
B.Tech – CSE (Emerging Technologies) R-20

Software Engineering

 (AUTONOMOUS INSTITUTION – UGC, GOVT. OF INDIA)

Department of CSE
(Emerging Technologies)

(IoT, CyS)

B.TECH(R-20 Regulation)
(III YEAR – I SEM)

 (2023-24)

SOFTWARE ENGINEERING
(R20A0511)

LECTURE NOTES

Prepared by
MAHENDAR J, Assistant.Professor.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12(B) of UGC ACT 1956
(Affiliated to JNTUH, Hyderabad, Approved by AICTE-Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad–500100, Telangana State, India

MRCET CAMPUS

B.Tech – CSE (Emerging Technologies) R-20

Software Engineering

Department of Computer Science and Engineering

EMERGING TECHNOLOGIES

Vision

 “To be at the forefront of Emerging Technologies and to evolve as a Centre of Excellence

in Research, Learning and Consultancy to foster the students into globally competent

professionals useful to the Society.”

Mission

The department of CSE (Emerging Technologies) is committed to:

 To offer highest Professional and Academic Standards in terms of Personal growth and
satisfaction.

 Make the society as the hub of emerging technologies and thereby capture
opportunities in new age technologies.

 To create a benchmark in the areas of Research, Education and Public Outreach.

 To provide students a platform where independent learning and scientific study are
encouraged with emphasis on latest engineering techniques.

QUALITY POLICY

 To pursue continual improvement of teaching learning process of Undergraduate and

Post Graduate programs in Engineering &Management vigorously.

 To provide state of art infrastructure and expertise to impart the quality education and

research environment to students for a complete learning experiences.

 Developing students with a disciplined and integrated personality.

 To offer quality relevant and cost effective programmer to produce engineers as per

requirements of the industry need.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

L T/P/D C

III Year B.Tech CSE -I SEM 3 -/-/- 3

(R20A0511) SOFTWARE ENGINEERING

Objectives:
To understand software process models such as waterfall and evolutionary models.
To understand software requirements and SRS document.
To understand different software design and architectural styles.
To understand software testing approaches such as unit testing and integration testing.
To understand quality control and how to ensure good quality software through quality assurance.

UNIT -I:
Introduction to Software Engineering: The evolving role of software, Changing Nature of Software,
Software myths.
A Generic view of process: Software engineering- A layered technology, a process framework, The
Capability Maturity Model Integration (CMMI), Process patterns, process assessment, personal and
team process models.
Process models: The waterfall model, Incremental process models, Evolutionary process models,
The Unified process.

UNIT-II:
Software Requirements: Functional and non-functional requirements, User requirements, System
requirements, Interface specification, the software requirements document.
Requirements engineering process: Feasibility studies, Requirements elicitation and
analysis, Requirements validation, Requirements management.
System models: Context Models, Behavioral models, Data models,
Object models, structured methods.

UNIT-III:
Design Engineering: Design process and Design quality, Design concepts, the design model.
Creating an architectural design: Software architecture, Data design, Architectural styles and
patterns, Architectural Design.
Performing User interface design: Golden rules, User interface analysis and design, interface
analysis, interface design steps, Design evaluation.

UNIT-IV:
Testing Strategies: A strategic approach to software testing, test strategies for conventional
software, Black-Box and White-Box testing, Validation testing, System testing, the art of Debugging.
Risk management: Reactive vs. Proactive Risk strategies, software risks, Risk identification, Risk
projection, Risk refinement RMMM, RMMM Plan

UNIT-V:
Quality Management: Software Quality, Quality concepts, Software quality assurance,
Software Reviews, Formal technical reviews, Statistical Software quality Assurance,
Softwarereliability,TheISO9000quality standards.

Case Study – ATM Management System.

TEXT BOOKS:
1. Software Engineering A practitioner’s Approach, Roger S Pressman, 6th
edition. McGrawHill International Edition.
2. SoftwareEngineering,IanSommerville,7thedition,Pearsoneducation.

REFERENCEBOOKS:
1. Software Engineering,A Precise Approach,Pankaj Jalote,WileyIndia,2010.
2. Software Engineering: APrimer, Waman SJawadekar, TataMcGraw-Hill,2008
3. FundamentalsofSoftwareEngineering,RajibMall,PHI,2005
4. Software Engineering, Principles and Practices,DeepakJain,OxfordUniversityPress.
5. Software Engineering1: Abstraction and modelling, Diner Bjorner,
SpringerInternationaledition,2006.
6. Software Engineering2: Specification of systems and languages, Diner Bjorner,
SpringerInternationaledition2006.
7. Software Engineering Foundations, YinguxWang,Auerbach Publications,2008.
8. Software Engineering Principles and Practice, Hans Van Vliet, 3rd edition, John
Wiley & Sons Ltd.
9. Software Engineering3: Domains, Requirements, and Software Design, D.
Bjorner, Springer International Edition.
10. Introduction to Software Engineering, R.J.Leach, CRC Press.

Outcomes:
Abilitytoidentifytheminimumrequirementsforthedevelopmentofapplication.
Ability to develop, maintain, efficient, reliable and cost effective software solutions.
Ability to critically thinking and evaluate assumptions and arguments

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDEX

S. No

Unit
Topic Page no

1

I Introduction to Software Engineering 5

2

I Evolving Role of Software 5

3

I A Generic view of process 7

4

I Process models 11

5

II Software Requirements 19

6

II Requirements engineering process 22

7

II System models 28

8

III Design Engineering 32

9

III Creating an architectural design 35

10

III Performing User interface design 40

11 IV Testing Strategies 44

12 IV Risk management 51

13 V Quality Management 55

Department of CSE III Year/I Sem

Software Engineering Page 5

UNIT - I

INTRODUCTION:

Software Engineering is a framework for building software and is an engineering approach to

software development. Software programs can be developed without S/E principles and

methodologies but they are indispensable if we want to achieve good quality software in a cost-

effective manner.

Software is defined as:

Instructions + Data Structures + Documents

Engineering is the branch of science and technology concerned with the design, building, and

use of engines, machines, and structures. It is the application of science, tools and methods to find

cost effectivesolution to simple and complex problems.

Software Engineering is defined as a systematic, disciplined and quantifiable approach for the

development, operation and maintenance of software.

THE EVOLVING ROLE OF SOFTWARE

The dual role of Software is as follows:

1. A Product- Information transformer producing, managing and displaying information.

2. A Vehicle for delivering a product- Control of computer (operating system), the

communication ofinformation(networks) and the creation of other programs.

Characteristics of software

• Software is developed or engineered, but it is not manufactured in the classical sense.

• Software does not wear out, but it deteriorates due to change.

• Software is custom built rather than assembling existing components.

THE CHANGING NATURE OFSOFTWARE

The various categories of software are

1. System software

2. Application software

3. Engineering and scientific software

4. Embedded software

5. Product-line software

6. Web-applications

7. Artificial intelligence software

Department of CSE III Year/I Sem

Software Engineering Page 6

System software. System software is a collection of programs written to service other programs

Embedded software-- resides in read-only memory and is used to control products and systems for

the consumer and industrial markets.

Artificial intelligence software. Artificial intelligence (AI) software makes use of nonnumeric

algorithms to solve complex problems that are not amenable to computation or straightforward

analysis

Engineering and scientific software. Engineering and scientific software have been characterized

by "number crunching" algorithms.

LEGACY SOFTWARE

Legacy software are older programs that are developed decades ago. The quality of legacy

software is poor because it has inextensible design, convoluted code, poor and nonexistent

documentation, test casesand results that are not achieved.

As time passes legacy systems evolve due to following reasons:

The software must be adapted to meet the needs of new computing environment or technology.

The software must be enhanced to implement new business requirements.

The software must be extended to make it interoperable with more modern systems or database

The software must be rearchitected to make it viable within a network environment.

SOFTWARE MYTHS

Myths are widely held but false beliefs and views which propagate misinformation and confusion.

Three types of myth are associated with software:

- Management myth

- Customer myth

- Practitioner’s myth

MANAGEMENT MYTHS

• Myth(1)-The available standards and procedures for software are enough.

• Myth(2)-Each organization feel that they have state-of-art software development tools

since theyhave latest computer.

