
DATA STRUCTURES USING PYTHON

COURSE MATERIAL

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

(Autonomous Institution-UGC, Govt. of India)

Secunderabad-500100, Telangana State, India.

www.mrcet.ac.in

II Year B. Tech II- Semester

MECHANICAL ENGINEERING

R18A0553

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

VISION

❖ To establish a pedestal for the integral innovation, team spirit, originality and

competence in the students, expose them to face the global challenges and become

technology leaders of Indian vision of modern society.

MISSION

❖ To become a model institution in the fields of Engineering, Technology and

Management.

❖ To impart holistic education to the students to render them as industry ready

engineers.

❖ To ensure synchronization of MRCET ideologies with challenging demands of

International Pioneering Organizations.

QUALITY POLICY

❖ To implement best practices in Teaching and Learning process for both UG and PG

courses meticulously.

❖ To provide state of art infrastructure and expertise to impart quality education.

❖ To groom the students to become intellectually creative and professionally

competitive.

❖ To channelize the activities and tune them in heights of commitment and sincerity,

the requisites to claim the never - ending ladder of SUCCESS year after year.

For more information: www.mrcet.ac.in

http://www.mrcet.ac.in/

www.mrcet.ac.in

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

DEPARTMENT OF MECHANICAL ENGINEERING

CONTENTS

1. Vision, Mission & Quality Policy

2. Pos, PSOs & PEOs

3. Blooms Taxonomy

4. Course Syllabus

5. Lecture Notes (Unit wise)

a. Objectives and outcomes

b. Notes

c. Presentation Material (PPT Slides/ Videos)

d. Industry applications relevant to the concepts covered

e. Question Bank for Assignments

f. Tutorial Questions

6. Previous Question Papers

http://www.mrcet.ac.in/

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

www.mrcet.ac.in

Department of Mechanical Engineering

VISION

To become an innovative knowledge center in mechanical engineering through state-of-

the-art teaching-learning and research practices, promoting creative thinking

professionals.

MISSION

The Department of Mechanical Engineering is dedicated for transforming the students

into highly competent Mechanical engineers to meet the needs of the industry, in a

changing and challenging technical environment, by strongly focusing in the

fundamentals of engineering sciences for achieving excellent results in their professional

pursuits.

Quality Policy

� To pursuit global Standards of excellence in all our endeavors namely teaching,

research and continuing education and to remain accountable in our core and

support functions, through processes of self-evaluation and continuous

improvement.

� To create a midst of excellence for imparting state of art education, industry-

oriented training research in the field of technical education.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

www.mrcet.ac.in

Department of Mechanical Engineering

PROGRAM OUTCOMES

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and teamwork: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

www.mrcet.ac.in

Department of Mechanical Engineering

12. Life-long learning: Recognize the need for and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1 Ability to analyze, design and develop Mechanical systems to solve the Engineering

problems by integrating thermal, design and manufacturing Domains.

PSO2 Ability to succeed in competitive examinations or to pursue higher studies or research.

PSO3 Ability to apply the learned Mechanical Engineering knowledge for the Development of

society and self.

Program Educational Objectives (PEOs)

The Program Educational Objectives of the program offered by the department are broadly

listed below:

PEO1: PREPARATION

To provide sound foundation in mathematical, scientific and engineering fundamentals

necessary to analyze, formulate and solve engineering problems.

PEO2: CORE COMPETANCE

To provide thorough knowledge in Mechanical Engineering subjects including theoretical

knowledge and practical training for preparing physical models pertaining to Thermodynamics,

Hydraulics, Heat and Mass Transfer, Dynamics of Machinery, Jet Propulsion, Automobile

Engineering, Element Analysis, Production Technology, Mechatronics etc.

PEO3: INVENTION, INNOVATION AND CREATIVITY

To make the students to design, experiment, analyze, interpret in the core field with the help of

other inter disciplinary concepts wherever applicable.

PEO4: CAREER DEVELOPMENT

To inculcate the habit of lifelong learning for career development through successful completion

of advanced degrees, professional development courses, industrial training etc.

PEO5: PROFESSIONALISM

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

www.mrcet.ac.in

Department of Mechanical Engineering

To impart technical knowledge, ethical values for professional development of the student to

solve complex problems and to work in multi-disciplinary ambience, whose solutions lead to

significant societal benefits.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution – UGC, Govt. of India)

www.mrcet.ac.in
Department of Mechanical Engineering

Blooms Taxonomy

Bloom’s Taxonomy is a classification of the different objectives and skills that educators set for

their students (learning objectives). The terminology has been updated to include the following

six levels of learning. These 6 levels can be used to structure the learning objectives, lessons,

and assessments of a course.

1. Remembering: Retrieving, recognizing, and recalling relevant knowledge from long‐ term

memory.

2. Understanding: Constructing meaning from oral, written, and graphic messages through

interpreting, exemplifying, classifying, summarizing, inferring, comparing, and explaining.

3. Applying: Carrying out or using a procedure for executing or implementing.

4. Analyzing: Breaking material into constituent parts, determining how the parts relate to

one another and to an overall structure or purpose through differentiating, organizing, and

attributing.

5. Evaluating: Making judgments based on criteria and standard through checking and

critiquing.

6. Creating: Putting elements together to form a coherent or functional whole; reorganizing

elements into a new pattern or structure through generating, planning, or producing.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution – UGC, Govt. of India)

www.mrcet.ac.in
Department of Mechanical Engineering

UNIT 1

INTRODUCTION TO PYTHON

Course Objectives:

To read and write simple python programs

Course outcomes

read write execute by hand simple python programs

Introduction to Python:

Python is a widely used general-purpose, high level programming language. It

was initially designed by Guido van Rossum in 1991 and developed by

Python Software Foundation. It was mainly developed for emphasis on code

readability, and its syntax allows programmers to express concepts in fewer

lines of code.

Python is a programming language that lets you work quickly and integrate

systems more efficiently.

There are two major Python versions- Python 2 and Python 3.

1) On 16 October 2000, Python 2.0 was released with many new features.

2) On 3rd December 2008, Python 3.0 was released with more testing and

includes new features.

 Beginning with Python programming:

1) Finding an Interpreter:

Before we start Python programming, we need to have an interpreter to

interpret and run our programs. There are certain online interpreters

like https://ide.geeksforgeeks.org/, http://ideone.com/ or

http://codepad.org/ that can be used to start Python without installing an

interpreter.

Windows: There are many interpreters available freely to run Python scripts

like IDLE (Integrated Development Environment) which is installed when you

install the python software from http://python.org/downloads/

2) Writing first program:

Script Begins
Statement1
Statement2
Statement3

https://www.geeksforgeeks.org/python-programming-language/
https://ide.geeksforgeeks.org/
http://python.org/

Script Ends

Differences between scripting language and programming language:

Why to use Python:

The following are the primary factors to use python in day-to-day life:

1. Python is object-oriented

Structure supports such concepts as polymorphism, operation overloading and

multiple inheritance.

2. Indentation

Indentation is one of the greatest feature in python

3. It’s free (open source)

Downloading python and installing python is free and easy

4. It’s Powerful

• Dynamic typing

• Built-in types and tools

• Library utilities

• Third party utilities (e.g. Numeric, NumPy, sciPy)

• Automatic memory management

5. It’s Portable

• Python runs virtually every major platform used today

• As long as you have a compaitable python interpreter installed,

python programs will run in exactly the same manner, irrespective

of platform.

6. It’s easy to use and learn

• No intermediate compile

• Python Programs are compiled automatically to an intermediate

form called byte code, which the interpreter then reads.

• This gives python the development speed of an interpreter without

the performance loss inherent in purely interpreted languages.

• Structure and syntax are pretty intuitive and easy to grasp.

7. Interpreted Language

Python is processed at runtime by python Interpreter

8. Interactive Programming Language

Users can interact with the python interpreter directly for writing the

programs

9. Straight forward syntax

The formation of python syntax is simple and straight forward which also

makes it popular.

Installation and Working with Python:

Installation:

There are many interpreters available freely to run Python scripts like IDLE

(Integrated Development Environment) which is installed when you install the

python software from http://python.org/downloads/

Steps to be followed and remembered:

Step 1: Select Version of Python to Install.

Step 2: Download Python Executable Installer.

Step 3: Run Executable Installer.

Step 4: Verify Python Was Installed On Windows.

Step 5: Verify Pip Was Installed.

http://python.org/downloads/

Step 6: Add Python Path to Environment Variables (Optional)

Working with Python

Python Code Execution:

Python’s traditional runtime execution model: Source code you type is

translated to byte code, which is then run by the Python Virtual Machine

(PVM). Your code is automatically compiled, but then it is interpreted.

 Source Byte code

 Runtime

Source code extension is .py

Byte code extension is .pyc (Compiled python code)

There are two modes for using the Python interpreter:

• Interactive Mode

• Script Mode

Running Python in interactive mode:

Without passing python script file to the interpreter, directly execute code to

Python prompt. Once you’re inside the python interpreter, then you can start.

>>> print("hello world")

hello world

Relevant output is displayed on subsequent lines without the >>> symbol

>>> x=[0,1,2]

 m.py

 m.pyc

 PVM

Quantities stored in memory are not displayed by default.

>>> x

#If a quantity is stored in memory, typing its name will display it.

[0, 1, 2]

>>> 2+3

5

The chevron at the beginning of the 1st line, i.e., the symbol >>> is a prompt

the python interpreter uses to indicate that it is ready. If the programmer types

2+6, the interpreter replies 8.

Running Python in script mode:

Alternatively, programmers can store Python script source code in a file with

the .py extension, and use the interpreter to execute the contents of the file. To

execute the script by the interpreter, you have to tell the interpreter the name of

the file. For example, if you have a script name MyFile.py and you're working

on Unix, to run the script you have to type:

python MyFile.py

Working with the interactive mode is better when Python programmers deal

with small pieces of code as you can type and execute them immediately, but

when the code is more than 2-4 lines, using the script for coding can help to

modify and use the code in future.

Example:

Understanding Python variables:

Variables are nothing but reserved memory locations to store values. This

means that when you create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and

decides what can be stored in the reserved memory. Therefore, by assigning

different data types to variables, you can store integers, decimals or characters

in these variables.

Rules for Python variables:

• A variable name must start with a letter or the underscore character

• A variable name cannot start with a number

• A variable name can only contain alpha-numeric characters and underscores

(A-z, 0-9, and _)

• Variable names are case-sensitive (age, Age and AGE are three different

variables)

Assigning Values to Variables:

Python variables do not need explicit declaration to reserve memory space.

The declaration happens automatically when you assign a value to a variable.

The equal sign (=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and the

operand to the right of the = operator is the value stored in the variable.

 For example −

a= 100 # An integer assignment

b = 1000.0 # A floating point

c = "John" # A string

print (a)

print (b)

print (c)

This produces the following result −

100

1000.0

John

Multiple Assignment:

Python allows you to assign a single value to several variables simultaneously.

For example :

a = b = c = 1

Here, an integer object is created with the value 1, and all three variables are

assigned to the same memory location. You can also assign multiple objects to

multiple variables.

For example −

a,b,c = 1,2,"mrcet“

Here, two integer objects with values 1 and 2 are assigned to variables a and b

respectively, and one string object with the value "john" is assigned to the

variable c.

Output Variables:

The Python print statement is often used to output variables.

Variables do not need to be declared with any particular type and can even

change type after they have been set.

x = 5 # x is of type int

x = "mrcet " # x is now of type str

print(x)

Output: mrcet

To combine both text and a variable, Python uses the “+” character:

Example

x = "awesome"

print("Python is " + x)

Output

Python is awesome

You can also use the + character to add a variable to another variable:

Example

x = "Python is "

y = "awesome"

z = x + y

print(z)

Output:

Python is awesome

Python basic Operators:

Operators are used to perform operations on variables and values. Python

divides the operators in the following groups:

• Arithmetic operators

• Assignment operators

• Comparison operators

• Logical operators

• Identity operators

• Membership operators

• Bitwise operators

Arithmetic operators

Operator Name Example

+ Addition x + y

- Subtraction x - y

* Multiplication x * y

/ Division x / y

Assignment operators

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

Comparison operators

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Logical operators

Operator Description Example

and Returns True if both

statements are true

x < 5 and x < 10

or Returns True if one of the

statements is true

x < 5 or x < 4

not Reverse the result, returns

False if the result is true

not(x < 5 and x < 10)

Identity operators

Operator Description Example

is Returns true if both variables are the same object x is y

is not Returns true if both variables are not the same

object

x is not y

Membership operators

Operator Description Example

in Returns True if a sequence with the specified value is

present in the object

x in y

not in Returns True if a sequence with the specified value is not

present in the object

x not in y

Bitwise operators

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bits is 1

 ^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

<< Zero fill left shift Shift left by pushing zeros in from the right and let the

leftmost bits fall off

>> Signed right shift Shift right by pushing copies of the leftmost bit in from the

left, and let the rightmost bits fall off

Understanding python blocks:

Most of the programming languages like C, C++, Java use braces { } to define

a block of code. Python uses indentation.

A code block (body of a function, loop etc.) starts with indentation and ends

with the first unindented line. The amount of indentation is up to you, but it

must be consistent throughout that block.

https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/for-loop

Generally four whitespaces are used for indentation and is preferred over tabs.

Here is an example.

>>> for i in range(1,11):

 print(i)

 if i == 5:

 break

output:

1

2

3

4

5

The enforcement of indentation in Python makes the code look neat and clean.

This results into Python programs that look similar and consistent.

Indentation can be ignored in line continuation. But it's a good idea to always

indent. It makes the code more readable. For example:

>>> if True:

 print('Hello')

 a = 5

Output: Hello

>>> if True: print('Hello'); a = 5

Output: Hello

A code block is a piece of Python program text that can be executed as a unit,

such as a module, a class definition or a function body. Some code blocks (like

modules) are normally executed only once, others (like function bodies) may

be executed many times. Code blocks may textually contain other code blocks.

Code blocks may invoke other code blocks (that may or may not be textually

contained in them) as part of their execution, e.g., by invoking (calling) a

function.

The following are code blocks: A module is a code block. A function body is a

code block. A class definition is a code block. Each command typed

interactively is a separate code block; a script file (a file given as standard

input to the interpreter or specified on the interpreter command line the first

argument) is a code block; a script command (a command specified on the

interpreter command line with the `-c' option) is a code block. The file read by

the built-in function execfile() is a code block. The string argument passed to

the built-in function eval() and to the exec statement is a code block. And

finally, the expression read and evaluated by the built-in function input() is a

code block.

Some examples:

1. if-statement

pwd=input("enter string")

if pwd == 'mrcet':

 print('Logging on ...')

else:

 print('Incorrect password.')

print('All done!')

Output:

===

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/iff.py

==

enter string mrcet

Logging on ...

All done!

