals_down[i] 

and daily_exercise[i]. 

 
Linear regression assumes that the outcome pounds_lost is linearly related to each of the inputs 

daily_cals_down[i] and daily_exercise[i]. This means that the relationship between (for instance) 

daily_cals_down[i] and pounds_lost looks like a (noisy) straight line, as shown in figure 7.2.1 
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The relationship between daily_exercise and pounds_lost would similarly be a straight line. 

Suppose that the equation of the line shown in figure 7.2 is 

 
 

pounds_lost = bc0 + b.cals * daily_cals_down 

 
 

This means that for every unit change in daily_cals_down (every calorie reduced), the value of 

pounds_lost changes by b.cals, no matter what the starting value of daily_cals_down was. To make 

it concrete, suppose pounds_lost = 3 + 2 * daily_ cals_down. Then increasing daily_cals_down by 

one increases pounds_lost by 2, no matter what value of daily_cals_down you start with. This 

would not be true for, say, pounds_lost = 3 + 2 * (daily_cals_down^2). 

 
Linear regression further assumes that the total pounds lost is a linear combination of our variables 

daily_cals_down[i] and daily_exercise[i], or the sum of the pounds lost due to reduced caloric 

intake, and the pounds lost due to exercise. This gives us the following form for the linear 

regression model of pounds_lost: 

pounds_lost[i] = b0 + b.cals * daily_cals_down[i] + 

b.exercise * daily_exercise[i] 

 
The goal of linear regression is to find the values of b0, b.cals, and b.exercise so that the linear 

combination of daily_cals_lost[i] and daily_exercise[i] (plus some offset b0) comes very close to 

pounds_lost[i] for all persons i in the training data. Let’s put this in more general terms. Suppose 

that y[i] is the numeric quantity you want to predict (called the dependent or response variable), and 

x[i,] is a row of inputs that corresponds to output y[i] (the x[i,] are the independent or explanatory 

variables). Linear regression attempts to find a function f(x) such that 
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y[i] ~ f(x[i,]) + e[i] = b[0] + b[1] * x[i,1] + ... + b[n] * x[i,n] + e[i] 

 

The expression for a linear regression model 

You want numbers b[0],...,b[n] (called the coefficients or betas) such that f(x[i,]) is as near as 

possible to y[i] for all (x[i,],y[i]) pairs in the training data. R supplies a one-line command to find 

these coefficients: lm(). The last term in equation 7.1, e[i], represents what are called unsystematic 

errors, or noise. Unsystematic errors are defined to all have a mean value of 0 (so they don’t  

represent a net upward or net downward bias) and are defined as uncorrelated with x[i,]. In other 

words, x[i,] should not encode information about e[i] (or vice versa). 

 
By assuming that the noise is unsystematic, linear regression tries to fit what is called an “unbiased”  

predictor. This is another way of saying that the predictor gets the right answer “on average” over 

the entire training set, or that it underpredicts about as much as it overpredicts. In particular,  

unbiased estimates tend to get totals correct. 

 
Example Suppose you have fit a linear regression model to predict weight loss based on reduction 

of caloric intake and exercise. Now consider the set of subjects in the training data, LowExercise,  

who exercised between zero and one hour a day. Together, these subjects lost a total of 150 pounds 

over the course of the study. How much did the model predict they would lose? 

With a linear regression model, if you take the predicted weight loss for all the subjects in Low 

Exercise and sum them up, that total will sum to 150 pounds, which means that the model predicts 

the average weight loss of a person in the Low Exercise group correctly, even though some of the 

individuals will have lost more than the model predicted, and some of them will have lost less. In a 

business setting, getting sums like this correct is critical, particularly when summing up monetary 

amounts. Under these assumptions (linear relationships and unsystematic noise), linear regression is 

absolutely relentless in finding the best coefficients b[i]. If there’s some advantageous combination 

or cancellation of features, it’ll find it. One thing that linear regression doesn’t do is reshape 

variables to be linear. Oddly enough, linear regression often does an excellent job, even when the 

actual relation is not in fact linear. 

 
INTRODUCING THE PUMS DATASET 

Example Suppose you want to predict personal income of any individual in the general 

public, within some relative percent, given their age, education, and other demographic variables. In 

addition to predicting income, you also have a secondary goal: to determine the effect of a 

bachelor’s degree on income, relative to having no degree at all. 
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For this task, you will use the 2016 US Census PUMS dataset. For simplicity, we have 

prepared a small sample of PUMS data to use for this example. The data preparation 

steps include these: 

 Restricting the data to full-time employees between 20 and 50 years of age, with 

an income between $1,000 and $250,000.

 Dividing the data into a training set, dtrain, and a test set, dtest.

 

Each row of PUMS data represents a single anonymized person or household. Personal data 

recorded includes occupation, level of education, personal income, and many other demographic 

variables. For this example we have decided to predict log10(PINCP), or the logarithm of income. 

Fitting logarithm-transformed data typically gives results with smaller relative error, emphasizing 

smaller errors on smaller incomes. But this improved relative error comes at a cost of introducing a 

bias: on average, predicted incomes are going to be below actual training incomes. An unbiased 

alternative to predicting log(income) would be to use a type of generalized linear model called 

Poisson regression. The Poisson regression is unbiased, but typically at the cost of larger relative 

errors.1 For the analysis in this section, we’ll consider the input variables age (AGEP), sex (SEX), 

class of worker (COW), and level of education (SCHL). The output variable is personal income 

(PINCP). We’ll also set the reference level, or “default” sex to M (male); the reference level of class 

of worker to Employee of a private for-profit; and the reference level of education level to no high 

school diploma. 
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BUILDING A LINEAR REGRESSION MODEL 

The first step in either prediction or finding relations (advice) is to build the linear regression model. 

The function to build the linear regression model in R is lm(), supplied by the stats package. The 

most important argument to lm() is a formula with ~ used in place of an equals sign. The formula 

specifies what column of the data frame is the quantity to be predicted, and what columns are to be 

used to make the predictions. Statisticians call the quantity to be predicted the dependent variable 

and the variables/ columns used to make the prediction the independent variables. We find it is 

easier to call the quantity to be predicted the y and the variables used to make the predictions the xs. 