• Myth(3)-Adding more programmers when the work is behind schedule can catch up.

• Myth(4)-Outsourcing the software project to third party, we can relax and let that party build it.

CUSTOMER MYTHS

• Myth(1)- General statement of objective is enough to begin writing programs, the details

can befilled in later.

• Myth(2)-Software is easy to change because software is flexible

PRACTITIONER’S MYTH

• Myth(1)-Once the program is written, the job has been done.

• Myth(2)-Until the program is running, there is no way of assessing the quality.

Department of CSE III Year/I Sem

Software Engineering Page 7

• Myth(3)-The only deliverable work product is the working program

• Myth(4)-Software Engineering creates voluminous and unnecessary documentation and invariably

slows down software development.

A GENERIC VIEW OF PROCESS

SOFTWARE ENGINEERING-A LAYERED TECHNOLOGY

Fig: Software Engineering-A layered technology

SOFTWARE ENGINEERING - A LAYERED TECHNOLOGY

• Quality focus - Bedrock that supports Software Engineering.

• Process - Foundation for software Engineering

• Methods - Provide technical How-to’s for building software

• Tools - Provide semi-automatic and automatic support to methods

A PROCESS FRAMEWORK

• Establishes the foundation for a complete software process

• Identifies a number of framework activities applicable to all software projects

• Also include a set of umbrella activities that are applicable across the entire software process.

Department of CSE III Year/I Sem

Software Engineering Page 8

A PROCESS FRAMEWORK comprises of :

Common process framework Umbrella activities Framework activities

Tasks, Milestones, deliverables SQA points

A PROCESS FRAMEWORK

Used as a basis for the description of process models Generic process activities

• Communication

• Planning

• Modeling

• Construction

• Deployment

A PROCESS FRAMEWORK

Generic view of engineering complimented by a number of umbrella activities

Software project tracking and control

Formal technical reviews

Software quality assurance

Software configuration management

Document preparation and production

Reusability management

Measurement

Risk management

Department of CSE III Year/I Sem

Software Engineering Page 9

CAPABILITY MATURITY MODEL INTEGRATION(CMMI)

• Developed by SEI(Software Engineering institute)

• Assess the process model followed by an organization and rate the organization with different

levels

• A set of software engineering capabilities should be present as organizations reach

different levels ofprocess capability and maturity.

CMMI process meta model can be represented in different ways

1.A continuous model

2.A staged model

Continuous model:

-Lets organization select specific improvement that best meet its business objectives and minimize

risk-Levels are called capability levels.

-Describes a process in 2 dimensions

-Each process area is assessed against specific goals and practices and is rated according to the

following capability levels.

CMMI

• Six levels of CMMI

– Level 0:Incomplete

– Level 1:Performed

– Level 2:Managed

– Level 3:Defined

– Level 4:Quantitatively managed

– Level 5:Optimized

CMMI

• Incomplete -Process is adhoc . Objective and goal of process areas are not known

• Performed -Goal, objective, work tasks, work products and other activities of software

process arecarried out

Department of CSE III Year/I Sem

Software Engineering Page 10

• Managed -Activities are monitored, reviewed, evaluated and controlled

• Defined -Activities are standardized, integrated and documented

• Quantitatively Managed -Metrics and indicators are available to measure the process and quality

• Optimized - Continuous process improvement based on quantitative feed back from the user

-Use of innovative ideas and techniques, statistical quality control and other methods for process

improvement.

CMMI - Staged model

- This model is used if you have no clue of how to improve the process for quality software.

- It gives a suggestion of what things other organizations have found helpful to work first

- Levels are called maturity levels

PROCESS PATTERNS

Software Process is defined as collection of Patterns.Process pattern provides a template. It

comprises of

• Process Template

-Pattern Name

-Intent

-Types

-Task pattern

- Stage pattern

-Phase Pattern

• Initial Context

• Problem

• Solution

• Resulting Context

• Related Patterns

PROCESS ASSESSMENT

Does not specify the quality of the software or whether the software will be

delivered on time or will it stand up to the user requirements. It attempts to keep a check on the

currentstate of the software process with the intention of improving it.

PROCESS ASSESSMENT

Software Process

Software Process Assessment Software Process Improvement Motivates Capability determination

APPROACHES TO SOFTWARE ASSESSMENT

• Standard CMMI assessment (SCAMPI)

• CMM based appraisal for internal process improvement

• SPICE(ISO/IEC 15504)

Department of CSE III Year/I Sem

Software Engineering Page 11

ISO 9001:2000 for software Personal and Team Software ProcessPersonal software process

PLANNING

HIGH LEVEL DESIGN

HIGH LEVEL DESIGN REVIEW

DEVELOPMENT

POSTMORTEM

PERSONAL AND TEAM SOFTWARE PROCESS

Team software process Goal of TSP

- Build self-directed teams

- Motivate the teams

- Acceptance of CMM level 5 behavior as normal to accelerate software process improvement

- Provide improvement guidance to high maturity organization

-

PROCESS MODELS

• Help in the software development

• Guide the software team through a set of framework activities

• Process Models may be linear, incremental or evolutionary

THE WATERFALL MODEL

• Used when requirements are well understood in the beginning

• Also called classic life cycle

• A systematic, sequential approach to Software development

• Begins with customer specification of Requirements and progresses through planning,

modeling,construction and deployment.

This Model suggests a systematic, sequential approach to SW development that begins at the

systemlevel and progresses through analysis, design, code and testing

PROBLEMS IN WATERFALLMODEL

• Real projects rarely follow the sequential flow since they are always iterative

Communication

Planning
Modeling

Construction
Deployment

Department of CSE III Year/I Sem

Software Engineering Page 12

• The model requires requirements to be explicitly spelled out in the beginning, which is often

difficult

• A working model is not available until late in the project time plan

THE INCREMENTAL PROCESS MODEL

• Linear sequential model is not suited for projects which are iterative in nature

• Incremental model suits such projects

• Used when initial requirements are reasonably well-defined and compelling need to provide limited

functionality quickly

• Functionality expanded further in later releases

• Software is developed in increments

INCREMENT 1

INCREMENT 2

:

:

:

INCREMENT N

Construction

Deployment

Modeling

Deployment

Construction

Modeling

Planning

Communication

Communication

Planning

Communication

Planning
Modeling

Construction
Deployment

Department of CSE III Year/I Sem

Software Engineering Page 13

THE INCREMENTAL MODEL

The Incremental Model

Communication

Planning

Modeling

Construction

Deployment

• Software releases in increments

• 1st increment constitutes Core product

• Basic requirements are addressed

• Core product undergoes detailed evaluation by the customer

• As a result, plan is developed for the next increment. Plan addresses the modification of

coreproduct to better meet the needs of customer

• Process is repeated until the complete product is produced

THE RAD (Rapid Application Development) MODEL

• An incremental software process model

• Having a short development cycle

• High-speed adoption of the waterfall model using a component based construction approach

• Creates a fully functional system within a very short span time of 60 to 90 days

The RAD Model consists of the following phases:

Communication Planning Construction Component reuses automatic code generation testing

Modeling

Business modeling Data modeling Process modeling

Deployment integration delivery feedback

Department of CSE III Year/I Sem

Software Engineering Page 14

THE RAD MODEL

• Multiple software teams work in parallel on different functions

• Modeling encompasses three major phases: Business modeling, Data modeling and process

modeling

• Construction uses reusable components, automatic code generation and testing

Problems in RAD:

• Requires a number of RAD teams

• Requires commitment from both developer and customer for rapid-fire completion of activities

• Requires modularity

• Not suited when technical risks are high

EVOLUTIONARY PROCESSMODEL

• Software evolves over a period of time

• Business and product requirements often change as development proceeds making a straight-line

path to an end product unrealistic

• Evolutionary models are iterative and as such are applicable to modern day applications

Types of evolutionary models

– Prototyping

– Spiral model

– Concurrent development model

Department of CSE III Year/I Sem

Software Engineering Page 15

PROTOTYPING

• Mock up or model (throw away version) of a software product

• Used when customer defines a set of objectives but does not identify input, output, or

processingrequirements

• Developer is not sure of:

- efficiency of an algorithm adaptability of an operating system

– human/machine interaction

STEPS IN PROTOTYPING

• Begins with requirement gathering

• Identify whatever requirements are known

• Outline areas where further definition is mandatory

• A quick design occur

• Quick design leads to the construction of prototype

• Prototype is evaluated by the customer

• Requirements are refined

• Prototype is turned to satisfy the needs of customer

LIMITATIONS OF PROTOTYPING

• In a rush to get it working, overall software quality or long term maintainability are

generallyoverlooked

• Use of inappropriate OS or PL

• Use of inefficient algorithm

Department of CSE III Year/I Sem

Software Engineering Page 16

THE SPIRAL MODEL

An evolutionary model which combines the best feature of the classical life cycle and

the iterative nature of prototype model. Include new element : Risk element. Starts in middle

andcontinually visits the basic tasks of communication, planning, modeling, construction and

deployment

THE SPIRAL MODEL

• Realistic approach to the development of large scale system and software

• Software evolves as process progresses

• Better understanding between developer and customer

• The first circuit might result in the development of a product specification

• Subsequent circuits develop a prototype

• And sophisticated version of software

Department of CSE III Year/I Sem

Software Engineering Page 17

THE CONCURRENT DEVELOPMENT MODEL

• Also called concurrent engineering

• Constitutes a series of framework activities, software engineering action, tasks and their associated

states

• All activities exist concurrently but reside in different states

• Applicable to all types of software development

• Event generated at one point in the process trigger transitions among the states

A FINAL COMMENT ON EVOLUTIONARY PROCESS

• Difficult in project planning

• Speed of evolution is not known

Does not focus on flexibility and extensibility (more emphasis on high quality)

• Requirement is balance between high quality and flexibility and extensibility

THE UNIFIED PROCESS

Evolved by Rumbaugh, Booch, Jacobson. Combines the best features their OO models. Adopts

additional features proposed by other experts. Resulted in Unified Modeling Language (UML).

Unifiedprocess developed Rumbaugh and Booch. A framework for Object-Oriented Software

Engineering using UML

PHASES OF UNIFIED PROCESS

• INCEPTION PHASE

• ELABORATION PHASE

• CONSTRUCTION PHASE

• TRANSITION PHASE

The Unified Process

Department of CSE III Year/I Sem

Software Engineering Page 18

UNIFIED PROCESS WORK PRODUCTS

Tasks which are required to be completed during different phases

1. Inception Phase

*Vision document

*Initial Use-Case model

*Initial Risk assessment

*Project Plan

2. Elaboration Phase

*Use-Case model

*Analysis model

*Software Architecture description

*Preliminary design model

*Preliminary model

3. Construction Phase

*Design model

*System components

*Test plan and procedure

*Test cases

*Manual

4. Transition Phase

*Delivered software increment

*Beta test results

*General user feedback

Department of CSE III Year/I Sem

Software Engineering Page 19

UNIT-II

SOFTWARE REQUIREMENTS

IEEE defines Requirement as :

1. A condition or capability needed by a user to solve a problem or achieve an objective

2. A condition or capability that must be met or possessed by a system or a system

component tosatisfy constract, standard, specification or formally imposed document

3. A documented representation of a condition nor capability as in 1 or 2

SOFTWARE REQUIREMENTS

• Encompasses both the User’s view of the requirements (the external view) and the

Developer’sview(inside characteristics)

User’s Requirements

--Statements in a natural language plus diagram, describing the services the system is expected to

provide and the constraints

• System Requirements --Describe the system’s function, services and operational condition

SOFTWARE REQUIREMENTS

• System Functional Requirements

--Statement of services the system should provide

--Describe the behavior in particular situations

--Defines the system reaction to particular inputs

• Nonfunctional Requirements

- Constraints on the services or functions offered by the system

--Include timing constraints, constraints on the development process and standards

--Apply to system as a whole

• Domain Requirements

--Requirements relate to specific application of the system

--Reflect characteristics and constraints of that system

FUNCTIONAL REQUIREMENTS

• Should be both complete and consistent

• Completeness

-- All services required by the user should be defined

• Consistent

-- Requirements should not have contradictory definition

• Difficult to achieve completeness and consistency for large system

Department of CSE III Year/I Sem

Software Engineering Page 20

NON-FUNCTIONALREQUIREMENTS

Types of Non-functional Requirements

1.Product Requirements

-Specify product behavior

-Include the following

• Usability

• Efficiency

• Reliability

• Portability

2. Organizational Requirements

--Derived from policies and procedures

--Include the following:

• Delivery

• Implementation

• Standard

3. External Requirements

-- Derived from factors external to the system and its development process

--Includes the following

• Interoperability

• Ethical

• Legislative

PROBLEMS FACED USING THE NATURAL LANGUAGE

1. Lack of clarity-- Leads to misunderstanding because of ambiguity of natural language

2. Confusion-- Due to over flexibility, sometime difficult to find whether requirements are same or

distinct.

3. Amalgamation problem-- Difficult to modularize natural language requirements

STRUCTURED LANGUAGE SPECIFICATION

• Requirements are written in a standard way

• Ensures degree of uniformity

• Provide templates to specify system requirements

• Include control constructs and graphical highlighting to partition the specification

SYSTEM REQUIREMENTS STANDARD FORM

• Function

• Description

• Inputs

• Source

Department of CSE III Year/I Sem

Software Engineering Page 21

• Outputs

• Destination

• Action

• Precondition

• Post condition

• Side effects

INTERFACE SPECIFICATION

• Working of new system must match with the existing system

• Interface provides this capability and precisely specified

Three types of interfaces

1. Procedural interface-- Used for calling the existing programs by the new programs 2.Data

structures-

-Provide data passing from one sub-system to another 3.Representations of Data

-- Ordering of bits to match with the existing system

--Most common in real-time and embedded system

THE SOFTWARE REQUIREMENTS DOCUMENT

The requirements document is the official statement of what is required of the system developers.

Should include both a definition of user requirements and a specification of the system

requirements. Itis NOT a design document. As far as possible, it should set of WHAT the system

should do rather thanHOW it should do it

The Software Requirements document

Suggests that there are 6 requirements that requirement document should satisfy. It should

• specify only external system behavior

• Specify constraints on the implementation.

• Be easy to change

• Serve as reference tool for system maintainers

• Record forethought about the life cycle of the system.

• Characterize acceptable responses to undesired events

Purpose of SRS

• Communication between the Customer, Analyst, system developers, maintainers,

• firm foundation for the design phase

• support system testing activities

• Support project management and control

• controlling the evolution of the system

Department of CSE III Year/I Sem

Software Engineering Page 22

IEEE requirements standard

Defines a generic structure for a requirements document that must be instantiated for each specific

system.

– Introduction.

– General description.

– Specific requirements.

– Appendices.

– Index.

IEEE requirements standard

1.IntroductionPurpose

Scope

Definitions, Acronyms and AbbreviationsReferences

Overview

2. General description Product perspective Product function summaryUser characteristics General

constraints

Assumptions and dependencies

3. Specific Requirements

- Functional requirements

-External interface requirements

- Performance requirements

- Design constraints

- Attributes eg. security, availability, maintainability, transferability/conversion

- Other requirements

• Appendices

• Index

REQUIREMENTS ENGINEERING PROCESS

To create and maintain a system requirement document. The overall process includes four high

levelrequirements engineering sub-processes:

1. Feasibility study

--Concerned with assessing whether the system is useful to the business

2.Elicitation and analysis

--Discovering requirements

3.Specifications

--Converting the requirements into a standard form

4.Validation

-- Checking that the requirements actually define the system that the customer wants

Department of CSE III Year/I Sem

Software Engineering Page 23

SPIRAL REPRESENTATION OF REQUIREMENTSENGINEERING PROCESS

Process represented as three stage activity. Activities are organized as an iterative process around a

spiral. Early in the process, most effort will be spent on understanding high-level business and the

userequirement. Later in the outer rings, more effort will be devoted to system requirements

engineering and system modeling

Three level process consists of:

1. Requirements elicitation

2. Requirements specification

3. Requirements validation

FEASIBILITY STUDIES

Starting point of the requirements engineering process

• Input: Set of preliminary business requirements, an outline description of the system and

how thesystem is intended to support business processes

• Output: Feasibility report that recommends whether or not it is worth carrying out further

Feasibilityreport answers a number of questions:

1. Does the system contribute to the overall objective

2. Can the system be implemented using the current technology and within given cost and schedule

3. Can the system be integrated with other system which are already in place.

Department of CSE III Year/I Sem

Software Engineering Page 24

REQUIREMENTS ELICITATION ANALYSIS

Involves a number of people in an organization.