2. if/elif-statements

age = int(input('How old are you? '))

if age <= 2:

 print(' free')

elif 2 < age < 13:

 print(' child fare')

else:

 print('adult fare')

Output:

===

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/if1.py

==

How old are you? 5

 child fare

3. Functions

def my_college():

 print("Hello mrcet")

my_college()

Output:

===

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/if2.py

==

Hello mrcet

Sample structure of block:

Python Data Types:

The data stored in memory can be of many types. For example, a person's age

is stored as a numeric value and his or her address is stored as alphanumeric

characters. Python has various standard data types that are used to define the

operations possible on them and the storage method for each of them.

Python has five standard data types −

Numbers

String

List

Tuple

Dictionary

Declaring and using Numeric data types:

Number data types store numeric values. Number objects are created when you

assign a value to them.

For example:

var1 = 1

var2 = 10

You can delete a single object or multiple objects by using the del statement.

 For example:

del var

del var_a, var_b

Python supports four different numerical types −

• int (signed integers)

• long (long integers, they can also be represented in octal and

hexadecimal)

• float (floating point real values)

• complex (complex numbers)

Int, or integer, is a whole number, positive or negative, without decimals, of

unlimited length.

Float, or "floating point number" is a number, positive or negative, containing

one or more decimals.

Float can also be scientific numbers with an "e" to indicate the power of 10.

A complex number consists of an ordered pair of real floating-point numbers

denoted by x + yj, where x and y are the real numbers and j is the imaginary

unit.

Examples: Here are some examples of numbers −

Example: 1

 x = 1 # int

y = 2.8 # float

z = 1j # complex

To verify the type of any object in Python, use the type() function:

print(type(x))

print(type(y))

print(type(z))

Output:

<class 'int'>

<class 'float'>

<class 'complex'>

Example: 2

x = 35e3

y = 12E4

z = -87.7e100

print(type(x))

print(type(y))

print(type(z))

Output:

<class 'float'>

<class 'float'>

<class 'float'>

Python Casting:

There may be times when you want to specify a type on to a variable. This can

be done with casting. Python is an object-orientated language, and as such it

uses classes to define data types, including its primitive types. Casting in

python is therefore done using constructor functions:

int() - constructs an integer number from an integer literal, a float literal (by

rounding down to the previous whole number), or a string literal (providing the

string represents a whole number)

float() - constructs a float number from an integer literal, a float literal or a

string literal (providing the string represents a float or an integer)

str() - constructs a string from a wide variety of data types, including strings,

integer literals and float literals

Examples:

Integers:

x = int(1) # x will be 1

y = int(2.8) # y will be 2

z = int("3") # z will be 3

Print(x)

Print(y)

Print(z)

Output:

1

2

3

Floats:

x = float(1) # x will be 1.0

y = float(2.8) # y will be 2.8

z = float("3") # z will be 3.0

w = float("4.2") # w will be 4.2

Print(x)

Print(y)

Print(z)

Print(w)

Output:

1.0

2.8

3.0

4.2

Strings:

x = str("s1") # x will be 's1'

y = str(2) # y will be '2'

z = str(3.0) # z will be '3.0'

Print(x)

Print(y)

Print(z)

Output:

s1

2

3.0

Using string data type and string operations:

1. Strings in Python are identified as a contiguous set of

characters represented in the quotation marks. Python

allows for either pairs of single or double quotes.

• 'hello' is the same as "hello".

• Strings can be output to screen using the print function. For

example: print("hello").

2. Subsets of strings can be taken using the slice operator ([] and [:]) with

indexes starting at 0 in the beginning of the string and working their way

from -1 at the end.

3. The plus (+) sign is the string concatenation operator and the asterisk (*)

is the repetition operator.

4. Like many other popular programming languages, strings in Python are

arrays of bytes representing Unicode characters. However, Python does

not have a character data type, a single character is simply a string with a

length of 1. Square brackets can be used to access elements of the string.

Examples:

Get the character at position 1 (remember that the first character has the

position 0):

mrcet = "Hello, World!"

print(mrcet[1])

Output:

e

• Substring. Get the characters from position 2 to position 5 (not

included):

b = "Hello, World!"

print(b[2:5])

Output:

llo

• The strip() method removes any whitespace from the beginning or the

end:

a = 'Hello,World!'

print(a.strip('He'))

string = 'android is awesome'

print(string.strip('an'))

b = 'Hello,World! Hello'

print(b.strip('Hello'))

Output:

llo,World!

droid is awesome

,World!

• The len() method returns the length of a string:

a = "Hello, World!"

print(len(a))

Output:

13

• The lower() method returns the string in lower case:

a = "Hello, World!"

print(a.lower())

Output:

hello, world!

• The upper() method returns the string in upper case:

a = "Hello, World!"

print(a.upper())

Output:

HELLO, WORLD!

• The replace() method replaces a string with another string:

a = "Hello, World!"

print(a.replace("H", "J"))

Output:

Jello, World!

• The split() method splits the string into substrings if it finds instances of

the separator:

a = "Hello, World!"

b = a.split(",")

print(b)

Output:

['Hello', 'World!']

For example −

str = 'Hello World!'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character print

str * 2 # Prints string two times

print str + "TEST" # Prints concatenated string

Output:

Hello World!

H

llo

llo World!

Hello World!Hello World!

Hello World!TEST

UNIT 2

CONTROL FLOWS

Course Objective:

 To develop python programs with conditionals and loops.

Course Outcome

Structure simple python programs for solving problems.

Control Flows:

if

if Statement Syntax:

if test expression:

 statement(s)

if Statement Flowchart:

 Fig: Operation of if statement

Example: Python if Statement

a = 3

if a > 2:

 print(a, "is greater")

print("done")

a = -1

if a < 0:

 print(a, "a is smaller")

print("Finish")

output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/if1.py

3 is greater

done

-1 a is smaller

Finish

Syntax of if - else :

if test expression:

 Body of if stmts

else:

 Body of else stmts

If - else Flowchart :

 Fig: Operation of if – else statement

Example of if - else:

a=int(input('enter the number'))

if a>5:

 print("a is greater")

else:

 print("a is smaller than the input given")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/ifelse.py

enter the number 2

a is smaller than the input given

If – elif - else:

Syntax of if – elif - else :

If test expression:

 Body of if stmts

elif test expression:

 Body of elif stmts

else:

 Body of else stmts

Flowchart of if – elif - else:

 Fig: Operation of if – elif - else statement

 Example of if - elif – else:

a=int(input('enter the number'))

b=int(input('enter the number'))

c=int(input('enter the number'))

if a>b:

 print("a is greater")

elif b>c:

 print("b is greater")

else:

 print("c is greater")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/ifelse.py

enter the number5

enter the number2

enter the number9

a is greater

>>>

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/ifelse.py

enter the number2

enter the number5

enter the number9

c is greater

Python Nested if statements

Syntax of nested if – elif - else :
if expression1:

 statement(s)

 if expression2:

 statement(s)

 elif expression3:

 statement(s)

 elif expression4:

 statement(s)

 else:

 statement(s)

else:

 statement(s)

Example of Nested if:

a = int(input("Enter a number: "))

if a >= 0:

 if a == 0:

 print("Zero")

 else:

 print("Positive number")

else:

 print("Negative number")

Output:

 C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/nestedif.py

Enter a number: -1

Negative number

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/nestedif.py

Enter a number: 5

Positive number

>>>

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/nestedif.py

Enter a number: 0

Zero

Loops:

Statements are executed sequentially: The first statement in a function is

executed first, followed by the second, and so on. There may be a situation

when you need to execute a block of code several number of times.

Programming languages provide various control structures that allow for more

complicated execution paths. A loop statement allows us to execute a

statement or group of statements multiple times. The following diagram

illustrates a loop statement −

Flow chart:

There are different types of loops to handle looping requirements:

1. while loop

2. for loop

3. Nested loops

Loop control statements:

These control statements change execution from its normal sequence. Python

supports the following:

• Break statement

• Continue statement

• Pass statement

For loop using ranges:

For loop:

Python for loop is used for repeated execution of a group of statements for the

desired number of times. It iterates over the items of lists, tuples, strings, the

dictionaries and other iterable objects

Syntax: for var in sequence:

 Statement(s) A sequence of values assigned to var in each

iteration

Holds the value of item

in sequence in each iteration

Sample Program:

numbers = [1, 2, 4, 6, 11, 20]

seq=0

for val in numbers:

 seq=val*val

 print(seq)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/fr.py

1

4

16

36

121

400

Flowchart:

Iterating over a list:

#list of items

list = ['M','R','C','E','T']

i = 1

#Iterating over the list

for item in list:

 print ('college ',i,' is ',item)

 i = i+1

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/lis.py

college 1 is M

college 2 is R

college 3 is C

college 4 is E

college 5 is T

Iterating over a Tuple:

tuple = (2,3,5,7)

print ('These are the first four prime numbers ')

#Iterating over the tuple

for a in tuple:

 print (a)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fr3.py

These are the first four prime numbers

2

3

5
7

Iterating over a dictionary:

#creating a dictionary

college = {"ces":"block1","it":"block2","ece":"block3"}

#Iterating over the dictionary to print keys

print ('Keys are:')

for keys in college:

 print (keys)

#Iterating over the dictionary to print values

print ('Values are:')

for blocks in college.values():

 print(blocks)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/dic.py

Keys are:

ces

it

ece

Values are:

block1

block2

block3

Iterating over a String:

#declare a string to iterate over

college = 'MRCET'

#Iterating over the string

for name in college:

 print (name)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/strr.py

M

R

C

E

T

Range ():

range() function in for loop to iterate over numbers defined by range().

How to use range():

• range(n) : will generate numbers from 0 to (n-1)

For example: range(8) is equivalent to [0, 1, 2, 3, 4, 5, 6, 7]

• range(x, y) : will generate numbers from x to (y-1)

For example: range(5, 9) is equivalent to [5, 6, 7, 8]

• range(start, end, step_size) : will generate numbers

from start to end with step_size as incremental factor in each

iteration. step_size is default if not explicitly mentioned.

For example: range(1, 10, 2) is equivalent to [1, 3, 5, 7, 9]

Examples:

x=10

for i in range(x):

 print(i)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/fr2.py

0

1

2

3

4

5

6

7

8

9

x=10

for i in range(6,x):

 print(i)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/fr2.py

6

7

8

9

x=10

for i in range(2,13,2):

 print(i)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/fr2.py

2

4

6

8

10

12

String:

Iterating over a String:

#declare a string to iterate over

college = 'MRCET'

#Iterating over the string

for name in college:

 print (name)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/strr.py

M

R

C

E

T

Using range():

#declare a string to iterate over

college = 'MRCET'

print("the college name is")

#Iterating over the string

for i in range(len(college)):

 print (college[i])

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/rn.py =

the college name is

M

R

C

E

T

#declare a string to iterate over

college = 'MRCET'

print("To print the portion of string")

#Iterating over the string

for i in college[0:3:1]:

 print (i)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/strr1.py

To print the portion of string

M

R

C

#declare a string to iterate over

college = 'MRCET'

print("To print the string in reverse")

#Iterating over the string

for i in college[: :-1]:

 print (i)

Output:

 C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/strr2.py

To print the string in reverse

T

E

C

R

M

#declare a string to iterate over

college = 'MRCET'

print("To print the string in reverse using index")

#Iterating over the string

i=len(college) - 1

while i > 0:

 print(college[i])

 i=i-1

#for i in college[: :-1]:

 #print (i)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/strr3.py

To print the string in reverse using index

T

E

C

R

#declare a string to iterate over

i=1

college = 'MRCET'

print("To print the string in reverse using negative index")

#Iterating over the string

while i<=len(college):

 print(college[-i])

 i=i+1

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/strr4.py

To print the string in reverse using index

T

E

C

R

M

Use of while loops in python:

While loop:

• Loops are either infinite or conditional. Python while loop keeps

reiterating a block of code defined inside it until the desired condition is

met.

• The while loop contains a boolean expression and the code inside the

loop is repeatedly executed as long as the boolean expression is true.

• The statements that are executed inside while can be a single line of

code or a block of multiple statements.

Syntax:

 while(expression):

 Statement(s)

Flowchart:

Example Programs:

1. --------------------------------------

i=1

 while i<=6:

 print("Mrcet college")

 i=i+1

output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/wh1.py

Mrcet college

Mrcet college

Mrcet college

Mrcet college

Mrcet college

Mrcet college

2. ---

i=1

while i<=3:

 print("MRCET",end=" ")

 j=1

 while j<=1:

 print("CSE DEPT",end="")

 j=j+1

 i=i+1

 print()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/wh2.py

MRCET CSE DEPT

MRCET CSE DEPT

MRCET CSE DEPT

3. --

i=1

j=1

while i<=3:

 print("MRCET",end=" ")

 while j<=1:

 print("CSE DEPT",end="")

 j=j+1

 i=i+1

 print()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/wh3.py

MRCET CSE DEPT

MRCET

MRCET

4. --

 i = 1

 while (i < 10):

 print (i)

 i = i+1

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/wh4.py

1

2

3

4

5

6

7

8

9

5. ---------------------------------------

 a = 1

 b = 1

 while (a<10):

 print ('Iteration',a)

 a = a + 1

 b = b + 1

 if (b == 4):

 break

 print ('While loop terminated')

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/wh5.py

Iteration 1

Iteration 2

Iteration 3

While loop terminated

Loop manipulation using pass, continue, break and else:

In Python, break and continue statements can alter the flow of a normal loop.

Sometimes we wish to terminate the current iteration or even

the whole loop without checking test expression. The break and

continue statements are used in these cases.

Break:

The break statement terminates the loop containing it and control of the
program flows to the statement immediately after the body of the loop. If
break statement is inside a nested loop (loop inside another loop), break will
terminate the innermost loop.

Flowchart:

The following shows the working of break statement in for and while loop:

for var in sequence:

 # code inside for loop

If condition:

 break (if break condition satisfies it jumps to outside loop)

code inside for loop

code outside for loop

while test expression

code inside while loop

If condition:

 break (if break condition satisfies it jumps to outside loop)

code inside while loop

code outside while loop

Example:

for val in "MRCET COLLEGE":

 if val == " ":

 break

 print(val)

print("The end")

Output:

M

R

C

E

T

The end

Program to display all the elements before number 88

for num in [11, 9, 88, 10, 90, 3, 19]:

 print(num)

 if(num==88):

 print("The number 88 is found")

 print("Terminating the loop")

 break

Output:

11

9

88

The number 88 is found

Terminating the loop

Continue:

The continue statement is used to skip the rest of the code inside a loop for the

current iteration only. Loop does not terminate but continues on with the next

iteration.

Flowchart:

The following shows the working of break statement in for and while loop:

for var in sequence:

 # code inside for loop

If condition:

 continue (if break condition satisfies it jumps to outside loop)

code inside for loop

code outside for loop

while test expression

code inside while loop

If condition:

 continue(if break condition satisfies it jumps to outside loop)

code inside while loop

code outside while loop

Example:

Program to show the use of continue statement inside loops

for val in "string":

 if val == "i":

 continue

 print(val)

print("The end")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/cont.py

s

t

r

n

g

The end

program to display only odd numbers

for num in [20, 11, 9, 66, 4, 89, 44]:

 # Skipping the iteration when number is even

 if num%2 == 0:

 continue

 # This statement will be skipped for all even numbers

 print(num)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/cont2.py

11

9

89

Pass:

In Python programming, pass is a null statement. The difference between

a comment and pass statement in Python is that, while the interpreter ignores a

comment entirely, pass is not ignored.

pass is just a placeholder for functionality to be added later.