Our formula is this: log10(PINCP) ~ AGEP + SEX + COW + SCHL, which is read “Predict the log 

base 10 of income as a function of age, sex, employment class, and education.” 

 

 
 

 

 

 

 

R STORES TRAINING DATA IN THE MODEL R holds a copy of the training data in 

its model to supply the residual information seen in summary(model). Holding a copy of the data 

this way is not strictly necessary, and can needlessly run you out of memory. If you’re running low 

on memory (or swapping), you can dispose of R objects like model using the rm() command. In this 

case, you’d dispose of the model by running rm("model"). 

 
MAKING PREDICTIONS: 

Once you’ve called lm() to build the model, your first goal is to predict income. This is easy to do in 

R. To predict, you pass data into the predict() method. Figure demonstrates this using both the test 

and training data frames dtest and dtrain. 
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The data frame columns dtest$predLogPINCP and dtrain$predLogPINCP now store the predictions 

for the test and training sets, respectively. We have now both produced and applied a linear 

regression model. 

 
USING LOGISTIC REGRESSION: 

Logistic regression is the most important (and probably most used) member of a class of models 

called generalized linear models. Unlike linear regression, logistic regression can directly predict 

values that are restricted to the (0, 1) interval, such as probabilities. It’s the go-to method for 

predicting probabilities or rates, and like linear regression, the coefficients of a logistic regression 

model can be treated as advice. It’s also a good first choice for binary classification problems. In 

this section, we’ll use a medical classification example (predicting whether a 

newborn will need extra medical attention) to work through all the steps of producing and using a 

logistic regression model.1 As we did with linear regression, we’ll take a quick overview of logistic 

regression before tackling the main example. 

 
UNDERSTANDING LOGISTIC REGRESSION 

Example Suppose you want to predict whether or not a flight will be delayed, based on 
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facts like the flight’s origin and destination, weather, and air carrier. For every flight i, you want to 

predict flight_delayed[i] based on origin[i], destination[i], weather[i], and air_carrier[i]. 

We’d like to use linear regression to predict the probability that a flight i will be delayed, but 

probabilities are strictly in the range 0:1, and linear regression doesn’t restrict its prediction to that 

range. 

 
One idea is to find a function of probability that is in the range -Infinity:Infinity, fit a linear model 

to predict that quantity, and then solve for the appropriate probabilities from the model predictions. 

So let’s look at a slightly different problem: instead of predicting the probability that a flight is 

delayed, consider the odds that the flight is delayed, or the ratio of the probability that the flight is 

delayed over the probability that it is not. 

odds[flight_delayed] = P[flight_delayed == TRUE] / P[flight_delayed == FALSE] 

The range of the odds function isn’t -Infinity:Infinity; it’s restricted to be a nonnegative 

number. But we can take the log of the odds---the log-odds---to get a function of the probabilities 

that is in the range -Infinity:Infinity. 

log_odds[flight_delayed] = log(P[flight_delayed == TRUE] / P[flight_delayed = 

= FALSE]) 

Let: p = P[flight_delayed == TRUE]; then 

log_odds[flight_delayed] = log(p / (1 - p)) 

 
Note that if it’s more likely that a flight will be delayed than on time, the odds ratio will be greater 

than one; if it’s less likely that a flight will be delayed than on time, the odds ratio will be less than 

one. So the log-odds is positive if it’s more likely that the flight will be delayed, negative if it’s 

more likely that the flight will be on time, and zero if the chances of delay are 50-50. 

The log-odds of a probability p is also known as logit(p). The inverse of logit(p) is the sigmoid 

function, shown in figure 7.13. The sigmoid function maps values in the range from - 

Infinity:Infinity to the range 0:1—in this case, the sigmoid maps unbounded log-odds ratios to a 

probability value that is between 0 and 1. 

logit <- function(p) { log(p/(1-p)) } 

s <- function(x) { 1/(1 + exp(-x))} 

s(logit(0.7)) 

# [1] 0.7 

logit(s(-2)) 

# -2 
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BUILDING A LOGISTIC REGRESSION MODEL 

 
 

The function to build a logistic regression model in R is glm(), supplied by the stats package. In our 

case, the dependent variable y is the logical (or Boolean) atRisk; all the other variables in table 7.1 

are the independent variables x. The formula for building a model to predict atRisk using these 

variables is rather long to type in by hand; you can generate the formula using the mk_formula() 

function from the wrapr package, as shown next. 
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This is similar to the linear regression call to lm(), with one additional argument: 

family = binomial(link = "logit"). The family function specifies the assumed distribution of the 

dependent variable y. In our case, we’re modeling y as a binomial distribution, or as a coin whose 

probability of heads depends on x. The link function “links” the output to a linear model—it’s as if 

you pass y through the link function, and then model the resulting value as a linear function of the x 

values. Different combinations of family functions and link functions lead to different kinds of 

generalized linear models (for example, Poisson, or probit). In this book, we’ll only discuss logistic 

models, so we’ll only need to use the binomial family with the logit link 

MAKING PREDICTIONS 

Making predictions with a logistic model is similar to making predictions with a linear model—use 

the predict() function. The following code stores the predictions for the training and test sets as the 

column pred in the respective data frames. 

 
Applying the logistic regression model. 

 
 

train$pred <- predict(model, newdata=train, type = "response") 

test$pred <- predict(model, newdata=test, type="response") 
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Note the additional parameter type = "response". This tells the predict() function to return the 

predicted probabilities y. If you don’t specify type = "response", then by default predict() will return 

the output of the link function, logit(y). One strength of logistic regression is that it preserves the 

marginal probabilities of the training data. That means that if you sum the predicted probability 

scores for the entire training set, that quantity will be equal to the number of positive outcomes 

(atRisk == TRUE) in the training set. This is also true for subsets of the data determined by 

variables included in the model. For example, in the subset of the training data that has 

train$GESTREC == "<37 weeks" (the baby was premature), the sum of the predicted probabilities 

equals the number of positive training examples. 