Stakeholder definition-- Refers to any person or group who will be affected by the system directly

orindirectly i.e. End-users, Engineers, business managers, domain experts.

Reasons why eliciting is difficult

1. Stakeholder often don’t know what they want from the computer system. 2. Stakeholder

expression ofrequirements in natural language is sometimes difficult toUnderstand.

3. Different stakeholders express requirements differently

4. Influences of political factors Change in requirements due to dynamic environments.

REQUIREMENTS ELICITATION PROCESS

Process activities

1. Requirement Discovery -- Interaction with stakeholder to collect their requirements including

domain and documentation

2. Requirements classification and organization -- Coherent clustering of requirements from

unstructured collection of requirements

3. Requirements prioritization and negotiation -- Assigning priority to requirements

--Resolves conflicting requirements through negotiation

4. Requirements documentation -- Requirements be documented and placed in the next round of

spiral

The spiral representation of Requirements Engineering

Department of CSE III Year/I Sem

Software Engineering Page 25

REQUIREMENTS DICOVERY TECHNIQUES

1. View points --Based on the viewpoints expressed by the stake holder

--Recognizes multiple perspectives and provides a framework for discovering conflicts in the

requirements proposed by different stakeholders

Three Generic types of viewpoints

1. Interactor viewpoint--Represents people or other system that interact directly with the system

2. Indirect viewpoint--Stakeholders who influence the requirements, but don’t use the system.

3. Domain viewpoint--Requirements domain characteristics and constraints that influence the

requirements.

2. Interviewing--Puts questions to stakeholders about the system that they use and the

system to bedeveloped. Requirements are derived from the answers.

Two types of interview

– Closed interviews where the stakeholders answer a pre-defined set of questions.

– Open interviews discuss a range of issues with the stakeholders for better understanding their

needs.

Effective interviewers

a) Open-minded: no pre-conceived ideas

b) Prompter: prompt the interviewee to start discussion with a question or a proposal

3. Scenarios --Easier to relate to real life examples than to abstract description. Starts with

an outline ofthe interaction and during elicitation, details are added to create a complete

description of that interaction

Scenario includes:

• 1. Description at the start of the scenario

• 2. Description of normal flow of the event

• 3. Description of what can go wrong and how this is handled

• 4.Information about other activities parallel to the scenario

• 5.Description of the system state when the scenario finishes

LIBSYS scenario

• Initial assumption: The user has logged on to the LIBSYS system and has located the

journalcontaining the copy of the article.

• Normal: The user selects the article to be copied. He or she is then prompted by the

system to eitherprovide subscriber information for the journal or to indicate how they will pay for

the article. Alternative payment methods are by credit card or by quoting an organizational account

number.

Department of CSE III Year/I Sem

Software Engineering Page 26

• The user is then asked to fill in a copyright form that maintains details of the transaction

and theythen submit this to the LIBSYS system.

• The copyright form is checked and, if OK, the PDF version of the article is downloaded

to the LIBSYS working area on the user’s computer and the user is informed that it is available.

The user isasked to select a printer and a copy of the article is printed

LIBSYS scenario

• What can go wrong: The user may fail to fill in the copyright form correctly. In this case,

the formshould be re-presented to the user for correction. If the resubmitted form is still incorrect

then the user’srequest for the article is rejected.

• The payment may be rejected by the system. The user’s request for the article is rejected.

• The article download may fail. Retry until successful or the user terminates the session..

• Other activities: Simultaneous downloads of other articles.

• System state on completion: User is logged on. The downloaded article has been

deleted fromLIBSYS workspace if it has been flagged as print-only.

4. Use cases -- scenario based technique for requirement elicitation. A fundamental feature

of UML,notation for describing object-oriented system models. Identifies a type of interaction and

the actors involved. Sequence diagrams are used to add information to a Use case

Article printing use-case Article printing LIBSYS use cases Article printing Article search

User administration Supplier Catalogue services Library

User Library Staff

REQUIREMENTS VALIDATION

Concerned with showing that the requirements define the system that the customer wants.

Importantbecause errors in requirements can lead to extensive rework cost

Validation checks

1. Validity checks --Verification that the system performs the intended function by the user

2.Consistencycheck --Requirements should not conflict

3. Completeness checks --Includes requirements which define all functions and constraints

intendedbythe system user

4. Realism checks --Ensures that the requirements can be actually implemented

5. Verifiability -- Testable to avoid disputes between customer and developer.

VALIDATION TECHNIQUES

1. REQUIREMENTS REVIEWS

Reviewers check the following:

(a) Verifiability: Testable

(b) Comprehensibility

(c) Traceability

Department of CSE III Year/I Sem

Software Engineering Page 27

(d) Adaptability

2.PROTOTYPING

3. TEST-CASE GENERATIONRequirements management

Requirements are likely to change for large software systems and as such requirements

managementprocess is required to handle changes.

Reasons for requirements changes

(a) Diverse Users community where users have different requirements and priorities

(b) System customers and end users are different

(c) Change in the business and technical environment after installation Two classes of requirements

(a) Enduring requirements: Relatively stable requirements

(b) Volatile requirements: Likely to change during system development process or during operation

REQUIREMENTS MANAGEMENT PLANNING

An essential first stage in requirement management process. Planning process consists of the

following

1. Requirements identification -- Each requirement must have unique tag for cross reference

andtraceability

2. Change management process -- Set of activities that assess the impact and cost of changes

3.Traceability policy -- A matrix showing links between requirements and other elements of software

development

4. CASE tool support --Automatic tool to improve efficiency of change management process.

Automatedtools are required for requirements storage, change management and traceability.

Traceability

Maintains three types of traceability information.

1. Source traceability--Links the requirements to the stakeholders

2. Requirements traceability--Links dependent requirements within the requirements document

3. Design traceability-- Links from the requirements to the design module

A traceability matrix Requirements change managementconsists of three principal stages:

Department of CSE III Year/I Sem

Software Engineering Page 28

1. Problem analysis and change specification-- Process starts with a specific change

proposal andanalysed to verify that it is valid

2. Change analysis and costing--Impact analysis in terms of cost, time and risks

3. Change implementation--Carrying out the changes in requirements document, system

design and itsimplementation

SYSTEM MODELS

Used in analysis process to develop understanding of the existing system or new system. Excludes

details. An abstraction of the system

Types of system models 1.Context models

2. Behavioural models 3.Data models 4.Object models 5.Structured models

CONTEXT MODELS

A type of architectural model. Consists of sub-systems that make up an entire system First step: To

identify the subsystem.

Represent the high level architectural model as simple block diagram

• Depict each sub system a named rectangle

• Lines between rectangles indicate associations between subsystems Disadvantages

--Concerned with system environment only, doesn't take into account other systems, which may

takedata or give data to the model.

The context of an ATM system consists of the following Auto-teller systemSecurity system

Maintenance system Account data base Usage database Branch accounting system Branch counter

system

Behavioral models

Describes the overall behaviour of a system. Two types of behavioural model1.Data Flow models

2.State machine models

Data flow models --Concentrate on the flow of data and functional transformation on that data.

Show theprocessing of data and its flow through a sequence of processing steps. Help analyst

understand what is going on

Advantages

-- Simple and easily understandable

-- Useful during analysis of requirements

State machine models

Describe how a system responds to internal or external events. Shows system states and events that

cause transition from one state to another. Does not show the flow of data within the system. Used

formodeling of real time systems

Department of CSE III Year/I Sem

Software Engineering Page 29

Exp: Microwave oven

Assumes that at any time, the system is in one of a number of possible states. Stimulus triggers a

transition from on state to another state

Disadvantage

-- Number of possible states increases rapidly for large system models

DATA MODELS

Used to describe the logical structure of data processed by the system. An entity-relation- attribute

model sets out the entities in the system, the relationships between these entities and the entity

attributes.Widely used in database design. Can readily be implemented using relational databases.