Example:

sequence = {'p', 'a', 's', 's'}

for val in sequence:

 pass

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/f1.y.py

https://www.programiz.com/python-programming/statement-indentation-comments

>>>

Similarly we can also write,

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

Python arrays:

Array is a container which can hold a fix number of items and these items

should be of the same type. Most of the data structures make use of arrays to

implement their algorithms. Following are the important terms to understand

the concept of Array.

• Element− Each item stored in an array is called an element.

• Index − Each location of an element in an array has a numerical index,

which is used to identify the element.

Array Representation

Arrays can be declared in various ways in different languages. Below is an

illustration.

Elements

Int array [10] = {10, 20, 30, 40, 50, 60, 70, 80, 85, 90}

Type Name Size Index 0

As per the above illustration, following are the important points to be

considered.

• Index starts with 0.

• Array length is 10 which means it can store 10 elements.

• Each element can be accessed via its index. For example, we can fetch

an element at index 6 as 70

Basic Operations

Following are the basic operations supported by an array.

• Traverse − print all the array elements one by one.

• Insertion − Adds an element at the given index.

• Deletion − Deletes an element at the given index.

• Search − Searches an element using the given index or by the value.

• Update − Updates an element at the given index.

Array is created in Python by importing array module to the python program.

Then the array is declared as shown below.

from array import *

arrayName=array(typecode, [initializers])

Typecode are the codes that are used to define the type of value the array will

hold. Some common typecodes used are:

Typecode Value

b Represents signed integer of size 1 byte/td>

B Represents unsigned integer of size 1 byte

c Represents character of size 1 byte

i Represents signed integer of size 2 bytes

I Represents unsigned integer of size 2 bytes

f Represents floating point of size 4 bytes

d Represents floating point of size 8 bytes

Creating an array:

from array import *

array1 = array('i', [10,20,30,40,50])

for x in array1:

 print(x)

Output:

>>>

 RESTART: C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/arr.py

10

20

30

40

50

Accessing Array Element

We can access each element of an array using the index of the element.

from array import *

array1 = array('i', [10,20,30,40,50])

print (array1[0])

print (array1[2])

Output:

RESTART: C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/arr2.py

10

30

Insertion Operation

Insert operation is to insert one or more data elements into an array. Based on

the requirement, a new element can be added at the beginning, end, or any

given index of array.

Here, we add a data element at the middle of the array using the python in-built

insert() method.

from array import *

array1 = array('i', [10,20,30,40,50])

array1.insert(1,60)

for x in array1:

 print(x)

Output:

==

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/arr3.py

===

10

60

20

30

40

50

>>>

Deletion Operation

Deletion refers to removing an existing element from the array and re-

organizing all elements of an array.

Here, we remove a data element at the middle of the array using the python in-

built remove() method.

from array import *

array1 = array('i', [10,20,30,40,50])

array1.remove(40)

for x in array1:

 print(x)

Output:

==

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/arr4.py

===

10

20

30

50

Search Operation

You can perform a search for an array element based on its value or its index.

Here, we search a data element using the python in-built index() method.

from array import *

array1 = array('i', [10,20,30,40,50])

print (array1.index(40))

Output:

==

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/arr5.py

===

3

>>>

Update Operation

Update operation refers to updating an existing element from the array at a

given index.

Here, we simply reassign a new value to the desired index we want to update.

from array import *

array1 = array('i', [10,20,30,40,50])

array1[2] = 80

for x in array1:

 print(x)

Output:

==

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/arr6.py

===

10

20

80

40

50

UNIT 3

FUNCTIONS

Course Objective:

 To define python functions and call them

Course Outcome

Decompose a python program in to functions

Functions:

Function is a group of related statements that perform a specific task.

Functions help break our program into smaller and modular chunks. As our

program grows larger and larger, functions make it more organized and

manageable. It avoids repetition and makes code reusable.

Basically, we can divide functions into the following two types:

1. Built-in functions - Functions that are built into Python.

Ex: abs(),all().ascii(),bool()………so on….

integer = -20

print('Absolute value of -20 is:', abs(integer))

Output:

Absolute value of -20 is: 20

2. User-defined functions - Functions defined by the users themselves.

def add_numbers(x,y):

 sum = x + y

 return sum

print("The sum is", add_numbers(5, 20))

Output:

The sum is 25

There are three types of Python function arguments using which we can call a

function.

1. Default Arguments

https://www.programiz.com/python-programming/built-in-function
https://www.programiz.com/python-programming/user-defined-function

2. Keyword Arguments

3. Variable-length Arguments

Syntax:

def functionname():

 statements

 .

 .

 .

functionname()

Function definition consists of following components:

1. Keyword def indicates the start of function header.

2. A function name to uniquely identify it. Function naming follows the

same rules of writing identifiers in Python.

3. Parameters (arguments) through which we pass values to a function. They are

optional.

4. A colon (:) to mark the end of function header.

5. Optional documentation string (docstring) to describe what the function does.

6. One or more valid python statements that make up the function body.

Statements must have same indentation level (usually 4 spaces).

7. An optional return statement to return a value from the function.

Example:

def hf():

 hello world

hf()

In the above example we are just trying to execute the program by calling the

function. So it will not display any error and no output on to the screen but gets

executed.

To get the statements of function need to be use print().

#calling function in python:

def hf():

 print("hello world")

hf()

Output:

hello world

def hf():

https://www.programiz.com/python-programming/keywords-identifier#rules

 print("hw")

 print("gh kfjg 66666")

hf()

hf()

hf()

Output:

hw

gh kfjg 66666

hw

gh kfjg 66666

hw

gh kfjg 66666

def add(x,y):

 c=x+y

 print(c)

add(5,4)

Output:

9

def add(x,y):

 c=x+y

 return c

print(add(5,4))

Output:

9

def add_sub(x,y):

 c=x+y

 d=x-y

 return c,d

print(add_sub(10,5))

Output:

 (15, 5)

The return statement is used to exit a function and go back to the place from

where it was called. This statement can contain expression which gets

evaluated and the value is returned. If there is no expression in the statement or

the return statement itself is not present inside a function, then the function will

return the None object.
def hf():

 return "hw"

print(hf())

Output:

hw

def hf():

 return "hw"

hf()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu.py

>>>

def hello_f():

 return "hellocollege"

print(hello_f().upper())

Output:

HELLOCOLLEGE

Passing Arguments

def hello(wish):

 return '{}'.format(wish)

print(hello("mrcet"))

Output:

mrcet

--

Here, the function wish() has two parameters. Since, we have called this

function with two arguments, it runs smoothly and we do not get any error. If

we call it with different number of arguments, the interpreter will give errors.

def wish(name,msg):

 """This function greets to

 the person with the provided message"""

 print("Hello",name + ' ' + msg)

wish("MRCET","Good morning!")

Output:

Hello MRCET Good morning!

Below is a call to this function with one and no arguments along with their

respective error messages.

>>> wish("MRCET") # only one argument

TypeError: wish() missing 1 required positional argument: 'msg'

>>> wish() # no arguments

TypeError: wish() missing 2 required positional arguments: 'name' and 'msg'

--

def hello(wish,hello):

 return “hi” '{},{}'.format(wish,hello)

print(hello("mrcet","college"))

Output:

himrcet,college

#Keyword Arguments

When we call a function with some values, these values get assigned to the

arguments according to their position.

Python allows functions to be called using keyword arguments. When we call

functions in this way, the order (position) of the arguments can be changed.

(Or)

If you have some functions with many parameters and you want to

specify only some of them, then you can give values for such parameters

by naming them - this is called keyword arguments - we use the name

(keyword) instead of the position (which we have been using all along) to

specify the arguments to the function.

There are two advantages - one, using the function is easier since we do

not need to worry about the order of the arguments. Two, we can give

values to only those parameters which we want, provided that the other

parameters have default argument values.

def func(a, b=5, c=10):

 print 'a is', a, 'and b is', b, 'and c is', c

func(3, 7)

func(25, c=24)

func(c=50, a=100)

Output:

a is 3 and b is 7 and c is 10

a is 25 and b is 5 and c is 24

a is 100 and b is 5 and c is 50

Note:

The function named func has one parameter without default argument

values, followed by two parameters with default argument values.

In the first usage, func(3, 7), the parameter a gets the value 3, the

parameter b gets the value 5 and c gets the default value of 10.

In the second usage func(25, c=24), the variable a gets the value of 25

due to the position of the argument. Then, the parameter c gets the value

of 24 due to naming i.e. keyword arguments. The variable b gets the

default value of 5.

In the third usage func(c=50, a=100), we use keyword arguments

completely to specify the values. Notice, that we are specifying value for

parameter c before that for a even though a is defined before c in the

function definition.

For example: if you define the function like below

def func(b=5, c=10,a): # shows error : non-default argument follows default

argument

def print_name(name1, name2):

 """ This function prints the name """

 print (name1 + " and " + name2 + " are friends")

#calling the function

print_name(name2 = 'A',name1 = 'B')

Output:

B and A are friends

#Default Arguments

Function arguments can have default values in Python.

We can provide a default value to an argument by using the assignment

operator (=)

def hello(wish,name='you'):

 return '{},{}'.format(wish,name)

print(hello("good morning"))

Output:

good morning,you

def hello(wish,name='you'):

 return '{},{}'.format(wish,name) //print(wish + ‘ ‘ + name)

print(hello("good morning","nirosha")) // hello("good morning","nirosha")

Output:

good morning,nirosha // good morning nirosha

Note: Any number of arguments in a function can have a default value. But

once we have a default argument, all the arguments to its right must also have

default values.

This means to say, non-default arguments cannot follow default arguments.

For example, if we had defined the function header above as:

def hello(name='you', wish):

Syntax Error: non-default argument follows default argument

--

def sum(a=4, b=2): #2 is supplied as default argument

 """ This function will print sum of two numbers

 if the arguments are not supplied

 it will add the default value """

 print (a+b)

sum(1,2) #calling with arguments

sum() #calling without arguments

Output:

3

6

#Variable-length arguments

Sometimes you may need more arguments to process function then you

mentioned in the definition. If we don’t know in advance about the arguments

needed in function, we can use variable-length arguments also called arbitrary

arguments.

For this an asterisk (*) is placed before a parameter in function definition

which can hold non-keyworded variable-length arguments and a double

asterisk (**) is placed before a parameter in function which can hold

keyworded variable-length arguments.

If we use one asterisk (*) like *var, then all the positional arguments from that

point till the end are collected as a tuple called ‘var’ and if we use two asterisks

(**) before a variable like **var, then all the positional arguments from that

point till the end are collected as a dictionary called ‘var’.

def wish(*names):

 """This function greets all

 the person in the names tuple."""

http://www.trytoprogram.com/python-programming/python-tuples/
http://www.trytoprogram.com/python-programming/python-dictionary/

 # names is a tuple with arguments

 for name in names:

 print("Hello",name)

wish("MRCET","CSE","SIR","MADAM")

Output:

Hello MRCET

Hello CSE

Hello SIR

Hello MADAM

Some examples on functions:

To display vandemataram by using function use no args no return type

#function defination

def display():

 print("vandemataram")

print("i am in main")

#function call

display()

print("i am in main")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

i am in main

vandemataram

i am in main

#Type1 : No parameters and no return type

def Fun1() :

 print("function 1")

Fun1()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

function 1

#Type 2: with param with out return type

def fun2(a) :

 print(a)

fun2("hello")

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Hello

#Type 3: without param with return type

def fun3():

 return "welcome to python"

print(fun3())

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

welcome to python

#Type 4: with param with return type

def fun4(a):

 return a

print(fun4("python is better then c"))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

python is better then c

#Program to find area of a circle using function use single return value

function with argument.

pi=3.14

def areaOfCircle(r):

 return pi*r*r

r=int(input("Enter radius of circle"))

print(areaOfCircle(r))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Enter radius of circle 3

28.259999999999998

#Program to write sum different product and using arguments with

return value function.

def calculete(a,b):

 total=a+b

 diff=a-b

 prod=a*b

 div=a/b

 mod=a%b

 return total,diff,prod,div,mod

a=int(input("Enter a value"))

b=int(input("Enter b value"))

 #function call

s,d,p,q,m = calculete(a,b)

print("Sum= ",s,"diff= ",d,"mul= ",p,"div= ",q,"mod= ",m)

#print("diff= ",d)

#print("mul= ",p)

#print("div= ",q)

#print("mod= ",m)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Enter a value 5

Enter b value 6

Sum= 11 diff= -1 mul= 30 div= 0.8333333333333334 mod= 5

#program to find biggest of two numbers using functions.

def biggest(a,b):

 if a>b :

 return a

 else :

 return b

a=int(input("Enter a value"))

b=int(input("Enter b value"))

 #function call

big= biggest(a,b)

print("big number= ",big)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Enter a value 5

Enter b value-2

big number= 5

#program to find biggest of two numbers using functions. (nested if)

def biggest(a,b,c):

 if a>b :

 if a>c :

 return a

 else :

 return c

 else :

 if b>c :

 return b

 else :

 return c

a=int(input("Enter a value"))

b=int(input("Enter b value"))

c=int(input("Enter c value"))

 #function call

big= biggest(a,b,c)

print("big number= ",big)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Enter a value 5

Enter b value -6

Enter c value 7

big number= 7

#Writer a program to read one subject mark and print pass or fail use

single return values function with argument.

def result(a):

 if a>40:

 return "pass"

 else:

 return "fail"

a=int(input("Enter one subject marks"))

print(result(a))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

Enter one subject marks 35

fail

#Write a program to display mrecet cse dept 10 times on the screen. (while

loop)

def usingFunctions():

 count =0

 while count<10:

 print("mrcet cse dept",count)

 count=count+1

usingFunctions()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

mrcet cse dept 0

mrcet cse dept 1

mrcet cse dept 2

mrcet cse dept 3

mrcet cse dept 4

mrcet cse dept 5

mrcet cse dept 6

mrcet cse dept 7

mrcet cse dept 8

mrcet cse dept 9

Anonymous Functions:

Anonymous function is a function i.e. defined without name.

While normal functions are defined using the def keyword.

Anonymous functions are defined using lambda keyword hence anonymous

functions are also called lambda functions.

Syntax: lambda arguments: expression

• Lambda function can have any no. of arguments for any one expression.

• The expression is evaluated and returns.

Use of Lambda functions:

• Lambda functions are used as nameless functions for a short period of

time.

• In python lambda functions are an argument to higher order functions.

• Lambda functions are used along with built-in functions like

filter(),map() and reduce() etc….

Write a program to double a given number

double = lambda x:2*x

print(double(5))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/fu1.py

10

#Write a program to sum of two numbers

add = lambda x,y:x+y

print(add(5,4))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/fu1.py

9

#Write a program to find biggest of two numbers

biggest = lambda x,y: a if x>y else y

print(biggest(20,30))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

30

Fruitful Functions (Function Returning Values):

We write functions that return values, which we will call fruitful functions.