 
Create a subset of these variables from the "mtcars" dataset 

 

 

 
1. data<-mtcars[,c("mpg","wt","disp","hp")] 

2. print(head(input)) 
 

Creating Relationship Model and finding Coefficient 

will use the data which we have created before to create the Relationship Model. We will use the 

lm() function, which takes two parameters i.e., formula and data. Let's start understanding how the 

lm() function is used to create the Relationship Model. 

Example 

#Creating input data. 

input <- mtcars[,c("mpg","wt","disp","hp")] 

# Creating the relationship model. 

Model <- lm(mpg~wt+disp+hp, data = input) 

# Showing the Model. 

print(Model) 

b0<- coef(Model)[1] 

print(b0) 

x_wt<- coef(Model)[2] 

x_disp<- coef(Model)[3] 

x_hp<- coef(Model)[4] 

print(x_wt) 

print(x_disp) 

print(x_hp) 
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# load data 

data(CPS85 , package ="mosaicData") 

# specify dataset and mapping 

library(ggplot2) 

ggplot(data = CPS85, 

mapping =aes(x =exper, y = wage)) 

UNIT-V 

Data visualization with R 
 

Introduction to ggplot2: A worked example, Placing the data and mapping options, Graphs as 

objects, Univariate Graphs: Categorical, Quantitative. 

Bivariate Graphs- Categorical vs. Categorical, Quantitative vs Quantitative, Categorical vs. 
Quantitative, Multivariate Graphs : Grouping, Faceting. 

 

 
Introduction to ggplot2: 

 
5.1 A worked example 

The functions in the ggplot2 package build up a graph in layers. We’ll build a complex graph by 

starting with a simple graph and adding additional elements, one at a time. 

The example uses data from the 1985 Current Population Survey to explore the relationship be- 

tween wages (wage) and experience (expr). 
 

In building a ggplot2 graph, only the first two functions described below are required. The other 
functions are optional and can appear in any order. 

 
5.1.1 ggplot 

The first function in building a graph is the ggplot function. It specifies the 

 

 data frame containing the data to be plotted 
 the mapping of the variables to visual properties of the graph. The mappings are placed 

within the aes function (where aes stands for aesthetics). 
 

Figure: Map variables 

Why is the graph empty? We specified that the exper variable should be mapped to the x-axis 

and that the wage should be mapped to the y-axis, but we haven’t yet specified what we wanted 

placed on the graph. 

https://rkabacoff.github.io/datavis/Data.html#CPS85
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# delete outlier 

library(dplyr) 

plotdata<-filter(CPS85, wage <40) 

 

# redraw scatterplot 

ggplot(data =plotdata, 

mapping =aes(x =exper, y = wage)) + 

geom_point() 

5.1.2 geoms 

Geoms are the geometric objects (points, lines, bars, etc.) that can be placed on a graph. They are 

added using functions   that   start   with geom_.   In   this   example,   we’ll   add   points   using  

the geom_point function, creating a scatterplot. 

In ggplot2 graphs, functions are chained together using the + sign to build a final plot. 

# add points 

ggplot(data = CPS85, 

mapping =aes(x =exper, y = wage)) + 

geom_point() 
 

 

 

 

 

 

 

 
 

 

 

 

 
 

Figure: Add points 

The graph indicates that there is an outlier. One individual has a wage much higher than the rest. 

We’ll delete this case before continuing. 
 

Figure: Remove outlier 

A number of parameters (options)   can   be   specified   in   a geom_ function.   Options   for 

the geom_point function include color, size, and alpha. These control the point color, size, and 
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# add a line of best fit. 

ggplot(data =plotdata, 

mapping =aes(x =exper, y = wage)) + 

geom_point(color ="cornflowerblue", 

alpha = .7, 

size =3) + 

geom_smooth(method ="lm") 

transparency, respectively. Transparency ranges from 0 (completely transparent) to 1 (complete- 

ly opaque). Adding a degree of transparency can help visualize overlapping points. 

 
 

 

Figure: Modify point color, transparency, and size 

Next, let’s add a line of best fit. We can do this with the geom_smooth function. Options control 

the type of line (linear, quadratic, nonparametric), the thickness of the line, the line’s color, and 

the presence or absence of a confidence interval. Here we request a linear regression (method = 

lm) line (where lm stands for linear model). 

 

 

Figure: Add line of best fit 

Wages appears to increase with experience. 

# make points blue, larger, and semi-transparent 

ggplot(data =plotdata, 
mapping =aes(x =exper, y = wage)) + 

geom_point(color ="cornflowerblue", 

alpha = .7, 

size =3) 
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# indicate sex using color 

ggplot(data =plotdata, 

mapping =aes(x =exper, 

y = wage, 

color = sex)) + 

geom_point(alpha = .7, 
size =3) + 

geom_smooth(method ="lm", 

se =FALSE, 

size =1.5) 

5.1.3 grouping 

In addition to mapping variables to the x and y axes, variables can be mapped to the color, shape, 

size, transparency, and other visual characteristics of geometric objects. This allows groups of 

observations to be superimposed in a single graph. 

Let’s add sex to the plot and represent it by color. 
 

 

 

Figure: Include sex, using color 

The color = sex option is placed in the aes function, because we are mapping a variable to an 

aesthetic. The geom_smooth option (se = FALSE) was added to suppresses the confidence inter- 

vals. 

It appears that men tend to make more money than women. Additionally, there may be a stronger 

relationship between experience and wages for men than than for women. 

 
5.1.4 scales 

Scales control how variables are mapped to the visual characteristics of the plot. Scale functions 

(which start with scale_) allow you to modify this mapping. In the next plot, we’ll change 

the x and y axis scaling, and the colors employed. 