No specific notation provided in the UML but objects and associations can be used.

Library semantic model

Department of CSE III Year/I Sem

Software Engineering Page 30

Data dictionary entries

OBJECT MODELS

An object oriented approach is commonly used for interactive systems development. Expresses the

systems requirements using objects and developing the system in an object oriented PL such as c++

A object class: An abstraction over a set of objects that identifies common attributes. Objects are

instances of object class. Many objects may be created from a single class.

Analysis process

-- Identifies objects and object classes Object class in UML

--Represented as a vertically oriented rectangle with three sections

(a) The name of the object class in the top section

(b) The class attributes in the middle section

(c) The operations associated with the object class are in lower section.

OBJECT MODELS INHERITANCE MODELS

A type of object oriented model which involves in object classes attributes. Arranges classes into

aninheritance hierarchy with the most general object class at the top of hierarchy Specialized

objects inherit their attributes and services

UML notation

-- Inheritance is shown upward rather than downward

--Single Inheritance: Every object class inherits its attributes and operations from a single parent

class

--Multiple Inheritance: A class of several of several parents.

Department of CSE III Year/I Sem

Software Engineering Page 31

OBJECT MODELS OBJECT AGGREGATION

Some objects are grouping of other objects. An aggregate of a set of other objects. The classes

representing these objects may be modeled using an object aggregation model A diamond shape on

thesource of the link represents the composition.

OBJECT-BEHAVIORAL MODEL

-- Shows the operations provided by the objects

-- Sequence diagram of UML can be used for behavioral modeling

Department of CSE III Year/I Sem

Software Engineering Page 32

UNIT III

DESIGN ENGINEERING

DESIGN PROCESS AND DESIGN QUALITY

Encompasses the set of principles, concepts and practices that lead to the development of high-

quality system or product. Design creates a representation or model of the software. Design model

provides details about S/W architecture, interfaces and components that are necessary to implement

the system. Quality is established during Design. Design should exhibit firmness, commodity and

design. Design sits at the kernel of S/W Engineering. Design sets the stage for construction.

QUALITY GUIDELINES

• Uses recognizable architectural styles or patterns

• Modular; that is logically partitioned into elements or subsystems

• Distinct representation of data, architecture, interfaces and components

• Appropriate data structures for the classes to be implemented

• Independent functional characteristics for components

• Interfaces that reduces complexity of connection

• Repeatable method

QUALITY ATTRIBUTES

FURPS quality attributes

• Functionality

* Feature set and capabilities of programs

* Security of the overall system

• Usability

* user-friendliness

* Aesthetics

* Consistency

* Documentation

• Reliability

* Evaluated by measuring the frequency and severity of failure

* MTTF

• Supportability

* Extensibility

* Adaptability

* Serviceability

Department of CSE III Year/I Sem

Software Engineering Page 33

DESIGN CONCEPTS

1. Abstractions

2. Architecture

3. Patterns

4. Modularity

5. Information Hiding

6. Functional Independence

7. Refinement

8. Re-factoring

9. Design Classes

DESIGN CONCEPTS

ABSTRACTION

Many levels of abstraction.

Highest level of abstraction: Solution is slated in broad terms using the language of the problem

environment

Lower levels of abstraction: More detailed description of the solution is provided

• Procedural abstraction-- Refers to a sequence of instructions that a specific and limited function

• Data abstraction-- Named collection of data that describe a data object

DESIGN CONCEPTS

ARCHITECTURE--Structure organization of program components (modules) and their

interconnectionArchitecture Models

(a) Structural Models-- An organized collection of program components

(b) Framework Models-- Represents the design in more abstract way

(c) Dynamic Models-- Represents the behavioral aspects indicating changes as a function of

externalevents

(d). Process Models-- Focus on the design of the business or technical process

PATTERNS

Provides a description to enables a designer to determine the followings:

(a). whether the pattern is applicable tothe current work

(b) Whether the pattern can be reused

(c) Whether the pattern can serve as a guide for developing a similar but functionally or structurally

different pattern

MODULARITY

Divides software into separately named and addressable components, sometimes called modules.

Modules are integrated to satisfy problem requirements. Consider two problems p1 and p2. If the

complexity of p1 iscp1 and of p2 is cp2 then effort to solve p1=cp1 and effort to solve p2=cp2If

Department of CSE III Year/I Sem

Software Engineering Page 34

cp1>cp2 then ep1>ep2

The complexity of two problems when they are combined is often greater than the sum of the

perceivedcomplexity when each is taken separately. • Based on Divide and Conquer strategy

: it is easier to solve a complex problem when broken into sub-modules

INFORMATION HIDING

Information contained within a module is inaccessible to other modules who do not need such

information. Achieved by defining a set of Independent modules that communicate with one

another only that information necessary to achieve S/W function. Provides the greatest benefits

when modifications are required during testing and later. Errors introduced during modification are

less likelyto propagate to other location within the S/W.

FUNCTIONAL INDEPENDENCE

A direct outgrowth of Modularity. abstraction and information hiding. Achieved by developing a

modulewith single minded function and an aversion to excessive interaction with other modules.

Easier to develop and have simple interface. Easier to maintain because secondary effects caused b

design or codemodification are limited, error propagation is reduced and reusable modules are

possible. Independence is assessed by two quantitative criteria:

(1) Cohesion

(2) Coupling

Cohesion -- Performs a single task requiring little interaction with other components Coupling--

Measure of interconnection among modules. Coupling should be low and cohesion should be high

for good design.

REFINEMENT & REFACTORING

REFINEMENT -- Process of elaboration from high level abstraction to the lowest level

abstraction. High level abstraction begins with a statement of functions. Refinement causes the

designer to elaborateproviding more and more details at successive level of abstractions

Abstraction and refinement are complementary concepts.

Refactoring -- Organization technique that simplifies the design of a component without changing

its function or behavior. Examines for redundancy, unused design elements and inefficient or

unnecessary algorithms.

DESIGN CLASSES

Class represents a different layer of design architecture. Five types of Design Classes

1. User interface class -- Defines all abstractions that are necessary for human computer interaction

2. Business domain class -- Refinement of the analysis classes that identity attributes and services to

implement some of business domain

3. Process class -- implements lower level business abstractions required to fully manage the

businessdomain classes

Department of CSE III Year/I Sem

Software Engineering Page 35

4. Persistent class -- Represent data stores that will persist beyond the execution of the software

5. System class -- Implements management and control functions to operate and communicate within

the computer environment and with the outside world.

THE DESIGN MODEL

Analysis viewed in two different dimensions as process dimension and abstract dimension. Process

dimension indicates the evolution of the design model as design tasks are executed as part of

software process. Abstraction dimension represents the level of details as each element of the

analysis model istransformed into design equivalent

Data Design elements

-- Data design creates a model of data that is represented at a high level of abstraction

-- Refined progressively to more implementation-specific representation for processing by the

computerbase system

-- Translation of data model into a data base is pivotal to achieving business objective of a system

THE DESIGN MODEL

Architectural design elements. Derived from three sources

(1) Information about the application domain of the software

(2) Analysis model such as dataflow diagrams or analysis classes.

(3) Architectural pattern and styles Interface Design elements

Set of detailed drawings constituting:

(1) User interface

(2) External interfaces to other systems, devices etc

(3) Internal interfaces between various components

THE DESIGN MODEL

Deployment level design elements. Indicates how software functionality and subsystem will be

allocatedwithin the physical computing environment. UML deployment diagram is developed and

refined Component level design elements Fully describe the internal details of each software

component. UML diagram can be used

CREATING AN ARCHITECTURAL DESIGN

What is SOFTWARE ARCHITECTURE… The software architecture of a program or computing

system is the structure or structures of the system, which comprise software components, the

externallyvisible properties of those components and the relationship among them.

Software Architecture is not the operational software. It is a representation that enables a software

engineer to

• Analyze the effectiveness of the design in meeting its stated requirements.

Department of CSE III Year/I Sem

Software Engineering Page 36

• • consider architectural alternative at a stage when making design changes is still relatively easy .

• Reduces the risk associated with the construction of the software.

Why Is Architecture Important? Three key reasons

--Representations of software architecture enable communication and understanding between

stakeholders

--Highlights early design decisions to create an operational entity.