We have seen the return statement before, but in a fruitful function

the return statement includes a return value. This statement means: "Return

immediately from this function and use the following expression as a return

value."

returns the area of a circle with the given radius:

def area(radius):

 temp = 3.14 * radius**2

 return temp

print(area(4))

 (or)

def area(radius):

 return 3.14 * radius**2

print(area(2))

Sometimes it is useful to have multiple return statements, one in each branch

of a conditional:

def absolute_value(x):

 if x < 0:

 return -x

 else:

 return x

Since these return statements are in an alternative conditional, only one will be

executed.

As soon as a return statement executes, the function terminates without

executing any subsequent statements. Code that appears after

a return statement, or any other place the flow of execution can never reach, is

called dead code.

In a fruitful function, it is a good idea to ensure that every possible path

through the program hits a return statement. For example:

def absolute_value(x):

 if x < 0:

 return -x

 if x > 0:

 return x

This function is incorrect because if x happens to be 0, both conditions is true,

and the function ends without hitting a return statement. If the flow of

execution gets to the end of a function, the return value is None, which is not

the absolute value of 0.

>>> print absolute_value(0)

None

By the way, Python provides a built-in function called abs that computes

absolute values.

Write a Python function that takes two lists and returns True if they

have at least one common member.

def common_data(list1, list2):

 for x in list1:

 for y in list2:

 if x == y:

 result = True

 return result

print(common_data([1,2,3,4,5], [1,2,3,4,5]))

print(common_data([1,2,3,4,5], [1,7,8,9,510]))

print(common_data([1,2,3,4,5], [6,7,8,9,10]))

Output:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy\fu1.py

True

True

None

Scope of the Variables in a Function - Global and Local Variables:

The scope of a variable determines its accessibility and availability in different

portions of a program. Their availability depends on where they are defined.

Similarly, life is a period in which the variable is stored in the memory.

Depending on the scope and the lifetime, there are two kinds of variables in

Python.

• Local Variables

• Global Variables

Local Variables vs. Global Variables

Here are some of the points to list out the difference between global and local

variable for their proper understanding.

• Variables or parameters defined inside a function are called local

variables as their scope is limited to the function only. On the contrary,

Global variables are defined outside of the function.

• Local variables can’t be used outside the function whereas a global

variable can be used throughout the program anywhere as per

requirement.

• The lifetime of a local variable ends with the termination or the

execution of a function, whereas the lifetime of a global variable ends

with the termination of the entire program.

• The variable defined inside a function can also be made global by using

the global statement.

def function_name(args):

 global x #declaring global variable inside a function

create a global variable

x = "global"

def f():

 print("x inside :", x)

f()

print("x outside:", x)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

x inside : global

x outside: global

create a local variable

def f1():

 y = "local"

 print(y)

f1()

Output:

local

• If we try to access the local variable outside the scope for example,

def f2():

 y = "local"

f2()

print(y)

Then when we try to run it shows an error,

Traceback (most recent call last):

 File "C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/fu1.py", line 6, in <module>

 print(y)

NameError: name 'y' is not defined

The output shows an error, because we are trying to access a local variable y in

a global scope whereas the local variable only works inside f2() or local scope.

use local and global variables in same code

x = "global"

def f3():

 global x

 y = "local"

 x = x * 2

 print(x)

 print(y)

f3()

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

globalglobal

local

• In the above code, we declare x as a global and y as a local variable in

the f3(). Then, we use multiplication operator * to modify the global

variable x and we print both x and y.

• After calling the f3(), the value of x becomes global global because we

used the x * 2 to print two times global. After that, we print the value of

local variable y i.e local.

use Global variable and Local variable with same name

x = 5

def f4():

 x = 10

 print("local x:", x)

f4()

print("global x:", x)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/fu1.py

local x: 10

global x: 5

Powerful Lamda function in python:

Lambda functions are used along with built-in functions like filter(), map() and

reduce()etc….

Filter():

• The filter functions takes list as argument.

• The filter() is called when new list is returned which contains items for

which the function evaluates to true.

• Filter:The filter() function returns an iterator were the items are filtered

through a function to test if the item is accepted or not.

Syntax: filter(function, iterable)

#Write a program to filter() function to filter out only even numbers from

the given list

myList =[1,2,3,4,5,6]

newList = list(filter(lambda x: x%2 ==0,myList))

print(newList)

Output:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy\fu1.py

[2, 4, 6]

#Write a program for filter() function to print the items greater than 4

list1 = [10,2,8,7,5,4,3,11,0, 1]

result = filter (lambda x: x > 4, list1)

print(list(result))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/m1.py

=

[10, 8, 7, 5, 11]

Map() :

• Map() function in python takes a function & list.

• The function is called with all items in the list and a new list is returned

which contains items returned by that function for each item.

• Map applies a function to all the items in an list.

• The advantage of the lambda operator can be seen when it is used in

combination with the map() function.

• map() is a function with two arguments:

Syntax: r = map(func, seq)

#Write a program for map() function to double all the items in the list

myList =[1,2,3,4,5,6,7,8,9,10]

newList = list(map(lambda x: x*2,myList))

print(newList)

Output:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy\fu1.py

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Write a program to seperate the letters of the word "hello" and add the

letters as items of the list.

letters = []

letters = list(map(lambda x:x,"hello"))

print(letters)

Output:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy\fu1.py

['h', 'e', 'l', 'l', 'o']

#Write a program for map() function to double all the items in the list?

def addition(n):

 return n + n

numbers = (1, 2, 3, 4)

result = map(addition, numbers)

print(list(result))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/m1.py

=

[2, 4, 6, 8]

Reduce():

• Applies the same operation to items of sequence.

• Use the result of the first operation for the next operation

• Returns an item, not a list.

• Reduce: The reduce(fun, seq)function is used to apply a particular

• function passed in its argument to all of the list elementsmentioned in

the sequence passed along. This function is defined in “functools”

module.

#Write a program to find some of the numbers for the elements of the list

by using reduce()

import functools

myList =[1,2,3,4,5,6,7,8,9,10]

print(functools.reduce(lambda x,y: x+y,myList))

Output:

C:\Users\MRCET\AppData\Local\Programs\Python\Python38-32\pyyy\fu1.py

55

#Write a program for reduce() function to print the product of items in a

list

from functools import reduce

list1 = [1,2,3,4,5]

product = reduce (lambda x, y: x*y, list1)

print(product)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/m1.py

=

120

UNIT 4

DATA STRUCTURES

Course Objective:

 To use python data-structures lists, tuples, dictionaries.

Course Outcome

Represent compound data using python lists, tuples, dictionaries

DATA STRUCTURES:

Data Structures in Python provides / include Python list, Python Tuple, Python

set, and Python dictionaries with their syntax and examples.

Here in this data structure we will come to know as a way of organizing and

storing data such that we can access and modify it efficiently

List:

• It is a general purpose most widely used in data structures

• List is a collection which is ordered and changeable and allows duplicate

members. (Grow and shrink as needed, sequence type, sortable).

• To use a list, you must declare it first. Do this using square brackets and

separate values with commas.

• We can construct / create list in many ways.

Ex:

>>> list1=[1,2,3,'A','B',7,8,[10,11]]

>>> print(list1)

[1, 2, 3, 'A', 'B', 7, 8, [10, 11]]

>>> x=list()

>>> x

[]

>>> tuple1=(1,2,3,4)

>>> x=list(tuple1)

>>> x

[1, 2, 3, 4]

The list data type has some more methods. Here are all of the methods of list

objects:

List Operations:

• Del()

• Append()

• Extend()

• Insert()

• Pop()

• Remove()

• Reverse()

• Sort()

Delete: Delete a list or an item from a list

>>> x=[5,3,8,6]

>>> del(x[1]) #deletes the index position 1 in a list

>>> x

[5, 8, 6]

>>> del(x)

>>> x # complete list gets deleted

Append: Append an item to a list

>>> x=[1,5,8,4]

>>> x.append(10)

>>> x

[1, 5, 8, 4, 10]

Extend: Append a sequence to a list.

>>> x=[1,2,3,4]

>>> y=[3,6,9,1]

>>> x.extend(y)

>>> x

[1, 2, 3, 4, 3, 6, 9, 1]

Insert: To add an item at the specified index, use the insert () method:

>>> x=[1,2,4,6,7]

>>> x.insert(2,10) #insert(index no, item to be inserted)

>>> x

[1, 2, 10, 4, 6, 7]

>>> x.insert(4,['a',11])

>>> x

[1, 2, 10, 4, ['a', 11], 6, 7]

Pop: The pop() method removes the specified index, (or the last item if index

is not specified) or simply pops the last item of list and returns the item.

>>> x=[1, 2, 10, 4, 6, 7]

>>> x.pop()

7

>>> x

[1, 2, 10, 4, 6]

>>> x=[1, 2, 10, 4, 6]

>>> x.pop(2)

10

>>> x

[1, 2, 4, 6]

Remove: The remove() method removes the specified item from a given list.

>>> x=[1,33,2,10,4,6]

>>> x.remove(33)

>>> x

[1, 2, 10, 4, 6]

>>> x.remove(4)

>>> x

[1, 2, 10, 6]

Reverse: Reverse the order of a given list.

>>> x=[1,2,3,4,5,6,7]

>>> x.reverse()

>>> x

[7, 6, 5, 4, 3, 2, 1]

Sort: Sorts the elements in ascending order

>>> x=[7, 6, 5, 4, 3, 2, 1]

>>> x.sort()

>>> x

[1, 2, 3, 4, 5, 6, 7]

>>> x=[10,1,5,3,8,7]

>>> x.sort()

>>> x

[1, 3, 5, 7, 8, 10]

Slicing: Slice out substrings, sub lists, sub Tuples using index.

 [Start: stop: steps]

• Slicing will start from index and will go up to stop in step of steps.

• Default value of start is 0,

• Stop is last index of list

• And for step default is 1

Example:

>>> x='computer'

>>> x[1:4]

'omp'

>>> x[1:6:2]

'opt'

>>> x[3:]

'puter'

>>> x[:5]

'compu'

>>> x[-1]

'r'

>>> x[-3:]

'ter'

>>> x[:-2]

'comput'

>>> x[::-2]

'rtpo'

>>> x[::-1]

'retupmoc'

List:

>>> list1=range(1,6)

>>> list1

range(1, 6)

>>> print(list1)

range(1, 6)

>>> list1=[1,2,3,4,5,6,7,8,9,10]

>>> list1[1:]

[2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> list1[:1]

[1]

>>> list1[2:5]

[3, 4, 5]

>>> list1[:6]

[1, 2, 3, 4, 5, 6]

>>> list1[1:2:4]

[2]

>>> list1[1:8:2]

[2, 4, 6, 8]

Tuple:

>>> list1=(11,12,13,14)

>>> list1[:2]

(11, 12)

To create a slice:

>>> print(slice(3))

slice(None, 3, None)

>>> print(slice(2))

slice(None, 2, None)

>>> print(slice(1,6,4))

slice(1, 6, 4)

To get substring from a given string using slice object:

>>> pystr='python'

>>> x=slice(3)

>>> print(pystr[x])

Pyt

Using –ve index:

>>> pystr='python'

>>> x=slice(1,-3,1)

>>> print(pystr[x])

>>> yt

To get sublist and sub-tuple from a given list and tuple respectively:

>>> list1=['m','r','c','e','t']

>>> tup1=('c','o','l','l','e','g','e')

>>> x=slice(1,4,1)

>>> print(tup1[x])

('o', 'l', 'l')

>>> print(list1[x])

['r', 'c', 'e']

>>> x=slice(1,5,2)

>>> print(list1[x])

['r', 'e']

>>> print(tup1[x])

('o', 'l')

>>> x=slice(-1,-4,-1) #negative index

>>> print(list1[x])

['t', 'e', 'c']

>>> x=slice(-1,-4,-1) #negative index

>>> print(tup1[x])

('e', 'g', 'e')

>>> print(list1[0:3]) #extending indexing syntax

['m', 'r', 'c']

Tuples:

A tuple is a collection which is ordered and unchangeable. In Python tuples

are written with round brackets.

• Supports all operations for sequences.

• Immutable, but member objects may be mutable.

• If the contents of a list shouldn’t change, use a tuple to prevent items

from accidently being added, changed, or deleted.

• Tuples are more efficient than list due to python’s implementation.

We can construct tuple in many ways:

X=() #no item tuple

X=(1,2,3)

X=tuple(list1)

X=1,2,3,4

Example:

>>> x=(1,2,3)

>>> print(x)

(1, 2, 3)

>>> x

(1, 2, 3)

>>> x=()

>>> x

()

>>> x=[4,5,66,9]

>>> y=tuple(x)

>>> y

(4, 5, 66, 9)

>>> x=1,2,3,4

>>> x

(1, 2, 3, 4)

Some of the operations of tuple are:

• Access tuple items

• Change tuple items

• Loop through a tuple

• Count()

• Index()

• Length()

Access tuple items: Access tuple items by referring to the index number,

inside square brackets

>>> x=('a','b','c','g')

>>> print(x[2])

c

Change tuple items: Once a tuple is created, you cannot change its values.

Tuples are unchangeable.

>>> x=(2,5,7,'4',8)

>>> x[1]=10

Traceback (most recent call last):

 File "<pyshell#41>", line 1, in <module>

 x[1]=10

TypeError: 'tuple' object does not support item assignment

>>> x

(2, 5, 7, '4', 8) # the value is still the same

Loop through a tuple: We can loop the values of tuple using for loop

>>> x=4,5,6,7,2,'aa'

>>> for i in x:

 print(i)

4

5

6

7

2

aa

Count (): Returns the number of times a specified value occurs in a tuple

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> x.count(2)

4

Index (): Searches the tuple for a specified value and returns the position of

where it

 was found

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> x.index(2)

1

(Or)

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> y=x.index(2)

>>> print(y)

1

Length (): To know the number of items or values present in a tuple, we

use len().

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> y=len(x)

>>> print(y)

12

Set:

A set is a collection which is unordered and unindexed with no duplicate

elements. In Python sets are written with curly brackets.

• To create an empty set we use set()

• Curly braces ‘{}’ or the set() function can be used to create sets

We can construct tuple in many ways:

X=set()

X={3,5,6,8}

X=set(list1)

Example:

>>> x={1,3,5,6}

>>> x

{1, 3, 5, 6}

>>> x=set()

>>> x

https://docs.python.org/3/library/stdtypes.html#set

set()

>>> list1=[4,6,"dd",7]

>>> x=set(list1)

>>> x

{4, 'dd', 6, 7}

• We cannot access items in a set by referring to an index, since sets

are unordered the items has no index.

• But you can loop through the set items using a for loop, or ask if a

specified value is present in a set, by using the in keyword.

Some of the basic set operations are:

• Add()

• Remove()

• Len()

• Item in x

• Pop

• Clear

Add (): To add one item to a set use the add () method. To add more than

one item to a set use the update () method.