 

# modify the x and y axes and specify the colors to be used 

ggplot(data =plotdata, 

mapping =aes(x =exper, 

y = wage, 

color = sex)) + 

geom_point(alpha = .7, 
size =3) + 

geom_smooth(method ="lm", 

se =FALSE, 

size =1.5) + 
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# reproduce plot for each level of job sector 
ggplot(data =plotdata, 

mapping =aes(x =exper, 

y = wage, 

color = sex)) + 

geom_point(alpha = .7) + 

geom_smooth(method ="lm", 

se =FALSE) + 

scale_x_continuous(breaks =seq(0, 60, 10)) + 
scale_y_continuous(breaks =seq(0, 30, 5), 

label =scales::dollar) + 

scale_color_manual(values =c("indianred3", 

"cornflowerblue")) + 

facet_wrap(~sector) 

 
Figure: Change colors and axis labels 

We’re getting there. The numbers on the x and y axes are better, the y axis uses dollar notation, 

and the colors are more attractive (IMHO). 

Here is a question. Is the relationship between experience, wages and sex the same for each job 

sector? Let’s repeat this graph once for each job sector in order to explore this. 

 
5.1.5 facets 

Facets reproduce a graph for each level a given variable (or combination of variables). Facets are 

created using functions that start with facet_. Here, facets will be defined by the eight levels of 

the sector variable. 

scale_x_continuous(breaks =seq(0, 60, 10)) + 

scale_y_continuous(breaks =seq(0, 30, 5), 

label =scales::dollar) + 

scale_color_manual(values =c("indianred3", 

"cornflowerblue")) 
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Figure: Add job sector, using faceting 

It appears that the differences between mean and women depend on the job sector under consid- 

eration. 

 
5.1.6 labels 

Graphs should be easy to interpret and informative labels are a key element in achieving this 

goal. The labs function provides customized labels for the axes and legends. Additionally, a cus- 

tom title, subtitle, and caption can be added. 

 

# add informative labels 

ggplot(data =plotdata, 

mapping =aes(x =exper, 

y = wage, 

color = sex)) + 

geom_point(alpha = .7) + 

geom_smooth(method ="lm", 

se =FALSE) + 

scale_x_continuous(breaks =seq(0, 60, 10)) + 

scale_y_continuous(breaks =seq(0, 30, 5), 

label =scales::dollar) + 

scale_color_manual(values =c("indianred3", 

"cornflowerblue")) + 

facet_wrap(~sector) + 

labs(title ="Relationship between wages and experience", 

subtitle ="Current Population Survey", 

caption ="source: http://mosaic-web.org/", 

x =" Years of Experience", 

y ="Hourly Wage", 

color ="Gender") 

http://mosaic-web.org/
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# use a minimalist theme 

ggplot(data =plotdata, 

mapping =aes(x =exper, 

y = wage, 

color = sex)) + 

geom_point(alpha = .6) + 

geom_smooth(method ="lm", 

se =FALSE) + 

scale_x_continuous(breaks =seq(0, 60, 10)) + 

scale_y_continuous(breaks =seq(0, 30, 5), 

label =scales::dollar) + 

scale_color_manual(values =c("indianred3", 

"cornflowerblue")) + 

facet_wrap(~sector) + 

labs(title ="Relationship between wages and experience", 

subtitle ="Current Population Survey", 

caption ="source: http://mosaic-web.org/", 

x =" Years of Experience", 

y ="Hourly Wage", 

color ="Gender") + 

theme_minimal() 

 

Figure: Add informative titles and labels 

Now a viewer doesn’t need to guess what the labels expr and wage mean, or where the data 

come from. 

 
5.1.7 themes 

Finally, we can fine tune the appearance of the graph using themes. Theme functions (which start 

with theme_) control background colors, fonts, grid-lines, legend placement, and other non-data 

related features of the graph. Let’s use a cleaner theme. 

http://mosaic-web.org/
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# placingcolor mapping in the ggplot function 

ggplot(plotdata, 
aes(x =exper, 

y = wage, 

color = sex)) + 

geom_point(alpha = .7, 
size =3) + 

geom_smooth(method ="lm", 

formula = y ~poly(x,2), 

se =FALSE, 

size =1.5) 

 

Figure: Use a simpler theme 

Now we have something. It appears that men earn more than women in management, manufac- 

turing, sales, and the “other” category. They are most similar in clerical, professional, and ser- 

vice positions. The data contain no women in the construction sector. For management positions, 

wages appear to be related to experience for men, but not for women (this may be the most inter- 

esting finding). This also appears to be true for sales. 

Of course, these findings are tentative. They are based on a limited sample size and do not in- 

volve statistical testing to assess whether differences may be due to chance variation. 

5.2 Placing the data and mapping options 
 

Plots created with ggplot2 always   start   with   the ggplot function.   In   the   examples   above, 

the data and mapping options were placed in   this   function.   In   this   case   they   apply   to 

each geom_ function that follows. 

You can also place these options directly within a geom. In that case, they only apply only to 

that specific geom. 

Consider the following graph. 
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# placingcolor mapping in the geom_point function 

ggplot(plotdata, 

aes(x =exper, 

y = wage)) + 

geom_point(aes(color = sex), 

alpha = .7, 

size =3) + 

geom_smooth(method ="lm", 

formula = y ~poly(x,2), 

se =FALSE, 

size =1.5) 

 

Figure: Color mapping in ggplot function 

Since    the    mapping     of    sex    to     color    appears     in     the ggplot function,     it     applies 

to both geom_point and geom_smooth. The color of the point indicates the sex, and a separate 

colored trend line is produced for men and women. Compare this to 

 

 

Figure12: Color mapping in ggplot function 

Since the sex to color mapping only appears in the geom_point function, it is only used there. A 

single trend line is created for all observations. 

Most of the examples in this book place the data and mapping options in the ggplot function. 

Additionally, the phrases data= and mapping= are omitted since the first option always refers to 

data and the second option always refers to mapping. 

 
5.3 Graphs as objects 

A ggplot2 graph can be saved as a named R object (like a data frame), manipulated further, and 

then printed or saved to disk. 