--constitutes a model of software components and their interconnection

Data Design

The data design action translates data objects defined as part of the analysis model into data

structures atthe component level and database architecture at application level when necessary.

DATA DESIGN AT ARCHITECTURE LEVEL

• Data structure at programming level

• Data base at application level

• Data warehouse at business level.

DATA DESIGN AT COMPONENT LEVEL

Principles for data specification:

1. Proper selection of data objects and data and data models

2. Identification of attribute and functions and their encapsulation of these within a class

3. 3.Mechanismfor representation of the content of each data object. Class diagrams may

be used

4. Refinement of data design elements from requirement analysis to component level design.

5.Information hiding

6. A library of useful data structures and operations be developed.

7. Software design and PL should support the specification and realization of abstract data types.

ARCHITECTURAL STYLES

Describes a system category that encompasses:

(1) a set of components

(2) a set of connectors that enables “communication and coordination

(3) Constraints that define how components can be integrated to form the system

(4) Semantic models to understand the overall properties of a system

Department of CSE III Year/I Sem

Software Engineering Page 37

Data-flow architectures

Shows the flow of input data, its computational components and output data. Structure is also

called pipeand Filter. Pipe provides path for flow of data. Filters manipulate data and work

independent of its neighboring filter. If data flow degenerates into a single line of transform, it is

termed as batch sequential.

Call and return architectures

Achieves a structure that is easy to modify and scale .

Two sub styles

(1) Main program/sub program architecture

-- Classic program structure

-- Main program invokes a number of components, which in turn invoke still other components

(2) Remote procedure call architecture

-- Components of main program/subprogram are distributed across computers over network

Object-oriented architectures

The components of a system encapsulate data and the operations. Communication and coordination

between components is done via message

Layered architectures

A number of different layers are defined Inner Layer (interface with OS)

Department of CSE III Year/I Sem

Software Engineering Page 38

• Intermediate Layer Utility services and application function) Outer Layer (User interface)

ARCHITECTURAL PATTERNS

A template that specifies approach for some behavioral characteristics of the system Patterns are

imposed on the architectural styles

Pattern Domains

1.Concurrency

--Handles multiple tasks that simulate parallelism.

--Approaches (Patterns)

(a) Operating system process management pattern

(b) A task scheduler pattern

(c) 2.Persistence

--Data survives past the execution of the process

--Approaches (Patterns)

(a) Data base management system pattern

(b) Application Level persistence Pattern (word processing software)

3. Distribution

-- Addresses the communication of system in a distributed environment

--Approaches (Patterns)

(a) Broker Pattern

-- Acts as middleman between client and server.

FIG: Layered

Department of CSE III Year/I Sem

Software Engineering Page 39

Object-Oriented Design: Objects and object classes, An Object-Oriented design process, Design

evolution.

• Performing User interface design: Golden rules, User interface analysis and design,

interfaceanalysis, interface design steps, Design evaluation.

Object and Object Classes

Object: An object is an entity that has a state and a defined set of operations that operate on that

state.

• An object class definition is both a type specification and a template for creating objects.

• It includes declaration of all the attributes and operations that are associated with object of that

class.

Object Oriented Design Process

There are five stages of object oriented design process

1) Understand and define the context and the modes of use of the system. 2) Design the system

architecture

3) Identify the principle objects in the system. 4) Develop a design models5)Specify the object

interfaces

Systems context and modes of use. It specifies the context of the system. it also specify the

relationships between the software that is being designed and its external environment.

 If the system context is a static model it describes the other system in that environment.

 If the system context is a dynamic model then it describes how the system actually interact

withthe environment.

System Architecture

Once the interaction between the software system that being designed and the system environment

havebeen defined. We can use the above information as basis for designing the System

Architecture.

Object Identification--This process is actually concerned with identifying the object classes. We

canidentify the object classes by the following

1) Use a grammatical analysis 2) Use a tangible entities 3) Use a behavioral approach

4) Use a scenario based approach

Design model

Design models are the bridge between the requirements and implementation. There are two type of

design models

1) Static model describe the relationship between the objects.

2) Dynamic model describe theinteraction between the objects

Department of CSE III Year/I Sem

Software Engineering Page 40

Object Interface Specification

It is concerned with specifying the details of the interfaces to objects.

Design evolution. The main advantage OOD approach is to simplify the problem of making

changes tothe design. Changing the internal details of an object is unlikely to effect any other

system object.

Golden Rules

1. Place the user in control

2. Reduce the user’s memory load

3. Make the interface consistent

Place the User in Control

• Define interaction modes in a way that does not force a user into unnecessary or undesired actions.

• Provide for flexible interaction.

• Allow user interaction to be interruptible and undoable.

• Streamline interaction as skill levels advance and allow the interaction to be customized.

• Hide technical internals from the casual user.

• Design for direct interaction with objects that appear on the screen.

Make the Interface Consistent. Allow the user to put the current task into a meaningful context.

Maintain consistency across a family of applications. If past interactive models have created user

expectations, do not make changes unless there is a compelling reason to do so.

USER INTERFACE ANALYSISAND DESIGN

The overall process for analyzing and designing a user interface begins with the creation of

different models of system function. There are 4 different models that is to be considered when a

user interface isto be analyzed and designed.

User Interface Design Models

User model —Establishes a profile of all end users of the system

Design model — A design model of the entire system incorporates data, architectural, interface and

procedural representation of the software.

A design realization of the user model

User’s Mental model (system perception). the user’s mental image of what the interface is

Implementation model — the interface “look and feel” coupled with supporting information that

describe interface syntax and semantics

Users can be categorized as

1. Novice – No syntactic knowledge of the system and little semantic knowledge of the

application orcomputer usage of the system

Department of CSE III Year/I Sem

Software Engineering Page 41

2. Knowledgeable, intermittent users- Reasonable semantic knowledge of the application

but lowrecallof syntactic information to use the system

3. Knowledgeable, frequent users- Good semantic and syntactic knowledge

User interface analysis and design process

• The user interface analysis and design process is an iterative process and it can be

represented as aspiral model

It consists of 5 framework activities 1.User, task and environment analysis 2.Interface

design3.Interface construction 4.Interface validation

User Interface Design Process

Interface analysis

-Understanding the user who interacts with the system based on their skill levels.i.e, requirement

gathering

-The task the user performs to accomplish the goals of the system are identified, described and

elaborated. Analysis of work environment.

Interface design

In interface design, all interface objects and actions that enable a user to perform all desired task are

defined

Implementation

A prototype is initially constructed and then later user interface development tools may be used to

complete the construction of the interface.

• Validation

The correctness of the system is validated against the user requirement

Department of CSE III Year/I Sem

Software Engineering Page 42

Interface Analysis

Interface analysis means understanding

– (1) the people (end-users) who will interact with the system through the interface;

– (2) the tasks that end-users must perform to do their work,

– (3) the content that is presented as part of the interface

– (4) the environment in which these tasks will be conducted.

User Analysis

• Are users trained professionals, technician, clerical, o manufacturing workers?

• What level of formal education does the average user have?

• Are the users capable of learning from written materials or have they expressed a desire

forclassroom training?

• Are users expert typists or keyboard phobic?

• What is the age range of the user community?

• Will the users be represented predominately by one gender?

• How are users compensated for the work they perform?

• Do users work normal office hours or do they work until the job is done?

TASK ANALYSIS AND MODELING

Analysis Techniques

• Use-cases define basic interaction

• Task elaboration refines interactive tasks

• Object elaboration identifies interface objects(classes)

• Workflow analysis defines how a work process is completed when several people (and

roles) areinvolved

– What work will the user perform in specific circumstances?

Interface Design Steps

 Using information developed during interface analysis define interface objects and actions

(operations).

 Define events (user actions) that will cause the state of the user interface to change. Model

thisbehavior.

 Depict each interface state as it will actually look to the end-user.

 Indicate how the user interprets the state of the system from information provided through

theinterface.