>>> x={"mrcet","college","cse","dept"}

>>> x.add("autonomous")

>>> x

{'mrcet', 'dept', 'autonomous', 'cse', 'college'}

>>> x={1,2,3}

>>> x.update("a","b")

>>> x

{1, 2, 3, 'a', 'b'}

>>> x={1,2,3}

>>> x.update([4,5],[6,7,8])

>>> x

{1, 2, 3, 4, 5, 6, 7, 8}

Remove (): To remove an item from the set we use remove or discard

methods.

>>> x={1, 2, 3, 'a', 'b'}

>>> x.remove(3)

>>> x

{1, 2, 'a', 'b'}

Len (): To know the number of items present in a set, we use len().

>>> z={'mrcet', 'dept', 'autonomous', 'cse', 'college'}

>>> len(z)

5

Item in X: you can loop through the set items using a for loop.

>>> x={'a','b','c','d'}

>>> for item in x:

 print(item)

c

d

a

b

pop ():This method is used to remove an item, but this method will remove

the last item. Remember that sets are unordered, so you will not know what

item that gets removed.

>>> x={1, 2, 3, 4, 5, 6, 7, 8}

>>> x.pop()

1

>>> x

{2, 3, 4, 5, 6, 7, 8}

Clear (): This method will the set as empty.

>>> x={2, 3, 4, 5, 6, 7, 8}

>>> x.clear()

>>> x

set()

The set also consist of some mathematical operations like:

Intersection AND &

Union OR |

Symmetric Diff XOR ^

Diff In set1 but not in set2 set1-set2

Subset set2 contains set1 set1<=set2

Superset set1 contains set2 set1>=set2

Some examples:

>>> x={1,2,3,4}

>>> y={4,5,6,7}

>>> print(x|y)

{1, 2, 3, 4, 5, 6, 7}

>>> x={1,2,3,4}

>>> y={4,5,6,7}

>>> print(x&y)

{4}

>>> A = {1, 2, 3, 4, 5}

>>> B = {4, 5, 6, 7, 8}

>>> print(A-B)

{1, 2, 3}

>>> B = {4, 5, 6, 7, 8}

>>> A = {1, 2, 3, 4, 5}

>>> print(B^A)

{1, 2, 3, 6, 7, 8}

Dictionaries:

A dictionary is a collection which is unordered, changeable and indexed. In

Python dictionaries are written with curly brackets, and they have keys and

values.

• Key-value pairs

• Unordered

We can construct or create dictionary like:

X={1:’A’,2:’B’,3:’c’}

X=dict([(‘a’,3) (‘b’,4)]

X=dict(‘A’=1,’B’ =2)

Examples:

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> dict1

{'brand': 'mrcet', 'model': 'college', 'year': 2004}

To access specific value of a dictionary, we must pass its key,

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> x=dict1["brand"]

>>> x

'mrcet'

To access keys and values and items of dictionary:

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> dict1.keys()

dict_keys(['brand', 'model', 'year'])

>>> dict1.values()

dict_values(['mrcet', 'college', 2004])

>>> dict1.items()

dict_items([('brand', 'mrcet'), ('model', 'college'), ('year', 2004)])

>>> for items in dict1.values():

 print(items)

mrcet

college

2004

>>> for items in dict1.keys():

 print(items)

brand

model

year

>>> for i in dict1.items():

 print(i)

('brand', 'mrcet')

('model', 'college')

('year', 2004)

Some of the operations are:

• Add/change

• Remove

• Length

• Delete

Add/change values: You can change the value of a specific item by

referring to its key name

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> dict1["year"]=2005

>>> dict1

{'brand': 'mrcet', 'model': 'college', 'year': 2005}

Remove(): It removes or pop the specific item of dictionary.

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> print(dict1.pop("model"))

college

>>> dict1

{'brand': 'mrcet', 'year': 2005}

Delete: Deletes a particular item.

>>> x = {1:1, 2:4, 3:9, 4:16, 5:25}

>>> del x[5]

>>> x

Length: we use len() method to get the length of dictionary.

>>>{1: 1, 2: 4, 3: 9, 4: 16}

{1: 1, 2: 4, 3: 9, 4: 16}

>>> y=len(x)

>>> y

4

Iterating over (key, value) pairs:

>>> x = {1:1, 2:4, 3:9, 4:16, 5:25}

>>> for key in x:

 print(key, x[key])

1 1

2 4

3 9

4 16

5 25

>>> for k,v in x.items():

 print(k,v)

1 1

2 4

3 9

4 16

5 25

List of Dictionaries:

>>> customers = [{"uid":1,"name":"John"},

 {"uid":2,"name":"Smith"},

 {"uid":3,"name":"Andersson"},

]

>>> >>> print(customers)

[{'uid': 1, 'name': 'John'}, {'uid': 2, 'name': 'Smith'}, {'uid': 3, 'name':

'Andersson'}]

Print the uid and name of each customer

>>> for x in customers:

 print(x["uid"], x["name"])

1 John

2 Smith

3 Andersson

Modify an entry, This will change the name of customer 2 from Smith to

Charlie

>>> customers[2]["name"]="charlie"

>>> print(customers)

[{'uid': 1, 'name': 'John'}, {'uid': 2, 'name': 'Smith'}, {'uid': 3, 'name':

'charlie'}]

Add a new field to each entry

>>> for x in customers:

 x["password"]="123456" # any initial value

>>> print(customers)

[{'uid': 1, 'name': 'John', 'password': '123456'}, {'uid': 2, 'name': 'Smith',

'password': '123456'}, {'uid': 3, 'name': 'charlie', 'password': '123456'}]

Delete a field

>>> del customers[1]

>>> print(customers)

[{'uid': 1, 'name': 'John', 'password': '123456'}, {'uid': 3, 'name': 'charlie',

'password': '123456'}]

>>> del customers[1]

>>> print(customers)

[{'uid': 1, 'name': 'John', 'password': '123456'}]

Delete all fields

>>> for x in customers:

 del x["uid"]

>>> x

{'name': 'John', 'password': '123456'}

Sequences:

A sequence is a succession of values bound together by a container that

reflects their type. Almost every stream that you put in python is a

sequence. Some of them are:

• String

• List

• Tuples

• Range object

String: A string is a group of characters. Since Python has no provision for

arrays, we simply use strings. This is how we declare a string. We can use a

pair of single or double quotes. Every string object is of the type ‘str’.

>>> type("name")

<class 'str'>

>>> name=str()

>>> name

''

>>> a=str('mrcet')

>>> a

'mrcet'

>>> a=str(mrcet)

>>> a[2]

'c'

List: A list is an ordered group of items. To declare it, we use square

brackets.

>>> college=["cse","it","eee","ece","mech","aero"]

>>> college[1]

'it'

>>> college[:2]

['cse', 'it']

>>> college[:3]

['cse', 'it', 'eee']

>>> college[3:]

['ece', 'mech', 'aero']

>>> college[0]="csedept"

>>> college

['csedept', 'it', 'eee', 'ece', 'mech', 'aero']

Tuple: It is an immutable group of items. When we say immutable, we

mean we cannot change a single value once we declare it.

>>> x=[1,2,3]

>>> y=tuple(x)

>>> y

(1, 2, 3)

>>> hello=tuple(["mrcet","college"])

>>> hello

('mrcet', 'college')

Range object: A range() object lends us a range to iterate on; it gives us a

list of numbers.

>>> a=range(4)

>>> type(a)

<class 'range'>

>>> for i in range(1,6,2):

 print(i)

1

3

5

Some of the python sequence operations and functions are:

1. Indexing

2. Slicing

3. Adding/Concatenation

4. Multiplying

5. Checking membership

6. Iterating

7. Len()

8. Min()

9. Max()

10. Sum()

11. Sorted()

12. Count()

13. Index()

1. Indexing

Access any item in the sequence using its index.

string List

>>> x='mrcet'

>>> print(x[2])

c

>>> x=['a','b','c']

>>> print(x[1])

b

2. Slicing

Slice out substrings, sub lists, sub tuples using index

[start : stop : step size]

>>> x='computer'

>>> x[1:4]

'omp'

>>> x[1:6:2]

'opt'

>>> x[3:]

'puter'

>>> x[:5]

'compu'

>>> x[-1]

'r'

>>> x[-3:]

'ter'

>>> x[:-2]

'comput'

>>> x[::-2]

'rtpo'

>>> x[::-1]

'retupmoc'

3. Adding/concatenation:

Combine 2 sequences of same type using +.

string List

>>> x='mrcet' + 'college'

>>> print(x)

Mrcetcollege

>>> x=['a','b'] + ['c']

>>> print(x)

['a', 'b', 'c']

4. Multiplying:

Multiply a sequence using *.

string List

>>> x='mrcet'*3

 >>> x

'mrcetmrcetmrcet'

>>> x=[3,4]*2

>>> x

[3, 4, 3, 4]

5. Checking Membership:

Test whether an item is in or not in a sequence.

string List

>>> x='mrcet'

>>> print('c' in x)

True

>>> x=['a','b','c']

>>> print('a' not in x)

False

6. Iterating:

Iterate through the items in asequence

>>> x=[1,2,3]

>>> for item in x:

 print(item*2)

2

4

6

If we want to display the items of a given list with index then we

have to use “enumerate” keyword.

>>> x=[5,6,7]

>>> for item,index in enumerate(x):

 print(item,index)

0 5

1 6

2 7

7. len():

It will count the number of items in a given sequence.

string List

>>> x="mrcet"

>>> print(len(x))

5

>>> x=["aa","b",'c','cc']

 >>> print(len(x))

4

8. min():

Finds the minimum item in a given sequence lexicographically.

string List

>>> x="mrcet"

>>> print(min(x))

c

>>> x=["apple","ant1","ant"]

>>> print(min(x))

ant

It is an alpha-numeric type but cannot mix types.

>>> x=["apple","ant1","ant",11]

>>> print(min(x))

Traceback (most recent call last):

 File "<pyshell#73>", line 1, in <module>

 print(min(x))

TypeError: '<' not supported between instances of 'int' and 'str'

9. max():

Finds the maximum item in a given sequence

string List

>>> x='cognizant'

>>> print(max(x))

z

>>> x=["hello","yummy","zebra"]

>>> print(max(x))

zebra

It is an alpha-numeric type but cannot mix types.

>>> x=["hello","yummy1","zebra1",22]

>>> print(max(x))

Traceback (most recent call last):

 File "<pyshell#79>", line 1, in <module>

 print(max(x))

TypeError: '>' not supported between instances of 'int' and 'str'

10. Sum:

Finds the sum of items in a sequence

>>> x=[1,2,3,4,5]

>>> print(sum(x))

15

>>> print(sum(x[-2:]))

9

Entire string must be numeric type.

>>> x=[1,2,3,4,5,"mrcet"]

>>> print(sum(x))

Traceback (most recent call last):

 File "<pyshell#83>", line 1, in <module>

 print(sum(x))

TypeError: unsupported operand type(s) for +: 'int' and 'str'

11. Sorted():

Returns a new list of items in sorted order but does not change the

original list.

string List

>>> x='college'

>>> print(sorted(x))

['c', 'e', 'e', 'g', 'l', 'l', 'o']

>>> x=['a','r','g','c','j','z']

>>> print(sorted(x))

['a', 'c', 'g', 'j', 'r', 'z']

12. Count():

It returns the count of an item

string List

>>> x='college'

>>> print(x.count('l'))

2

>>> 'college'.count('l')

2

>>> x=['a','b','a','a','c','a']

>>> print(x.count('a'))

4

13. Index()

Returns the index of first occurrence

string List

>>> x='college'

>>> print(x.index('l'))

2

>>> x=['a','b','a','a','c','a']

>>> print(x.index('a'))

0

Comprehensions:

List:

List comprehensions provide a concise way to create lists. Common

applications are to make new lists where each element is the result of some

operations applied to each member of another sequence or iterable, or to create

a subsequence of those elements that satisfy a certain condition.

For example, assume we want to create a list of squares, like:

>>> list1=[]

>>> for x in range(10):

 list1.append(x**2)

>>> list1

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

(or)

This is also equivalent to

>>> list1=list(map(lambda x:x**2, range(10)))

>>> list1

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

(or)

Which is more concise and redable.

>>> list1=[x**2 for x in range(10)]

>>> list1

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Similarily some examples:

>>> x=[m for m in range(8)]

>>> print(x)

[0, 1, 2, 3, 4, 5, 6, 7]

>>> x=[z**2 for z in range(10) if z>4]

>>> print(x)

[25, 36, 49, 64, 81]

>>> x=[x ** 2 for x in range (1, 11) if x % 2 == 1]

>>> print(x)

[1, 9, 25, 49, 81]

>>> a=5

>>> table = [[a, b, a * b] for b in range(1, 11)]

>>> for i in table:

 print(i)

[5, 1, 5]

[5, 2, 10]

[5, 3, 15]

[5, 4, 20]

[5, 5, 25]

[5, 6, 30]

[5, 7, 35]

[5, 8, 40]

[5, 9, 45]

[5, 10, 50]

Tuple:

Tuple Comprehensions are special: The result of a tuple comprehension is

special. You might expect it to produce a tuple, but what it does is produce

a special "generator" object that we can iterate over.

For example:

>>> x = (i for i in 'abc') #tuple comprehension

>>> x

<generator object <genexpr> at 0x033EEC30>

>>> print(x)

<generator object <genexpr> at 0x033EEC30>

You might expect this to print as ('a', 'b', 'c') but it prints as <generator

object <genexpr> at 0x02AAD710> The result of a tuple comprehension is

not a tuple: it is actually a generator. The only thing that you need to know

now about a generator now is that you can iterate over it, but ONLY

ONCE.

 So, given the code

>>> x = (i for i in 'abc')

>>> for i in x:

 print(i)

a

b

c

Create a list of 2-tuples like (number, square):

>>> z=[(x, x**2) for x in range(6)]

>>> z

[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]

Set:

Similarly to list comprehensions, set comprehensions are also supported:

>>> a = {x for x in 'abracadabra' if x not in 'abc'}

>>> a

{'r', 'd'}

>>> x={3*x for x in range(10) if x>5}

>>> x

{24, 18, 27, 21}

https://docs.python.org/3/tutorial/datastructures.html#tut-listcomps

Dictionary:

Dictionary comprehensions can be used to create dictionaries from arbitrary

key and value expressions:

>>> z={x: x**2 for x in (2,4,6)}

>>> z

{2: 4, 4: 16, 6: 36}

>>> dict11 = {x: x*x for x in range(6)}

>>> dict11

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

UNIT 5

SORTING

Course Objective:

 To do input/output with files in python.

Course Outcome

Read and write data from /to files in python programmes

Sorting:

Bubble Sort:

It is a simple sorting algorithm which sorts ‘n’ number of elements in the list

by comparing the ach pair of adjacent items and swaps them if they are in

wrong order.

Algorithm:

1. Starting with the first element (index=0), compare the current element

with the next element of a list.

2. If the current element is greater (>) than the next element of the list then

swap them.

3. If the current element is less (<) than the next element of the list move to

the next element.