 

# prepare data 

data(CPS85 , package ="mosaicData") 
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library(ggplot2) 

data(Marriage, package ="mosaicData") 
 

# plot the distribution of race 

ggplot(Marriage, aes(x = race)) + 

geom_bar() 

 
 

5.4 Univariate graphs 

Univariate graphs plot the distribution of data from a single variable. The variable can be cate- 

gorical (e.g., race, sex) or quantitative (e.g., age, weight). 

 
5.4.1 Categorical 

The distribution of a single categorical variable is typically plotted with a bar chart, a pie chart, 

or (less commonly) a tree map. 

 
5.4.1.1 Bar chart 

The Marriage dataset contains the marriage records of 98 individuals in Mobile County, Ala- 

bama. Below, a bar chart is used to display the distribution of wedding participants by race. 
 

plotdata<-CPS85[CPS85$wage <40,] 
 

# create scatterplot and save it 

myplot<-ggplot(data =plotdata, 

aes(x =exper, y = wage)) + 

geom_point() 

 

# print the graph 

myplot 
 

# make the points larger and blue 

# then print the graph 

myplot<-myplot+geom_point(size =3, color ="blue") 

myplot 
 

# print the graph with a title and line of best fit 

# but don't save those changes 

myplot+geom_smooth(method ="lm") + 

labs(title ="Mildly interesting graph") 

 

# print the graph with a black and white theme 

# but don't save those changes 

myplot+theme_bw() 

https://rkabacoff.github.io/datavis/Data.html#Marriage
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# calculate number of participants in 

# each race category 

library(dplyr) 

plotdata<-Marriage %>% 

 

Figure: Simple barchart 

 
5.4.1.1.1 Percents 

Bars can represent percents rather than counts. For bar charts, the code aes(x=race) is actually a 

shortcut for aes(x = race, y = ..count..), where ..count.. is a special variable representing the fre- 

quency within   each   category.   You   can use this to   calculate   percentages,   by specifying 

the y variable explicitly. 

 
Figure: Barchart with percentages 

In the code above, the scales package is used to add % symbols to the y-axis labels. 

 
5.4.1.1.2 Sorting categories 

It is often helpful to sort the bars by frequency. In the code below, the frequencies are calculated 

explicitly. Then the reorder function is used to sort the categories by the frequency. The op- 

tion stat="identity" tells the plotting function not to calculate counts, because they are supplied 

directly. 

# plot the distribution as percentages 

ggplot(Marriage, 

aes(x = race, 

y = ..count.. /sum(..count..))) + 
geom_bar() + 

labs(x ="Race", 

y ="Percent", 

title ="Participants by race") + 

scale_y_continuous(labels = scales::percent) 



98  

# plot the bars in ascending order 

ggplot(plotdata, 

aes(x =reorder(race, n), 

y = n)) + 

geom_bar(stat ="identity") + 

labs(x ="Race", 
y ="Frequency", 

title ="Participants by race") 

# plot the bars with numeric labels 
ggplot(plotdata, 

aes(x = race, 

y = n)) + 
geom_bar(stat ="identity") + 

geom_text(aes(label = n), 

vjust=-0.5) + 

labs(x ="Race", 

y ="Frequency", 

 count(race)  

The resulting dataset is give below. 

 
Table 5.1: plotdata 

race n 

American Indian 1 

Black 22 

Hispanic 1 

White 74 

This new dataset is then used to create the graph. 
 

 

Figure: Sorted bar chart 

The graph bars are sorted in ascending order. Use reorder(race, -n) to sort in descending order. 

 
5.4.1.1.3 Labeling bars 

Finally, you may want to label each bar with its numerical value. 
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# basic bar chart with overlapping labels 

ggplot(Marriage, aes(x =officialTitle)) + 

geom_bar() + 

labs(x ="Officiate", 

y ="Frequency", 

title ="Marriages by officiate") 

# create a basic ggplot2 pie chart 

plotdata<-Marriage %>% 

count(race) %>% 

arrange(desc(race)) %>% 

mutate(prop =round(n *100/sum(n), 1), 

 title ="Participants by race")  

Figure: Bar chart with numeric labels 

 
5.4.1.1.4 Overlapping labels 

Category labels may overlap if (1) there are many categories or (2) the labels are long. Consider 
the distribution of marriage officials. 

 

 

 

Figure: Barchart with problematic labels 

 
5.4.1.2 Pie chart 

Pie charts are controversial in statistics. If your goal is to compare the frequency of categories, 

you are better off with bar charts (humans are better at judging the length of bars than the vol- 

ume of pie slices). If your goal is compare each category with the the whole (e.g., what portion 

of participants are Hispanic compared to all participants), and the number of categories is small, 

then pie charts may work for you. It takes a bit more code to make an attractive pie chart in R. 
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library(treemapify) 
 

# create a treemap of marriage officials 

plotdata<-Marriage %>% 

count(officialTitle) 

 

ggplot(plotdata, 

aes(fill =officialTitle, 

area = n)) + 

geom_treemap() + 

labs(title ="Marriages by officiate") 

 
Figure: Basic pie chart 

 
5.4.1.3 Tree map 

An alternative to a pie chart is a tree map. Unlike pie charts, it can handle categorical variables 

that have many levels. 
 

lab.ypos =cumsum(prop) -0.5*prop) 
 

ggplot(plotdata, 

aes(x ="", 

y = prop, 

fill = race)) + 

geom_bar(width =1, 

stat ="identity", 

color ="black") + 

coord_polar("y", 

start =0, 

direction =-1) + 

theme_void() 
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library(ggplot2) 
 

# plot the age distribution using a histogram 

ggplot(Marriage, aes(x = age)) + 

geom_histogram() + 

labs(title ="Participants by age", 

x ="Age") 

# plot the histogram with 20 bins 

ggplot(Marriage, aes(x = age)) + 

geom_histogram(fill ="cornflowerblue", 

color ="white", 

bins =20) + 

labs(title="Participants by age", 

 

Figure: Basic treemap 

 
5.4.2 Quantitative 

The distribution of a single quantitative variable is typically plotted with a histogram, kernel 

density plot, or dot plot. 