Interface Design Patterns. Patterns are available for

– The complete UI

– Page layout

– Forms and input

Department of CSE III Year/I Sem

Software Engineering Page 43

– Tables

– Direct data manipulation

– Navigation

– Searching

– Page elements

– e-Commerce

Design Issues

• Response time

• Help facilities

• Error handling

• Menu and command labeling

• Application accessibility

• Internationalization

Design Evaluation Cycle: Steps:

 Preliminary design Build prototype #1

 Interface evaluation is studied by designer

 Design modifications are made

 Build prototype # n

 Interface User evaluate's interface

 Interface design is complete

Department of CSE III Year/I Sem

Software Engineering Page 44

UNIT IV

TESTING STRATEGIES

Software is tested to uncover errors introduced during design and construction. Testingoften

accounts for ore project effort than other s/e activity. Hence it has to be done carefully using a

testingstrategy.

The strategy is developed by the project manager, software engineers and testing specialists.

Testing is the process of execution of a program with the intention of finding errors Involves 40%

of total project cost

Testing Strategy provides a road map that describes the steps to be conducted as part of

testing. It should incorporate test planning, test case design, test execution and resultant data

collection and execution

Validation refers to a different set of activities that ensures that the software is traceable tothe

Customer requirements.

V&V encompasses a wide array of Software Quality Assurance

A strategic Approach for Software testing

Testing is a set of activities that can be planned in advance and conducted systematically.Testing

strategy

Should have the following characteristics:

-- usage of Formal Technical reviews(FTR)

-- Begins at component level and covers entire system

-- Different techniques at different points

-- conducted by developer and test group

-- should include debugging

Software testing is one element of verification and validation.

Verification refers to the set of activities that ensure that software correctly implements aspecific

function.

(Ex: Are we building the product right?)

Validation refers to the set of activities that ensure that the software built is traceable tocustomer

requirements.

(Ex: Are we building the right product ?)

Testing Strategy

Testing can be done by software developer and independent testing group. Testing anddebugging

are different activities. Debugging follows testing

Low level tests verifies small code segments. High level tests validate major systemfunctions

against customer requirements

Department of CSE III Year/I Sem

Software Engineering Page 45

Test Strategies for Conventional Software:

Testing Strategies for Conventional Software can be viewed as a spiral consisting of four levelsof

testing:

1) Unit Testing 2)Integration Testing 3)Validation Testing and

4) System Testing

Spiral Representation of Testing for Conventional Software

Unit Testing begins at the vortex of the spiral and concentrates on each unit of software insource

code.

It uses testing techniques that exercise specific paths in a component and its control structure to

ensure complete coverage and maximum error detection. It focuses on the internal processing logic

and data structures. Test cases should uncover errors.

Fig: Unit Testing

Boundary testing also should be done as s/w usually fails at its boundaries. Unittests can be

Department of CSE III Year/I Sem

Software Engineering Page 46

designed before coding begins or after source code is generated.

Integration testing: In this the focus is on design and construction of the software architecture.It

addresses the issues associated with problems of verification and program construction by testing

inputs and outputs. Though modules function independently problems may arise because of

interfacing. This technique uncovers errors associated with interfacing. We can use top-down

integration wherein modules are integrated by moving downward through the control hierarchy,

beginning with the main control module. The other strategy is bottom –up which begins construction

and testing with atomic modules which are combined into clusters as we move up the hierarchy. A

combined approach called Sandwich strategy can be used i.e., top- down for higher level modules

and bottom-up for lower level modules.

Validation Testing: Through Validation testing requirements are validated against s/wconstructed.

These are high-order tests where validation criteria must be evaluated to assure that s/w meets all

functional, behavioural and performance requirements. It succeeds when the software functionsin a

manner that can be reasonably expected by the customer.

1)Validation Test Criteria2)Configuration Review 3)Alpha And Beta Testing

The validation criteria described in SRS form the basis for this testing. Here, Alpha and Beta testing

is performed. Alpha testing is performed at the developers site by end users in a natural setting and

with a controlled environment. Beta testing is conducted at end-user sites. It is a “live” application

and environment is not controlled.

End-user records all problems and reports to developer. Developer then makes modifications and

releases the product.

System Testing: In system testing, s/w and other system elements are tested as a whole. This isthe

last high-order testing step which falls in the context of computer system engineering. Software is

combined with other system elements like H/W, People, Database and the overall functioning is

Department of CSE III Year/I Sem

Software Engineering Page 47

checked by conducting a series of tests. These tests fully exercise the computer based system. The

types of tests are:

1. Recovery testing: Systems must recover from faults and resume processing within a

prespecified time.

It forces the system to fail in a variety of ways and verifies that recovery is properly performed.Here

the Mean Time To Repair (MTTR) is evaluated to see if it is within acceptable limits.

2. Security Testing: This verifies that protection mechanisms built into a system will protect it

from improper penetrations. Tester plays the role of hacker. In reality given enough resources and

time it is possible to ultimately penetrate any system. The role of system designer is to make

penetration cost more than the value of the information that will be obtained.

3. Stress testing: It executes a system in a manner that demands resources in abnormal quantity,

frequency or volume and tests the robustness of the system.

4. Performance Testing: This is designed to test the run-time performance of s/w within the

context of an integrated system. They require both h/w and s/w instrumentation.

Testing Tactics:

The goal of testing is to find errors and a good test is one that has a high probability of findingan

error.

A good test is not redundant and it should be neither too simple nor too complex.Two major

categories of software testing

Black box testing: It examines some fundamental aspect of a system, tests whether eachfunction

of product is fully operational.

White box testing: It examines the internal operations of a system and examines theprocedural

detail.

Black box testing

This is also called behavioural testing and focuses on the functional requirements of software. It

fully exercises all the functional requirements for a program and finds incorrect or missing

functions,interface errors, database errors etc. This is performed in the later stages in the testing

process. Treatsthe system as black box whose behaviour can be determined by studying its input

and related output Not concerned with the internal. The various testing methods employedhere are:

1) Graph based testing method: Testing begins by creating a graph of important objects and

theirrelationships

and then devising a series of tests that will cover the graph so that each object and relationshipis

exercised and errors are uncovered.

Department of CSE III Year/I Sem

Software Engineering Page 48

Fig: O-R graph.

2) Equivalence partitioning: This divides the input domain of a program into classes of data

from which test

Cases can be derived. Define test cases that uncover classes of errors so that no. of test cases are

reduced.This is based on equivalence classes which represents a set of valid or invalid states for

inputconditions. Reduces the cost of testing

Example

Input consists of 1 to 10

Then classes are n<1,1<=n<=10,n>10

Choose one valid class with value within the allowed range and two invalid classes wherevalues are

greater than maximum value and smaller than minimum value.

3) Boundary Value analysis

Select input from equivalence classes such that the input lies at the edge of the equivalence

classes. Set of data lies on the edge or boundary of a class of input data or generates the data that

lies at the boundary of a class of output data. Test cases exercise boundary values to uncover errors

at theboundaries of the input domain.

Example

If 0.0<=x<=1.0

Then test cases are (0.0,1.0) for valid input and (-0.1 and 1.1) for invalid input

4) Orthogonal array Testing

This method is applied to problems in which input domain is relatively small but too large for

exhaustive testing

Example

Three inputs A,B,C each having three values will require 27 test cases. Orthogonal testing will

reduce the number of test case to 9 as shown below

Object

Link

Department of CSE III Year/I Sem

Software Engineering Page 49

White Box testing

Also called glass box testing. It uses the control structure to derive test cases. It exercises all

independent paths, Involves knowing the internal working of a program, Guarantees that all

independent paths will be exercised at least once .Exercises all logical decisions on their true and

false sides, Executes all loops,Exercises all data structures for their validity. White box testing

techniques

1. Basis path testing 2.Control structure testing1.Basis path testing

Proposed by Tom McCabe. Defines a basic set of execution paths based on logicalcomplexity

of a procedural design. Guarantees to execute every statement in the program at least once Steps of

Basis Path Testing

1. Draw the flow graph from flow chart of the program 2.Calculate the cyclomatic complexity of

the resultant flow graph3.Prepare test cases that will force execution of each path

Two methods to compute Cyclomatic complexity number 1.V(G)=E-N+2 where E is number of

edges, N is number of nodes2.V(G)=Number of regions

The structured constructs used in the flow graph are:

Fig: Basis path testing

Basis path testing is simple and effective

It is not sufficient in itself

2. Control Structure testing

This broadens testing coverage and improves quality of testing. It uses the following methods:

a) Condition testing: Exercises the logical conditions contained in a program module.