4. Repeat step 1 until it correct order is framed.

For ex: list1= [10, 15, 4, 23, 0] so here we are comparing

values again

If > --- yes ---- swap and again, so we use

loops.

If < --- No ---- Do nothing/remains same

#Write a python program to arrange the elements in ascending order

using bubble sort:

list1=[9,16,6,26,0]

print("unsorted list1 is", list1)

for j in range(len(list1)-1):

 for i in range(len(list1)-1):

 if list1[i]>list1[i+1]:

 list1[i],list1[i+1]=list1[i+1],list1[i]

 print(list1)

 else:

 print(list1)

 print()

print("sorted list is",list1)

Output:

unsorted list1 is [9, 16, 6, 26, 0]

[9, 16, 6, 26, 0]

[9, 6, 16, 26, 0]

[9, 6, 16, 26, 0]

[9, 6, 16, 0, 26]

[6, 9, 16, 0, 26]

[6, 9, 16, 0, 26]

[6, 9, 0, 16, 26]

[6, 9, 0, 16, 26]

[6, 9, 0, 16, 26]

[6, 0, 9, 16, 26]

[6, 0, 9, 16, 26]

[6, 0, 9, 16, 26]

[0, 6, 9, 16, 26]

[0, 6, 9, 16, 26]

[0, 6, 9, 16, 26]

[0, 6, 9, 16, 26]

sorted list is [0, 6, 9, 16, 26]

#If we want to reduce no of iterations/steps in output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/bubb.py

list1=[9,16,6,26,0]

print("unsorted list1 is", list1)

for j in range(len(list1)-1,0,-1):

 for i in range(j):

 if list1[i]>list1[i+1]:

 list1[i],list1[i+1]=list1[i+1],list1[i]

 print(list1)

 else:

 print(list1)

 print()

print("sorted list is",list1)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/bubb2.py

unsorted list1 is [9, 16, 6, 26, 0]

[9, 16, 6, 26, 0]

[9, 6, 16, 26, 0]

[9, 6, 16, 26, 0]

[9, 6, 16, 0, 26]

[6, 9, 16, 0, 26]

[6, 9, 16, 0, 26]

[6, 9, 0, 16, 26]

[6, 9, 0, 16, 26]

[6, 0, 9, 16, 26]

[0, 6, 9, 16, 26]

sorted list is [0, 6, 9, 16, 26]

In a different way:

list1=[9,16,6,26,0]

print("unsorted list1 is", list1)

for j in range(len(list1)-1):

 for i in range(len(list1)-1-j):

 if list1[i]>list1[i+1]:

 list1[i],list1[i+1]=list1[i+1],list1[i]

 print(list1)

 else:

 print(list1)

 print()

print("sorted list is",list1)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/bubb3.py

unsorted list1 is [9, 16, 6, 26, 0]

[9, 16, 6, 26, 0]

[9, 6, 16, 26, 0]

[9, 6, 16, 26, 0]

[9, 6, 16, 0, 26]

[6, 9, 16, 0, 26]

[6, 9, 16, 0, 26]

[6, 9, 0, 16, 26]

[6, 9, 0, 16, 26]

[6, 0, 9, 16, 26]

[0, 6, 9, 16, 26]

sorted list is [0, 6, 9, 16, 26]

Program to give input from the user to sort the elements

list1=[]

num=int(input("enter how many numbers:"))

print("enter values")

for k in range(num):

 list1.append(int(input()))

print("unsorted list1 is", list1)

for j in range(len(list1)-1):

 for i in range(len(list1)-1):

 if list1[i]>list1[i+1]:

 list1[i],list1[i+1]=list1[i+1],list1[i]

 print(list1)

 else:

 print(list1)

 print()

print("sorted list is",list1)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/bubb4.py

enter how many numbers:5

enter values

5

77

4

66

30

unsorted list1 is [5, 77, 4, 66, 30]

[5, 77, 4, 66, 30]

[5, 4, 77, 66, 30]

[5, 4, 66, 77, 30]

[5, 4, 66, 30, 77]

[4, 5, 66, 30, 77]

[4, 5, 66, 30, 77]

[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]

[4, 5, 30, 66, 77]

sorted list is [4, 5, 30, 66, 77]

#bubble sort program for descending order

list1=[9,16,6,26,0]

print("unsorted list1 is", list1)

for j in range(len(list1)-1):

 for i in range(len(list1)-1):

 if list1[i]<list1[i+1]:

 list1[i],list1[i+1]=list1[i+1],list1[i]

 print(list1)

 else:

 print(list1)

 print()

print("sorted list is",list1)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

2/pyyy/bubbdesc.py

unsorted list1 is [9, 16, 6, 26, 0]

[16, 9, 6, 26, 0]

[16, 9, 6, 26, 0]

[16, 9, 26, 6, 0]

[16, 9, 26, 6, 0]

[16, 9, 26, 6, 0]

[16, 26, 9, 6, 0]

[16, 26, 9, 6, 0]

[16, 26, 9, 6, 0]

[26, 16, 9, 6, 0]

[26, 16, 9, 6, 0]

[26, 16, 9, 6, 0]

[26, 16, 9, 6, 0]

[26, 16, 9, 6, 0]

[26, 16, 9, 6, 0]

[26, 16, 9, 6, 0]

[26, 16, 9, 6, 0]

sorted list is [26, 16, 9, 6, 0]

Selection Sort:

Sort (): Built-in list method

Sorted (): built in function

• Generally this algorithm is called as in-place comparison based

algorithm. We compare numbers and place them in correct position.

• Search the list and find out the min value, this we can do it by min ()

method.

• We can take min value as the first element of the list and compare with

the next element until we find small value.

Algorithm:

1. Starting from the first element search for smallest/biggest element in the

list of numbers.

2. Swap min/max number with first element

3. Take the sub-list (ignore sorted part) and repeat step 1 and 2 until all the

elements are sorted.

#Write a python program to arrange the elements in ascending order

using selection sort:

list1=[5,3,7,1,9,6]

print(list1)

for i in range(len(list1)):

 min_val=min(list1[i:])

 min_ind=list1.index(min_val)

 list1[i],list1[min_ind]=list1[min_ind],list1[i]

 print(list1)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/selectasce.py

[5, 3, 7, 1, 9, 6]

[1, 3, 7, 5, 9, 6]

[1, 3, 7, 5, 9, 6]

[1, 3, 5, 7, 9, 6]

[1, 3, 5, 6, 9, 7]

[1, 3, 5, 6, 7, 9]

[1, 3, 5, 6, 7, 9]

#Write a python program to arrange the elements in descending order

using selection sort:

list1=[5,3,7,1,9,6]

print(list1)

for i in range(len(list1)):

 min_val=max(list1[i:])

 min_ind=list1.index(min_val)

 list1[i],list1[min_ind]=list1[min_ind],list1[i]

print(list1)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/selecdecs.py

[5, 3, 7, 1, 9, 6]

[9, 7, 6, 5, 3, 1]

Note: If we want the elements to be sorted in descending order use max ()

method in place of min ().

Insertion Sort:

• Insertion sort is not a fast sorting algorithm. It is useful only for small

datasets.

• It is a simple sorting algorithm that builds the final sorted list one item at

a time.

Algorithm:

1. Consider the first element to be sorted & the rest to be unsorted.

2. Take the first element in unsorted order (u1) and compare it with sorted

part elements(s1)

3. If u1<s1 then insert u1 in the correct order, else leave as it is.

4. Take the next element in the unsorted part and compare with sorted

element.

5. Repeat step 3 and step 4 until all the elements get sorted.

Write a python program to arrange the elements in ascending order

using insertion sort (with functions)

def insertionsort(my_list):

#we need to sorrt the unsorted part at a time.

 for index in range(1,len(my_list)):

 current_element=my_list[index]

 pos=index

 while current_element<my_list[pos-1]and pos>0:

 my_list[pos]=my_list[pos-1]

 pos=pos-1

 my_list[pos]=current_element

list1=[3,5,1,0,10,2] num=int(input(“enter how many elements to

be in list”))

insertionsort(list1) list1=[int(input()) for i in range (num)]

print(list1)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/inserti.py

[0, 1, 2, 3, 5, 10]

Write a python program to arrange the elements in descending order

using insertion sort (with functions)

def insertionsort(my_list):

#we need to sorrt the unsorted part at a time.

 for index in range(1,len(my_list)):

 current_element=my_list[index]

 pos=index

 while current_element>my_list[pos-1]and pos>0:

 my_list[pos]=my_list[pos-1]

 pos=pos-1

 my_list[pos]=current_element

#list1=[3,5,1,0,10,2]

#insertionsort(list1)

#print(list1)

num=int(input("enter how many elements to be in list"))

list1=[int(input())for i in range(num)]

insertionsort(list1)

print(list1)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/insertdesc.py

enter how many elements to be in list 5

8

1

4

10

2

[10, 8, 4, 2, 1]

Merge Sort:

Generally this merge sort works on the basis of divide and conquer algorithm.

The three steps need to be followed is divide, conquer and combine. We will

be dividing the unsorted list into sub list until the single element in a list is

found.

Algorithm:

1. Split the unsorted list.

2. Compare each of the elements and group them

3. Repeat step 2 until whole list is merged and sorted.

Write a python program to arrange the elements in ascending order

using Merge sort (with functions)

def mergesort(list1):

 if len(list1)>1:

 mid=len(list1)//2

 left_list=list1[:mid]

 right_list=list1[mid:]

 mergesort(left_list)

 mergesort(right_list)

 i=0

 j=0

 k=0

 while i<len(left_list) and j<len(right_list):

 if left_list[i]<right_list[j]:

 list1[k]=left_list[i]

 i=i+1

 k=k+1

 else:

 list1[k]=right_list[j]

 j=j+1

 k=k+1

 while i<len(left_list):

 list1[k]=left_list[i]

 i=i+1

 k=k+1

 while j<len(right_list):

 list1[k]=right_list[j]

 j=j+1

 k=k+1

num=int(input("how many numbers in list1"))

list1=[int(input()) for x in range(num)]

mergesort(list1)

print("sorted list1",list1)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/merg.py

how many numbers in list15

5

9

10

1

66

sorted list1 [1, 5, 9, 10, 66]

Quick Sort:

Algorithm:

1. Select the pivot element

2. Find out the correct position of pivot element in the list by rearranging

it.

3. Divide the list based on pivot element

4. Sort the sub list recursively

Note: Pivot element can be first, last, random elements or median of three

values.

In the following program we are going to write 3 functions. The first function

is to find pivot element and its correct position. In second function we divide

the list based on pivot element and sort the sub list and third function (main

fun) is to print input and output.

Write a python program to arrange the elements in ascending order

using Quick sort (with functions)

#To get the correct position of pivot element:

def pivot_place(list1,first,last):

 pivot=list1[first]

 left=first+1

 right=last

 while True:

 while left<=right and list1[left]<=pivot:

 left=left+1

 while left<=right and list1[right]>=pivot:

 right=right-1

 if right<left:

 break

 else:

 list1[left],list1[right]=list1[right],list1[left]

 list1[first],list1[right]=list1[right],list1[first]

 return right

#second function

def quicksort(list1,first,last):

 if first<last:

 p=pivot_place(list1,first,last)

 quicksort(list1,first,p-1)

 quicksort(list1,p+1,last)

#main fun

list1=[56,25,93,15,31,44]

n=len(list1)

quicksort(list1,0,n-1)

print(list1)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/qucksort.py

[15, 25, 31, 44, 56, 93]

Write a python program to arrange the elements in descending order

using Quick sort (with functions)

#To get the correct position of pivot element:

def pivot_place(list1,first,last):

 pivot=list1[first]

 left=first+1

 right=last

 while True:

 while left<=right and list1[left]>=pivot:

 left=left+1

 while left<=right and list1[right]<=pivot:

 right=right-1

 if right<left:

 break

 else:

 list1[left],list1[right]=list1[right],list1[left]

 list1[first],list1[right]=list1[right],list1[first]

 return right

def quicksort(list1,first,last):

 if first<last:

 p=pivot_place(list1,first,last)

 quicksort(list1,first,p-1)

 quicksort(list1,p+1,last)

#main fun

list1=[56,25,93,15,31,44]

n=len(list1)

quicksort(list1,0,n-1)

print(list1)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/qukdesc.py

[93, 56, 44, 31, 25, 15]

Linked Lists:

Linked lists are one of the most commonly used data structures in any

programming language. Linked Lists, on the other hand, are different. Linked

lists, do not store data at contiguous memory locations. For each item in the

memory location, linked list stores value of the item and the reference or

pointer to the next item. One pair of the linked list item and the reference to

next item constitutes a node.

The following are different types of linked lists.

• Single Linked List

A single linked list is the simplest of all the variants of linked lists.

Every node in a single linked list contains an item and reference to the

next item and that's it.

• Doubly Linked List

• Circular Linked List

• Linked List with Header

• Sorted Linked List

Python program to create a linked list and display its elements.

The program creates a linked list using data items input from the user and

displays it.

Solution:

1. Create a class Node with instance variables data and next.

2. Create a class Linked List with instance variables head and last_node.

3. The variable head points to the first element in the linked list while

last_node points to the last.

4. Define methods append and display inside the class Linked List to append

data and display the linked list respectively.

5. Create an instance of Linked List, append data to it and display the list.

Program:

class Node:

 def __init__(self, data):

 self.data = data

 self.next = None

class LinkedList:

 def __init__(self):

 self.head = None

 self.last_node = None

 def append(self, data):

 if self.last_node is None:

 self.head = Node(data)

 self.last_node = self.head

 else:

 self.last_node.next = Node(data)

 self.last_node = self.last_node.next

 def display(self):

 current = self.head

 while current is not None:

 print(current.data, end = ' ')

 current = current.next

a_llist = LinkedList()

n = int(input('How many elements would you like to add? '))

for i in range(n):

 data = int(input('Enter data item: '))

 a_llist.append(data)

print('The linked list: ', end = '')

a_llist.display()

Program Explanation

1. An instance of Linked List is created.

2. The user is asked for the number of elements they would like to add. This

is stored in n.

3. Using a loop, data from the user is appended to the linked list n times.

4. The linked list is displayed.

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-

32/pyyy/link1.py

How many elements would you like to add? 5

Enter data item: 4

Enter data item: 4

Enter data item: 6

Enter data item: 8

Enter data item: 9

The linked list: 4 4 6 8 9

Stacks:

Stack works on the principle of “Last-in, first-out”. Also, the inbuilt functions

in Python make the code short and simple. To add an item to the top of the list,

i.e., to push an item, we use append() function and to pop out an element we

use pop() function.

Python code to demonstrate Implementing stack using list

stack = ["Amar", "Akbar", "Anthony"]

stack.append("Ram")

stack.append("Iqbal")

print(stack)

print(stack.pop())

print(stack)

print(stack.pop())

print(stack)

Output:

['Amar', 'Akbar', 'Anthony', 'Ram', 'Iqbal']

Iqbal

['Amar', 'Akbar', 'Anthony', 'Ram']

Ram

['Amar', 'Akbar', 'Anthony']

Queues:

Queue works on the principle of “First-in, first-out”. Time plays an important

factor here. We saw that during the implementation of stack we used append()

and pop() function which was efficient and fast because we inserted and

popped elements from the end of the list, but in queue when insertion and pops

are made from the beginning of the list, it is slow. This occurs due to the

properties of list, which is fast at the end operations but slow at the beginning

operations, as all other elements have to be shifted one by one. So, we prefer

the use of collections. Deque over list, which was specially designed to have

fast appends and pops from both the front and back end.