 
5.4.2.1 Histogram 

Using the Marriage dataset, let’s plot the ages of the wedding participants. 
 

 

Figure: Basic histogram 

 
5.4.2.1.1 Bins and bandwidths 

One of the most important histogram options is bins, which controls the number of bins into 

which the numeric variable is divided (i.e., the number of bars in the plot). The default is 30, but 

it is helpful to try smaller and larger numbers to get a better impression of the shape of the dis- 

tribution. 

https://rkabacoff.github.io/datavis/Data.html#Marriage
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# Create a kernel density plot of age 

ggplot(Marriage, aes(x = age)) + 

geom_density() + 

labs(title ="Participants by age") 

# default bandwidth for the age variable 

bw.nrd0(Marriage$age) 

## [1] 5.181946 

# Create a kernel density plot of age 

 
 

 

Figure: Histogram with a specified number of bins 

 

 

5.4.2.2 Kernel Density plot 

An alternative to a histogram is the kernel density plot. Technically, kernel density estimation is 

a nonparametric method for estimating the probability density function of a continuous random 

variable. (What??) Basically, we are trying to draw a smoothed histogram, where the area under 

the curve equals one. 
 

 

 

Figure: Basic kernel density plot 

 
5.4.2.2.1 Smoothing parameter 

The degree of smoothness is controlled by the bandwidth parameter bw. To find the default val- 

ue for a particular variable, use the bw.nrd0 function. Values that are larger will result in more 

smoothing, while values that are smaller will produce less smoothing. 

subtitle ="number of bins = 20", 

x ="Age") 
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# plot the age distribution using a dotplot 

ggplot(Marriage, aes(x = age)) + 

geom_dotplot() + 

labs(title ="Participants by age", 

y ="Proportion", 

x ="Age") 

 
 

 

Figure: Kernel density plot with a specified bandwidth 

 
5.4.2.3 Dot Chart 

Another alternative to the histogram is the dot chart. Again, the quantitative variable is divided 

into bins, but rather than summary bars, each observation is represented by a dot. By default, the 

width of a dot corresponds to the bin width, and dots are stacked, with each dot representing one 

observation. This works best when the number of observations is small (say, less than 150). 
 

 

 

Figure: Basic dotplot 

5.5 Bivariate Graphs: 

Bivariate graphs display the relationship between two variables. The type of graph will depend 

on the measurement level of the variables (categorical or quantitative). 

ggplot(Marriage, aes(x = age)) + 

geom_density(fill ="deepskyblue", 

bw =1) + 

labs(title ="Participants by age", 

subtitle ="bandwidth = 1") 
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library(ggplot2) 
 

# stacked bar chart 

ggplot(mpg, 

aes(x = class, 

fill =drv)) + 

geom_bar(position ="stack") 

5.5.1 Categorical vs. Categorical 

When plotting the relationship between two categorical variables, stacked, grouped, or segment- 

ed bar charts are typically used. A less common approach is the mosaic chart. 
 

5.5.1.1 Stacked bar chart 

Let’s plot the relationship between automobile class and drive type (front-wheel, rear-wheel, or 
4-wheel drive) for the automobiles in the Fuel economy dataset. 

 

 

 

Figure: Stacked bar chart 

Stacked is the default, so the last line could have also been written as geom_bar(). 

 
5.5.1.2 Grouped bar chart 

Grouped bar charts place bars for the second categorical variable side-by-side. To create a 

grouped bar plot use the position = "dodge" option. 

 

library(ggplot2) 
 

# grouped bar plot 

ggplot(mpg, 

aes(x = class, 

fill =drv)) + 

geom_bar(position ="dodge") 

https://rkabacoff.github.io/datavis/Models.html#Mosaic
https://rkabacoff.github.io/datavis/Data.html#MPG
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library(ggplot2) 

 

Figure: Side-by-side bar chart 

 
5.5.1.3 Segmented bar chart 

A segmented bar plot is a stacked bar plot where each bar represents 100 percent. You can create 

a segmented bar chart using the position = "filled" option. 

 
Figure: Segmented bar chart 

 
5.5.1.4 Improving the color and labeling 

You can use additional options to improve color and labeling. In the graph below 
 

 factor modifies the order of the categories for the class variable and both the order and 

the labels for the drive variable 

 scale_y_continuous modifies the y-axis tick mark labels 

 labs provides a title and changed the labels for the x and y axes and the legend 

 scale_fill_brewer changes the fill color scheme 

 theme_minimal removes the grey background and changed the grid color 
 

library(ggplot2) 
 

# bar plot, with each bar representing 100% 

ggplot(mpg, 

aes(x = class, 

fill =drv)) + 

geom_bar(position ="fill") + 

labs(y ="Proportion") 
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library(ggplot2) 

data(Salaries, package="carData") 

 

 

Figure: Segmented bar chart with improved labeling and color 

 
5.5.1.5 Other plots 

Mosaic plots provide an alternative to stacked bar charts for displaying the relationship between 

categorical variables. They can also provide more sophisticated statistical information. 

 
5.5.2 Quantitative vs. Quantitative 

The relationship between two quantitative variables is typically displayed using scatterplots and 

line graphs. 

 
5.5.2.1 Scatterplot 

The simplest display of two quantitative variables is a scatterplot, with each variable represented 

on an axis. For example, using the Salaries dataset, we can plot experience   (yrs.since.phd) 

vs. academic salary (salary) for college professors. 
 