#Python code to demonstrate Implementing Queue using deque and list

from collections import deque

queue = deque(["Ram", "Tarun", "Asif", "John"])

print(queue)

queue.append("Akbar")

print(queue)

queue.append("Birbal")

print(queue)

print(queue.popleft())

print(queue.popleft())

print(queue)

Output:

deque(['Ram', 'Tarun', 'Asif', 'John'])

deque(['Ram', 'Tarun', 'Asif', 'John', 'Akbar'])

deque(['Ram', 'Tarun', 'Asif', 'John', 'Akbar', 'Birbal'])

Ram

Tarun

deque(['Asif', 'John', 'Akbar', 'Birbal'])

Previous Question Papers

 |''|'''||''||'''||||

Code No: R1621054

II B. Tech I Semester Regular/Supplementary Examinations, October/November - 2018

PYTHON PROGRAMMING
(Com to CSE & IT)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

 2. Answer ALL the question in Part-A

 3. Answer any FOUR Questions from Part-B

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   

 

PART –A  

1. a) Define the scope and lifetime of a variable in Python. (2M) 

 b) Why is * called string repetition operator? (2M) 

 c) What are the features of tuple data structure? (3M) 

 d) Compare fruitful and void functions.  (3M) 

 e) Is it possible to convert a class object into a floating type value? (2M) 

 f) Give the advantages of multi-threading. (2M) 

PART -B 

2. a) Python has developed as an open source project. Justify this statement. (7M) 

 b) What are identifiers? Discuss the rules to name an identifier. 

 

(7M) 

3. a) What are the different loop control statements available in Python? Explain 

with suitable examples. 

(7M) 

 b) Write a Python program that calculates number of seconds in a day. 

 

(7M) 

4. a) Explain the List Accessing Methods and List Comprehension. (7M) 

 b) Write a Python program to read a word and print the number of letters, vowels 

and percentage of vowels in the word using a dictionary. 

 

(7M) 

5. a) Describe about variable length arguments with suitable program. (7M) 

 b) What are the two ways of importing a module? Which one is more beneficial? 

Explain. 

 

(7M) 

6. a) How to implement method overriding in Python? Explain. (7M) 

 b) Discuss with an example exceptions with arguments in Python. 

 

(7M) 

7. a) Write a program for basic web browser using Tkinter which should have a Text 

widget where the user can enter a URL and a Canvas to display the contents of 

the page. 

(7M) 

 b) Explain data compression using LZMA algorithm. (7M) 

 

 

  

1 of 1 

SET - 1 R16 

WWW.MANARESULTS.CO.IN



                      |''|'''||''||'''||||

  

Code No: R1621054 

 

II B. Tech I Semester Regular/Supplementary Examinations, October/November - 2018 

PYTHON PROGRAMMING 
(Com to CSE & IT) 

Time: 3 hours                                                                         Max. Marks: 70 
 

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 

 2. Answer ALL the question in Part-A  

 3. Answer any FOUR Questions from Part-B 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   


PART –A

1. a) Define implicit conversion. (2M)

 b) Differentiate between logical and bitwise operators. (3M)

 c) What is cloning of List? (2M)

 d) Give an example for local and global scope of the variables in a function. (3M)

 e) Write the advantages of operator overloading. (2M)

 f) What is the purpose of tracer() method of turtle? (2M)

PART -B

2. a) Describe the features of Python. (7M)

 b) Python variables do not have specific types. Justify this statement with the help

of an example.

(7M)

3. a) Explain the precedence of operators in Python. (7M)

 b) Write a Python program to find the given year is leap year or not.

(7M)

4. a) What is a tuple? How literals of type tuple are written? (7M)

 b) Explain the Python Dictionary Comprehension with examples.

(7M)

5. a) Describe about default arguments with suitable program. (7M)

 b) Explain about fruitful functions with examples.

(7M)

6. a) Write a Python program to create a histogram from a given list of integers. (7M)

 b) How to create a user defined exceptions? Explain.

(7M)

7. a) Explain the methods that are used to synchronize threads. (7M)

 b) Write a menu driven program to create mathematical 3D objects. (7M)

1 of 1

SET - 2 R16

WWW.MANARESULTS.CO.IN

 |''|'''||''||'''||||

Code No: R1621054

II B. Tech I Semester Regular/Supplementary Examinations, October/November - 2018

PYTHON PROGRAMMING
(Com to CSE & IT)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

 2. Answer ALL the question in Part-A

 3. Answer any FOUR Questions from Part-B

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   

 

PART –A  

1. a) List the rules to name an identifier. (2M) 

 b) Define chained conditionals.  (2M) 

 c) What is the use of all(), any(), cmp() and sorted() in dictionary? (3M) 

 d) Write a brief note on PIP. (2M) 

 e) Differentiate between class variables and instance variables. (3M) 

 f) Give examples of commonly used widgets. (2M) 

PART -B 

2. a) Explain about the need for learning Python programming and its importance.  (7M) 

 b) Write a Python program to demonstrate explicit conversion. 

 

(7M) 

3. a) Explain about Identity operators in Python.  (7M) 

 b) What is the use of pass statement?  Illustrate with an example program. 

 

(7M) 

4. a) Explain the List Slicing and List Mutability.  (7M) 

 b) Discuss the basic Tuple operations with examples. 

 

(7M) 

5. a) What are the different function prototypes? Explain with suitable examples. (7M) 

 b) Explain the concept of namespaces with an example.  

 

(7M) 

6. a) Explain how to implement inheritance in Python. (7M) 

 b) How to handle an exception using try except block? Explain with the help of a 

program. 

 

(7M) 

7. a) What is multithreading? Discuss about starting a new thread. (7M) 

 b) Write a Python program to move the turtle forward and then backward after a 

delay of 2 seconds. 

(7M) 

 

 

 

  

1 of 1 

SET - 3 R16 

WWW.MANARESULTS.CO.IN



                      |''|'''||''||'''||||

  

Code No: R1621054 

 

II B. Tech I Semester Regular/Supplementary Examinations, October/November - 2018 

PYTHON PROGRAMMING 
(Com to CSE & IT) 

Time: 3 hours                                                                         Max. Marks: 70 
 

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 

 2. Answer ALL the question in Part-A  

 3. Answer any FOUR Questions from Part-B 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   


PART –A

1. a) Write steps to run a Python script. (3M)

 b) Differentiate between integer and floating point numbers. (2M)

 c) Give an example for List comprehension. (2M)

 d) Define fruitful functions in Python. (3M)

 e) What is class instantiation? (2M)

 f) Which widget is used as a container to house other widgets and add borders? (2M)

PART -B

2. a) How is Python developed and supported? (7M)

 b) What are literals? Explain with the help of examples.

(7M)

3. a) Create two sets of integers, and compute their intersection and union by using

& and | operator expressions.

(7M)

 b) Write a Python program using while loop to print first N numbers divisible by 5.

(7M)

4. a) What is Sequence in Python? Explain its operations with suitable examples. (7M)

 b) Write a Python program to illustrate the comparison operators in tuple.

(7M)

5. a) List out the types of Modules and Explain any two types in detail. (7M)

 b) Explain installing packages via PIP.

(7M)

6. a) How to declare a constructor method in Python? Explain. (7M)

 b) Write a function called oops that explicitly raises a IndexError exception when

called. Then write another function that calls oops inside a try/except statement

to catch the error. What happens if you change oops to raise KeyError instead of

IndexError? Where do the names KeyError and IndexError come from?

(7M)

7. a) Explain various String pattern matching functions in Python. (7M)

 b) Discuss about unit testing in Python. (7M)

1 of 1

SET - 4 R16

WWW.MANARESULTS.CO.IN

 |''|'''||''||'''||||

Code No: R1621054

II B. Tech I Semester Supplementary Examinations, May - 2019

PYTHON PROGRAMMING
(Com to CSE & IT)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

 2. Answer ALL the question in Part-A

 3. Answer any FOUR Questions from Part-B

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   

PART –A  

1. a) What is the difference between compiled and interpreted languages? (2M) 

 b) How pass statement is different from a comment? (2M) 

 c) What are mutable and immutable types? (3M) 

 d) What is the purpose of global keyword in Python? (2M) 

 e) How to handle multiple exceptions with single except clause? (3M) 

 f) Write Python script that prints calendar of November 2017. (2M) 

PART -B 

2. a) Differentiate between C++ and Python. (7M) 

 b) Give a not on each of the below Python language constructs: 

(i) quotes (single, double and triple)   (ii) multiline statements (iii) indentation 

 

(7M) 

3. a) List different operators in Python, in the order of their precedence. (9M) 

 b) Write a Python program to compute distance between two points in a 2-

dimensional coordinate system. 

 

(5M) 

4. a) Explain with an example, how + and * operators work with strings. (6M) 

 b) Write a Python program that prints the intersection of two lists. (without using 

list comprehension/sets) 

 

(8M) 

5. a) What is lambda function?  What are the characteristics of a lambda function? 

Give an example. 

(7M) 

 b) Write a recursive Python function that recursively computes sum of elements 

in a list of lists. 

Sample Input: [1, 2, [3,4], [5,6]] Expected Result: 21 

 

(7M) 

6. a) What are different types of inheritance supported by Python? Explain. (8M) 

 b) What s the difference between else block and finally block in exception 

handling? Explain with an example program. 

 

(6M) 

7. a) Explain about Radiobutton widget in tkinter. How to create two radiobutton 

sets (one for gender and another for Indian or not) on the same canvas. 

(7M) 

 b) Write a Python program that creates two a demon threads and two non-daemon 

threads. Main thread should wait for all other threads to finish. 

(7M) 

 

 

SET - 1 R16 

1 of 1 

www.manaresults.co.in



For More Question Papers Visit - www.pediawikiblog.com 

For More Question Papers Visit - www.pediawikiblog.com 

ww
w.
pe
di
aw
ik
ib
lo
g.c
om



For More Question Papers Visit - www.pediawikiblog.com 

For More Question Papers Visit - www.pediawikiblog.com 

ww
w.
pe
di
aw
ik
ib
lo
g.c
om







                      |''|'''||''||'''||||

  

Code No: R1621054 

 

II B. Tech I Semester Supplementary Examinations, May - 2018 

PYTHON PROGRAMMING 
(Com to CSE & IT) 

Time: 3 hours                                                                         Max. Marks: 70 
 

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 

 2. Answer ALL the question in Part-A  

 3. Answer any FOUR Questions from Part-B 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   

PART –A

1. a) What happens if a semicolon (;) is placed at the end of a Python statement? (2M)

 b) What are membership operators? Give examples for usage. (3M)

 c) What is a dictionary in Python? (2M)

 d) Can a Python function return multiple values? If yes, how it works? (2M)

 e) How to make a Python class member variable hidden from outside the class? (2M)

 f) Write Python program to calculate your age in days. (days between Today and

Date of Birth)

(3M)

PART -B

2. a) What are different applications of Python? Give examples. (6M)

 b) Write a Python program to convert height in feet and inches to cm.

[1 feet = 12 inch and 1 inch= 2.54 cm]

(Sample input: 2 feet 7 inch Sample output: 78.74 cm)

(8M)

3. a) List and explain different arithmetic operators supported by Python. Discuss

about their precedence and associativity.

(7M)

 b) Write a Python program to print all prime numbers less than 256.

(7M)

4. a) Write a Python program that interchanges the first and last characters of a

given string.

(6M)

 b) Give a comparison between lists, tuples, dictionaries and sets.

(8M)

5. a) What type of parameter passing is used in Python? Justify your answer with

sample programs.

(7M)

 b) Write a Python function that prints all factors of a given number.

(7M)

6. a) Write a Python program that overloads + operator, to add two objects of a

class.

(7M)

 b) How to create, raise and handle user defined exceptions in Python.

(7M)

7. a) What are regular expressions? How to find whether an email id entered by user

is valid or not using Python‘re’ module.

(4M)

 b) Write a Python program that creates a GUI with a textbox, Ok button and Quit

button. On clicking Ok, the text entered in textbox is to be printed in Python

shell; on clicking Quit, the program should terminate.

(10M)

 1 of 1

SET - 1 R16

WWW.MANARESULTS.CO.IN

www.AUNewsBlog.net

www.AUNewsBlog.net

www.AUNewsBlog.net

www.AUNewsBlog.net

 |''|'''||''||'''||||

Code No: R1621054

II B. Tech I Semester Supplementary Examinations, May - 2019

PYTHON PROGRAMMING
(Com to CSE & IT)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

 2. Answer ALL the question in Part-A

 3. Answer any FOUR Questions from Part-B

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   

PART –A  

1. a) What is the difference between compiled and interpreted languages? (2M) 

 b) How pass statement is different from a comment? (2M) 

 c) What are mutable and immutable types? (3M) 

 d) What is the purpose of global keyword in Python? (2M) 

 e) How to handle multiple exceptions with single except clause? (3M) 

 f) Write Python script that prints calendar of November 2017. (2M) 

PART -B 

2. a) Differentiate between C++ and Python. (7M) 

 b) Give a not on each of the below Python language constructs: 

(i) quotes (single, double and triple)   (ii) multiline statements (iii) indentation 

 

(7M) 

3. a) List different operators in Python, in the order of their precedence. (9M) 

 b) Write a Python program to compute distance between two points in a 2-

dimensional coordinate system. 

 

(5M) 

4. a) Explain with an example, how + and * operators work with strings. (6M) 

 b) Write a Python program that prints the intersection of two lists. (without using 

list comprehension/sets) 

 

(8M) 

5. a) What is lambda function?  What are the characteristics of a lambda function? 

Give an example. 

(7M) 

 b) Write a recursive Python function that recursively computes sum of elements 

in a list of lists. 

Sample Input: [1, 2, [3,4], [5,6]] Expected Result: 21 

 

(7M) 

6. a) What are different types of inheritance supported by Python? Explain. (8M) 

 b) What s the difference between else block and finally block in exception 

handling? Explain with an example program. 

 

(6M) 

7. a) Explain about Radiobutton widget in tkinter. How to create two radiobutton 

sets (one for gender and another for Indian or not) on the same canvas. 

(7M) 

 b) Write a Python program that creates two a demon threads and two non-daemon 

threads. Main thread should wait for all other threads to finish. 

(7M) 

 

 

SET - 1 R16 

1 of 1 

www.manaresults.co.in



 1 

Seat No.: ________                                                     Enrolment No.______________  

 

GUJARAT TECHNOLOGICAL UNIVERSITY 
MCA Integrated – SEMESTER – V • EXAMINATION – SUMMER 2018 

Subject Code: 4450601      Date: 01-May-2018 

Subject Name: Python 

Time:  02.30 pm to 5.00 pm     Total Marks: 70 
Instructionss: 

1. Attempt all questions.  

2. Make suitable assumptions wherever necessary. 

3. Figures to the right indicate full marks.  
 

Q.1 (a) [I]  Explain object and expression  in python with suitable example 

[II] What is indexing and slicing explain with example 
04 

03 

 (b) [I] Write a program to find maximum out of three numbers using function. 