# bar plot, with each bar representing 100%, 

# reordered bars, and better labels and colors 

library(scales) 

ggplot(mpg, 

aes(x =factor(class, 
levels =c("2seater", "subcompact", 

"compact", "midsize", 

"minivan", "suv", "pickup")), 

fill =factor(drv, 

levels =c("f", "r", "4"), 

labels =c("front-wheel", 

"rear-wheel", 

"4-wheel")))) + 

geom_bar(position ="fill") + 

scale_y_continuous(breaks =seq(0, 1, .2), 

label = percent) + 

scale_fill_brewer(palette ="Set2") + 

labs(y ="Percent", 

fill ="Drive Train", 

x ="Class", 

title ="Automobile Drive by Class") + 

theme_minimal() 

https://rkabacoff.github.io/datavis/Models.html#Mosaic
https://rkabacoff.github.io/datavis/Data.html#Salaries
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# scatterplot with linear fit line 
ggplot(Salaries, 

aes(x =yrs.since.phd, 

y = salary)) + 

geom_point(color="steelblue") + 
geom_smooth(method ="lm") 

data(gapminder, package="gapminder") 
 

# Select US cases 

library(dplyr) 

plotdata<-filter(gapminder, 

country == "United States") 

 

 

Figure: Simple scatterplot 

 
5.5.2.1.1 Adding best fit lines 

It is often useful to summarize the relationship displayed in the scatterplot, using a best fit line. 

Many types of lines are supported, including linear, polynomial, and nonparametric (loess). By 

default, 95% confidence limits for these lines are displayed. 
 

Figure: Scatterplot with linear fit line 

 
5.5.2.2 Line plot 

When one of the two variables represents time, a line plot can be an effective method of displa y- 

ing relationship. For example, the code below displays the relationship between time (year) and 

life expectancy (lifeExp) in the United States between 1952 and 2007. The data comes from 

the gapminder dataset. 
 

# simple scatterplot 

ggplot(Salaries, 

aes(x =yrs.since.phd, 

y = salary)) + 

geom_point() 

https://rkabacoff.github.io/datavis/Data.html#Gapminder
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data(Salaries, package="carData") 
 

# calculate mean salary for each rank 

library(dplyr) 

plotdata<-Salaries %>% 

group_by(rank) %>% 

summarize(mean_salary =mean(salary)) 
 

# plot mean salaries 

ggplot(plotdata, 

aes(x = rank, 

y =mean_salary)) + 
geom_bar(stat ="identity") 

 

 

Figure: Simple line plot 

 
5.5.3 Categorical vs. Quantitative 

When plotting the relationship between a categorical variable and a quantitative variable, a large 

number of graph types are available. These include bar charts using summary statistics, grouped 

kernel density plots, side-by-side box plots, side-by-side violin plots, mean/sem plots, ridgeline 

plots, and Cleveland plots. 

 
5.5.3.1 Bar chart (on summary statistics) 

In previous sections, bar charts were used to display the number of cases by category for a single 

variable or for two variables. You can also use bar charts to display other summary statistics 

(e.g., means or medians) on a quantitative variable for each level of a categorical variable. 

For example, the following graph displays the mean salary for a sample of university professors 

by their academic rank. 
 

# simple line plot 

ggplot(plotdata, 

aes(x = year, 

y =lifeExp)) + 

geom_line() 

https://rkabacoff.github.io/datavis/Univariate.html#Barchart
https://rkabacoff.github.io/datavis/Univariate.html#Barchart
https://rkabacoff.github.io/datavis/Bivariate.html#Categorical-Categorical
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# plot the distribution of salaries 

# by rank using kernel density plots 
ggplot(Salaries, 

aes(x = salary, 

fill = rank)) + 

geom_density(alpha =0.4) + 

labs(title ="Salary distribution by rank") 

 

Figure: Bar chart displaying means 

 
5.5.3.2 Grouped kernel density plots 

One can compare groups on a numeric variable by superimposing kernel density plots in a single 

graph. 
 

 

 

Figure: Grouped kernel density plots 

 
5.5.3.3 Box plots 

A boxplot displays the 25th percentile, median, and 75th percentile of a distribution. The whiskers 

(vertical lines) capture roughly 99% of a normal distribution, and observations outside this range 

are plotted as points representing outliers (see the figure below). 
 

 

Side-                                                                                                                                   

by-side box plots are very useful for comparing groups (i.e., the levels of a categorical variable) 

on a numerical variable. 

https://rkabacoff.github.io/datavis/Univariate.html#Kernel
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# plot the distribution of salaries 

# by rank using violin plots 

ggplot(Salaries, 

aes(x = rank, 

y = salary)) + 

geom_violin() + 
labs(title ="Salary distribution by rank") 

# create ridgeline graph 

library(ggplot2) 

library(ggridges) 

 

ggplot(mpg, 

 

 

Figure: Side-by-side boxplots 

 
5.5.3.4 Violin plots 

Violin plots are similar to kernel density plots, but are mirrored and rotated 90o. 
 

 

 

Figure: Side-by-side violin plots 

 
5.5.3.5 Ridgeline plots 

A ridgeline plot (also called a joyplot) displays the distribution of a quantitative variable for sev- 

eral groups. They’re similar to kernel density plots with vertical faceting, but take up less room. 

Ridgeline plots are created with the ggridges package. 

Using the Fuel economy dataset, let’s plot the distribution of city driving miles per gallon by car 

class. 
 

# plot the distribution of salaries by rank using boxplots 

ggplot(Salaries, 

aes(x = rank, 

y = salary)) + 

geom_boxplot() + 

labs(title ="Salary distribution by rank") 

https://rkabacoff.github.io/datavis/Univariate.html#Kernel
https://rkabacoff.github.io/datavis/Univariate.html#Kernel
https://rkabacoff.github.io/datavis/Multivariate.html#Faceting
https://rkabacoff.github.io/datavis/Data.html#MPG


111  

# calculate means, standard deviations, 

# standard errors, and 95% confidence 

# intervals by rank 

library(dplyr) 

plotdata<-Salaries %>% 

group_by(rank) %>% 

summarize(n =n(), 

mean =mean(salary), 

sd =sd(salary), 

se =sd/sqrt(n), 

ci =qt(0.975, df = n -1) *sd/sqrt(n)) 

 
Figure: Ridgeline graph with color fill 

 
5.5.3.6 Mean/SEM plots 

A popular method for comparing groups on a numeric variable is the mean plot with error bars. 