[II] Write a program to find given string is palindrome or not using function 
03 

04 

    
Q.2 (a) [I] Explain Dictionary with suitable program. 

[II] Explain the categories of runtime bugs  
05 

02 

 (b) [I] Explain Black-Box and Glass-Box testing with suitable example. 

[II] Explain how test drivers and stubs used by testers in industry. 
05 

02 

  OR  

 (b) [I] What is Exception? Explain Exception as control flow mechanism with 

suitable example. 
07 

    
Q.3 (a) [I] what is Inheritance, Super class and Subclass. 

[II] Explain Multiple level Inheritance with suitable example 
02 

05 

 (b) Write a program of bank account to create new account, display account, deposit 

amount, and withdraw using class and function. 
07 

  OR  

Q.3 (a) [I] What is Cloning? Explain with example 

[II] Explain Encapsulation and information hiding with example. 
04 

03 

 (b) Write a program of Student record to add new student, show student, and replace 

name using class and function. 
07 

    
Q.4 (a) Explain the difference between Linear and Binary search. Write a program to 

find the desired element using Linear search. 
07 

 (b) Explain how Selection sort is working and write a program to sort any five 

numbers. 
07 

  OR  

Q.4 (a) Explain Hash table in detail with the suitable example. 07 

 (b) Explain how Merge sort is working and write a program to sort any five numbers. 07 

    
Q.5 (a) Explain show(),figure(),plot(),savefig(), xlabel(),ylable() with suitable example. 07 

 (b) [I] write a program for Fibonacci sequence using recursion   

[II] What is the important of memorization? Write a program for Fibonacci using, 

memorization. 

03 

04 

  OR  

Q.5 (a) Explain plotting Mortgage with suitable example. 07 

 (b) Explain 0/1 Knapsack Problem and explain how to solve this problem using 

decision tree. 
07 

 

************* 



                      |''|'''||''||'''||||

  

Code No: R1621054 

 

II B. Tech I Semester Regular Examinations, October/November - 2017 

PYTHON PROGRAMMING 
(Com to CSE & IT) 

Time: 3 hours                                                                         Max. Marks: 70 
 

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 

 2. Answer ALL the question in Part-A  

 3. Answer any FOUR Questions from Part-B 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   


PART –A

1. a) Explain input function. (2M)

 b) Give an example of lstrip() method. (2M)

 c) How to access values in a dictionary? (2M)

 d) What is default argument? (2M)

 e) What are basic overloading methods? (3M)

 f) Explain importing turtle graphics. (3M)

PART -B

2. a) What are IDLE usability features? (7M)

 b) Explain about keywords used in Python.

(7M)

3. a) What are 4 built-in numeric data types in Python? Explain. (7M)

 b) Describe Python jump statements with examples.

(7M)

4. a) Explain in detail about dictionaries in Python. (7M)

 b) Discuss about tuples in Pyhton.

(7M)

5. a) Describe anonymous functions examples. (7M)

 b) Why to use modules? How to structure a program?

(7M)

6. a) Explain creating classes in Python with examples. (7M)

 b) Define error and exception. Distinguish between these two features.

(7M)

7. a) Why testing is required? Explain in detail. (7M)

 b) Explain the following: i) Calendar module ii) Synchronizing threads (7M)

1 of 1

SET - 1 R16

www.ManaResults.co.in

 |''|'''||''||'''||||

Code No: R1621054

II B. Tech I Semester Regular Examinations, October/November - 2017

PYTHON PROGRAMMING
(Com to CSE & IT)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

 2. Answer ALL the question in Part-A

 3. Answer any FOUR Questions from Part-B

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   

 

PART –A  

1. a) Explain output function. (2M) 

 b) Give an example of istitle( ) method. (2M) 

 c) Describe type( ) method with example. (2M) 

 d) What is the general form of lambda? (2M) 

 e) Explain about self variable with example. (3M) 

 f) Describe time.time( ) method. (3M) 

PART –B 

2. a) Discuss bout variables and assignments. (7M) 

 b) Explain about IDLE startup details. 

 

(7M) 

3. a) What are Python assignment operators? Explain. (7M) 

 b) Explain about iteration statements with examples. 

 

(7M) 

4. a) Discuss about immutable constraints and frozen sets. (7M) 

 b) What are built-in dictionary functions? Explain. 

 

(7M) 

5. a) Distinguish between local and global variables with examples. (7M) 

 b) Briefly discuss about Python packages. 

 

(7M) 

6. a) Explain about handling an exception. (7M) 

 b) Describe data hiding and constructors. 

 

(7M) 

7. a) Explain about writing test cases and running tests. (7M) 

 b) Explain the following: i) TopLevel widgets    ii) Scale widget (7M) 

 

 

 

  

1 of 1 

SET - 2 R16 

www.ManaResults.co.in



                      |''|'''||''||'''||||

  

Code No: R1621054 

 

II B. Tech I Semester Regular Examinations, October/November - 2017 

PYTHON PROGRAMMING 
(Com to CSE & IT) 

Time: 3 hours                                                                         Max. Marks: 70 
 

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 

 2. Answer ALL the question in Part-A  

 3. Answer any FOUR Questions from Part-B 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   


PART –A

1. a) What is indentation? (2M)

 b) Give an example of isalnum() method. (2M)

 c) Describe has_key() method with example. (2M)

 d) What is a namespace? (2M)

 e) Explain user defined exceptions with examples. (3M)

 f) What is time tuple? (3M)

PART -B

2. a) Discuss about IDLE basic usage. (7M)

 b) Who uses python today? What are Python’s technical strengths?

(7M)

3. a) What are relational operators used in Python? Explain. (7M)

 b) Explain about string formatting operator with example.

(7M)

4. a) Explain about built-in functions of tuple. (7M)

 b) Discuss about list and dictionary comprehensions.

(7M)

5. a) Explain about required and variable-length arguments. (7M)

 b) Discuss in detail about the import statement.

(7M)

6. a) Explain inheritance class with suitable example. (7M)

 b) Discuss about try except block with example.

(7M)

7. a) Explain about unit testing in Python. (7M)

 b) Explain the following: i) zlib module ii) PanelWindow (7M)

1 of 1

SET - 3 R16

www.ManaResults.co.in

 |''|'''||''||'''||||

Code No: R1621054

II B. Tech I Semester Regular Examinations, October/November - 2017

PYTHON PROGRAMMING
(Com to CSE & IT)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

 2. Answer ALL the question in Part-A

 3. Answer any FOUR Questions from Part-B

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   

 

PART –A  

1. a) What is byte code? (2M) 

 b) Give an example of endswith( ) method. (2M) 

 c) What is a set? Why sets? (2M) 

 d) Define anonymous function. (2M) 

 e) Give an example for raising an exception. (3M) 

 f) What is tick? (3M) 

PART -B 

2. a) Briefly discuss about running Python scripts. (7M) 

 b) Write the history of Python. 

 

(7M) 

3. a) Explain Python bitwise operators with example. (7M) 

 b) Discuss about Python operators precedence with example. 

 

(7M) 

4. a) What are built-in dictionary functions? Explain. (7M) 

 b) Explain about the importance of lists in Python. 

 

(7M) 

5. a) Write a brief note on PIP. Explain installing packages via PIP. (7M) 

 b) Explain about keyword and default arguments.  

 

(7M) 

6. a) Give an overview of OOP terminology. (7M) 

 b) Explain about except clause with multiple exceptions. 

 

(7M) 

7. a) What is multithreading? Discuss about starting a new thread. (7M) 

 b)  Explain about colors and filled shapes. (7M) 

 

 

 

 

1 of 1 

SET - 4 R16 

www.ManaResults.co.in



www.rejinpaul.com

Download Useful Materials @ www.rejinpaul.com

www.rejinpaul.com
www.rejinpaul.com


www.rejinpaul.com

Download Useful Materials @ www.rejinpaul.com

www.rejinpaul.com
www.rejinpaul.com


                      |''|'''||''||'''||||

  

Code No: R1621054 

 

II B. Tech I Semester Regular/Supplementary Examinations, October/November - 2018 

PYTHON PROGRAMMING 
(Com to CSE & IT) 

Time: 3 hours                                                                         Max. Marks: 70 
 

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 

 2. Answer ALL the question in Part-A  

 3. Answer any FOUR Questions from Part-B 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   


PART –A

1. a) Define the scope and lifetime of a variable in Python. (2M)

 b) Why is * called string repetition operator? (2M)

 c) What are the features of tuple data structure? (3M)

 d) Compare fruitful and void functions. (3M)

 e) Is it possible to convert a class object into a floating type value? (2M)

 f) Give the advantages of multi-threading. (2M)

PART -B

2. a) Python has developed as an open source project. Justify this statement. (7M)

 b) What are identifiers? Discuss the rules to name an identifier.

(7M)

3. a) What are the different loop control statements available in Python? Explain

with suitable examples.

(7M)

 b) Write a Python program that calculates number of seconds in a day.

(7M)

4. a) Explain the List Accessing Methods and List Comprehension. (7M)

 b) Write a Python program to read a word and print the number of letters, vowels

and percentage of vowels in the word using a dictionary.

(7M)

5. a) Describe about variable length arguments with suitable program. (7M)

 b) What are the two ways of importing a module? Which one is more beneficial?

Explain.

(7M)

6. a) How to implement method overriding in Python? Explain. (7M)

 b) Discuss with an example exceptions with arguments in Python.

(7M)

7. a) Write a program for basic web browser using Tkinter which should have a Text

widget where the user can enter a URL and a Canvas to display the contents of

the page.

(7M)

 b) Explain data compression using LZMA algorithm. (7M)

1 of 1

SET - 1 R16

WWW.MANARESULTS.CO.IN

 |''|'''||''||'''||||

Code No: R1621054

II B. Tech I Semester Regular/Supplementary Examinations, October/November - 2018

PYTHON PROGRAMMING
(Com to CSE & IT)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

 2. Answer ALL the question in Part-A

 3. Answer any FOUR Questions from Part-B

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   

 

PART –A  

1. a) Define implicit conversion. (2M) 

 b) Differentiate between logical and bitwise operators. (3M) 

 c) What is cloning of List?  (2M) 

 d) Give an example for local and global scope of the variables in a function. (3M) 

 e)  Write the advantages of operator overloading. (2M) 

 f) What is the purpose of tracer() method of turtle? (2M) 

PART -B 

2. a) Describe the features of Python. (7M) 

 b) Python variables do not have specific types. Justify this statement with the help 

of an example. 

 

(7M) 

3. a) Explain the precedence of operators in Python.  (7M) 

 b) Write a Python program to find the given year is leap year or not. 

 

(7M) 

4. a) What is a tuple? How literals of type tuple are written? (7M) 

 b) Explain the Python Dictionary Comprehension with examples. 

 

(7M) 

5. a) Describe about default arguments with suitable program. (7M) 

 b) Explain about fruitful functions with examples. 

 

(7M) 

6. a) Write a Python program to create a histogram from a given list of integers. (7M) 

 b) How to create a user defined exceptions? Explain. 

 

(7M) 

7. a) Explain the methods that are used to synchronize threads. (7M) 

 b) Write a menu driven program to create mathematical 3D objects. (7M) 

 

 

 

  

1 of 1 

SET - 2 R16 

WWW.MANARESULTS.CO.IN



                      |''|'''||''||'''||||

  

Code No: R1621054 

 

II B. Tech I Semester Regular/Supplementary Examinations, October/November - 2018 

PYTHON PROGRAMMING 
(Com to CSE & IT) 

Time: 3 hours                                                                         Max. Marks: 70 
 

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 

 2. Answer ALL the question in Part-A  

 3. Answer any FOUR Questions from Part-B 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   


PART –A

1. a) List the rules to name an identifier. (2M)

 b) Define chained conditionals. (2M)

 c) What is the use of all(), any(), cmp() and sorted() in dictionary? (3M)

 d) Write a brief note on PIP. (2M)

 e) Differentiate between class variables and instance variables. (3M)

 f) Give examples of commonly used widgets. (2M)

PART -B

2. a) Explain about the need for learning Python programming and its importance. (7M)

 b) Write a Python program to demonstrate explicit conversion.

(7M)

3. a) Explain about Identity operators in Python. (7M)

 b) What is the use of pass statement? Illustrate with an example program.

(7M)

4. a) Explain the List Slicing and List Mutability. (7M)

 b) Discuss the basic Tuple operations with examples.

(7M)

5. a) What are the different function prototypes? Explain with suitable examples. (7M)

 b) Explain the concept of namespaces with an example.

(7M)

6. a) Explain how to implement inheritance in Python. (7M)

 b) How to handle an exception using try except block? Explain with the help of a

program.

(7M)

7. a) What is multithreading? Discuss about starting a new thread. (7M)

 b) Write a Python program to move the turtle forward and then backward after a

delay of 2 seconds.

(7M)

1 of 1

SET - 3 R16

WWW.MANARESULTS.CO.IN

 |''|'''||''||'''||||

Code No: R1621054

II B. Tech I Semester Regular/Supplementary Examinations, October/November - 2018

PYTHON PROGRAMMING
(Com to CSE & IT)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

 2. Answer ALL the question in Part-A

 3. Answer any FOUR Questions from Part-B

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   

 

PART –A  

1. a) Write steps to run a Python script. (3M) 

 b) Differentiate between integer and floating point numbers. (2M) 

 c) Give an example for List comprehension.   (2M) 

 d) Define fruitful functions in Python.  (3M) 

 e) What is class instantiation?  (2M) 

 f) Which widget is used as a container to house other widgets and add borders? (2M) 

PART -B 

2. a) How is Python developed and supported? (7M) 

 b) What are literals? Explain with the help of examples. 

 

(7M) 

3. a) Create two sets of integers, and compute their intersection and union by using 

& and | operator expressions. 

(7M) 

 b) Write a Python program using while loop to print first N numbers divisible by 5. 

 

(7M) 

4. a) What is Sequence in Python? Explain its operations with suitable examples. (7M) 

 b) Write a Python program to illustrate the comparison operators in tuple. 

 

(7M) 

5. a) List out the types of Modules and Explain any two types in detail. (7M) 

 b) Explain installing packages via PIP. 

 

(7M) 

6. a) How to declare a constructor method in Python? Explain. (7M) 

 b) Write a function called oops that explicitly raises a IndexError exception when 

called. Then write another function that calls oops inside a try/except statement 

to catch the error. What happens if you change oops to raise KeyError instead of 

IndexError? Where do the names KeyError and IndexError come from? 

 

(7M) 

7. a) Explain various String pattern matching functions in Python. (7M) 

 b) Discuss about unit testing in Python. (7M) 

 

 

 

1 of 1 

SET - 4 R16 

WWW.MANARESULTS.CO.IN