Error bars can represent standard deviations, standard error of the mean, or confidence intervals. 

In this section, we’ll plot means and standard errors. 
 

The resulting dataset is given below. 
 

Table 4.1: Plot data 

rank n mean sd se ci 

AsstProf 67 80775.99 8174.113 998.6268 1993.823 

AssocProf 64 93876.44 13831.700 1728.9625 3455.056 

Prof 266 126772.11 27718.675 1699.5410 3346.322 

 # plot the means and standard errors 
ggplot(plotdata, 

aes(x = rank, 
y = mean, 

 

aes(x =cty, 

y = class, 

fill = class)) + 

geom_density_ridges() + 

theme_ridges() + 

labs("Highway mileage by auto class") + 

theme(legend.position ="none") 
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# plot the distribution of salaries 

# by rank using strip plots 

ggplot(Salaries, 

aes(y = rank, 

x = salary)) + 

geom_point() + 
labs(title ="Salary distribution by rank") 

# plot the distribution of salaries 

# by rank using jittering 

library(scales) 

ggplot(Salaries, 

aes(x =factor(rank, 

labels =c("Assistant\nProfessor", 

"Associate\nProfessor", 

"Full\nProfessor")), 

y = salary, 

 

 

Figure: Mean plots with standard error bars 

 
5.5.3.7 Strip plots 

The relationship between a grouping variable and a numeric variable can be displayed with a 

scatter plot. For example 
 

 

 

Figure: Categorical by quantiative scatterplot 

 
5.5.3.7.1 Combining jitter and boxplots 

It may be easier to visualize distributions if we add boxplots to the jitter plots. 
 

group =1)) + 

geom_point(size =3) + 
geom_line() + 

geom_errorbar(aes(ymin = mean -se, 

ymax = mean +se), 

width = .1) 
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# plot the distribution of salaries 

# by rank using beewarm-syle plots 

library(ggbeeswarm) 

library(scales) 

ggplot(Salaries, 

aes(x =factor(rank, 

labels =c("Assistant\nProfessor", 

"Associate\nProfessor", 

"Full\nProfessor")), 

y = salary, 

color = rank)) + 

geom_quasirandom(alpha =0.7, 

size =1.5) + 

scale_y_continuous(label = dollar) + 

labs(title ="Academic Salary by Rank", 

subtitle ="9-month salary for 2008-2009", 

x ="", 

y ="") + 

theme_minimal() + 

theme(legend.position ="none") 

 

 
 

Figure: Jitter plot with superimposed box plots 

 
5.5.3.8 Beeswarm Plots 

Beeswarm plots (also called violin scatter plots) are similar to jittered scatterplots, in that they 

display the distribution of a quantitative variable by plotting points in way that reduces overlap. 

In addition, they also help display the density of the data at each point (in a manner that is simi- 

lar to a violin plot). Continuing the previous example 
 

color = rank)) + 

geom_boxplot(size=1, 

outlier.shape =1, 

outlier.color ="black", 

outlier.size =3) + 

geom_jitter(alpha =0.5, 
width=.2) + 

scale_y_continuous(label = dollar) + 

labs(title ="Academic Salary by Rank", 

subtitle ="9-month salary for 2008-2009", 

x ="", 

y ="") + 
theme_minimal() + 

theme(legend.position ="none") + 

coord_flip() 

https://rkabacoff.github.io/datavis/Bivariate.html#ViolinPlot
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data(gapminder, package="gapminder") 
 

# subset Asian countries in 2007 

library(dplyr) 

plotdata<-gapminder%>% 

filter(continent == "Asia"& 

year ==2007) 

 

# basic Cleveland plot of life expectancy by country 
ggplot(plotdata, 

aes(x=lifeExp, y = country)) + 

geom_point() 

library(ggplot2) 

data(Salaries, package="carData") 

 

Figure: Beeswarm plot 

.5.5.3.9 Cleveland Dot Charts 

Cleveland plots are useful when you want to compare a numeric statistic for a large number of 

groups. For example, say that you want to compare the 2007 life expectancy for Asian country 

using the gapminder dataset. 
 

 

Figure: Basic Cleveland dot plot 

5.6 Multivariate Graphs: 

Multivariate graphs display the relationships among three or more variables. There are two 

common methods for accommodating multiple variables: grouping and faceting. 

 
5.6.1 Grouping 

In grouping, the values of the first two variables are mapped to the x and y axes. Then additional 

variables are mapped to other visual characteristics such as color, shape, size, line type, and 

transparency. Grouping allows you to plot the data for multiple groups in a single graph. 

Using the Salaries dataset, let’s display the relationship between yrs.since.phd and salary. 
 

https://rkabacoff.github.io/datavis/Data.html#Gapminder
https://rkabacoff.github.io/datavis/Data.html#Salaries
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# plot experience vs. salary (color represents rank) 

ggplot(Salaries, aes(x =yrs.since.phd, 

y = salary, 

color=rank)) + 

geom_point() + 

labs(title ="Academic salary by rank and years since degree") 

# plot salary histograms by rank 

ggplot(Salaries, aes(x = salary)) + 

geom_histogram(fill ="cornflowerblue", 

color ="white") + 

facet_wrap(~rank, ncol =1) + 

labs(title ="Salary histograms by rank") 

 

 

Figure: Simple scatterplot 

Next, let’s include the rank of the professor, using color. 
 

 

 

Figure: Scatterplot with color mapping 

 
5.6.2 Faceting 

In faceting, a graph consists of several separate plots or small multiples, one for each level of a 

third variable, or combination of variables. It is easiest to understand this with an example. 
 

# plot experience vs. salary 

ggplot(Salaries, 

aes(x =yrs.since.phd, 

y = salary)) + 

geom_point() + 

labs(title ="Academic salary by years since degree") 
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Figure: Salary distribution by rank 

The facet_wrap function creates a separate graph for each level of rank. The ncol option controls 

the number of columns. 
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