Focuses on testing each condition in the program to ensure that it does not contain errorsSimple

condition

Department of CSE III Year/I Sem

Software Engineering Page 50

E1<relation operator>E2 Compound condition simple condition<Boolean operator>simple

condition

Types of errors include operator errors, variable errors, arithmetic expression errors etc.

b) Data flow Testing

This selects test paths according to the locations of definitions and use of variables in

aprogram Aims to ensure that the definitions of variables and subsequent use is tested

First construct a definition-use graph from the control flow of a program DEF(definition):definition of

a variable on the left-hand side of an assignment statement USE: Computational use of a variable

like read, write or variable on the right hand of

assignment statement Every DU chain be tested at least once.

c) Loop Testing

This focuses on the validity of loop constructs. Four categories can be defined

1. Simple loops2.Nested loops

3.Concatenated loops4.Unstructured loops

Testing of simple loops

N is the maximum number of allowable passes through the loop1.Skip the loop entirely

2.Only one pass through the loop3.Two passes through the loop

4.m passes through the loop where m>N5.N-1,N,N+1 passes the loop

The Art of Debugging

Debugging occurs as a consequence of successful testing. It is an action that results in theremoval

of errors.

It is very much an art.

Fig: Debugging process

Department of CSE III Year/I Sem

Software Engineering Page 51

Debugging has two outcomes:

- cause will be found and corrected

- cause will not be foundCharacteristics of bugs:

- symptom and cause can be in different locations

- Symptoms may be caused by human error or timing problems Debugging is an innate

human trait. Some are good at it and some are not.

Debugging Strategies:

The objective of debugging is to find and correct the cause of a software error which is realizedby a

combination of systematic evaluation, intuition and luck. Three strategies are proposed: 1)Brute

Force Method.

2)Back Tracking 3)Cause Elimination

Brute Force: Most common and least efficient method for isolating the cause of a s/w error.

This is applied

when all else fails. Memory dumps are taken, run-time traces are invoked and program is loaded

with output statements. Tries to find the cause from the load of information Leads towaste of time

and effort.

Back tracking: Common debugging approach. Useful for small programs

Beginning at the system where the symptom has been uncovered, the source code is traced

backward until the site of the cause is found. More no. of lines implies no. of paths are

unmanageable.

Cause Elimination: Based on the concept of Binary partitioning. Data related to erroroccurenec

are organized to isolate potential causes. A “cause hypothesis” is devised and data is used to prove

or disprove it. A list of all possible causes is developed and tests areconducted to eliminate each

Automated Debugging: This supplements the above approaches with debugging tools thatprovide

semi-automated support like debugging compilers, dynamic debugging aids, test casegenerators,

mapping tools etc.

Regression Testing: When a new module is added as part of integration testing the software

changes.

This may cause problems with the functions which worked properly before. This testing is there-

execution of some subset of tests that are already conducted to ensure that changes have not

propagated unintended side effects. It ensures that changes do not introduce unintended behaviour

or errors. This can be done manually or automated.

Risk Management

Risk is an undesired event or circumstance that occur while a project is underway It is

necessary for the project manager to anticipate and identify different risks that a project may be

susceptible to Risk Management. It aims at reducing the impact of all kinds of risk that may effecta

Department of CSE III Year/I Sem

Software Engineering Page 52

project by identifying, analyzing and managing them

Reactive Vs Proactive risk

Reactive : It monitors the projects likely risk and resources are set aside.

Proactive: Risk are identified, their probability and impact is accessed

Software Risk

It involve 2 characteristics

Uncertainty : Risk may or may not happen

Loss : If risk is reality unwanted loss or consequences will occurIt includes

1)Project Risk 2)Technical Risk 3)Business Risk 4)Known Risk 5)Unpredictable Risk

6) Predictable risk

Project risk: Threaten the project plan and affect schedule and resultant cost Technical risk:

Threaten the quality and timeliness of software to be producedBusiness risk: Threaten the viability

of software to be built

Known risk: These risks can be recovered from careful evaluation Predictable risk: Risks are

identified by past project experience Unpredictable risk: Risks that occur and may be difficult to

identify

Risk Identification

It concerned with identification of riskStep1: Identify all possible risks Step2: Create item check

list

Step3: Categorize into risk components-Performance risk, cost risk, support risk andschedule risk

Step4: Divide the risk into one of 4 categoriesNegligible-0

Marginal-1Critical-2

Risk Identification

Risk Identification includesProduct size

Business impact Development environmentProcess definition Customer characteristics

Technology to be built Staff size and experience

Risk Projection

Also called risk estimation. It estimates the impact of risk on the project and the product.

Estimation is done by using Risk Table. Risk projection addresses risk in 2 ways

Department of CSE III Year/I Sem

Software Engineering Page 53

Risk

Category

Prob

abilit

y

Imp

act

RM

MM

Size

estimate

PS

60%

2

may be

significantly

low

Larger no.

of

PS

30%

3

users than

planned

Less reuse PS 70% 2

than planned

End user BU 40% 3

resist system

Likelihood or probability that the risk is real(Li)

Consequences (Xi)

Risk Projection

Steps in Risk projection
1. Estimate Li for each risk
2. Estimate the consequence Xi
3. Estimate the impact
4. Draw the risk table

Ignore the risk where the management concern is low i.e., risk having impact high or lowwith low

probability of occurrence

Consider all risks where management concern is high i.e., high impact with high or moderate

probability of occurrence or low impact with high probability of occurrence

Risk ProjectionProjection

The impact of each risk is assessed by Impact valuesCatastrophic-1 Critical-2 Marginal-3

Negligible-4

Department of CSE III Year/I Sem

Software Engineering Page 54

Risk Refinement

Also called Risk assessment

Refines the risk table in reviewing the risk impact based on the following three factorsa.Nature:

Likely problems if risk occurs

b.Scope: Just how serious is it?c.Timing: When and how long

It is based on Risk Elaboration Calculate Risk exposure RE=P*C

Where P is probability and C is cost of project if risk occursRisk Mitigation Monitoring And

Management (RMMM)

Its goal is to assist project team in developing a strategy for dealing with riskThere are three issues

of RMMM

1) Risk Avoidance 2)Risk Monitoring and3)Risk Management

Risk Mitigation Monitoring And Management (RMMM)

Risk Mitigation

Proactive planning for risk avoidanceRisk Monitoring

Assessing whether predicted risk occur or not Ensuring risk aversion steps are being properly

appliedCollection of information for future risk analysis Determine which risks caused which

problems

Risk Mitigation Monitoring And Management (RMMM)Risk ManagementContingency planning

Actions to be taken in the event that mitigation steps have failed and the risk has becomea live

problem Devise RMMP(Risk Mitigation Monitoring And Management Plan)

RMMM plan

It documents all work performed as a part of risk analysis.

Each risk is documented individually by using a Risk Information Sheet.RIS is maintained by using

a database system Quality Management

Department of CSE III Year/I Sem

Software Engineering Page 55

UNIT – V

QUALITY CONCEPTS

Variation control is the heart of quality control

Form one project to another, we want to minimize the difference between the

predictedresources needed to complete a project and the actual resources used,

including staff, equipment, and calendar time

Quality of design

Refers to characteristics that designers specify for the end productQuality

Management

Quality of conformance

Degree to which design specifications are followed in manufacturing the product

Quality control

Series of inspections, reviews, and tests used to ensure conformance of a work

product to itsspecifications

Quality assurance

Consists of a set of auditing and reporting functions that assess the effectiveness and

completeness of quality control activities

COST OF QUALITY

Prevention costs

Quality planning, formal technical reviews, test equipment, trainingAppraisal costs

In-process and inter-process inspection, equipment calibration and maintenance,

testingFailure costs

rework, repair, failure mode analysisExternal failure costs

Complaint resolution, product return and replacement, help line support, warranty

workSoftware Quality Assurance

Software quality assurance (SQA) is the concern of every software engineer to

reducecost and improve product time-to-market.

A Software Quality Assurance Plan is not merely another name for a test plan,

thoughtest plans are

included in an SQA plan.

SQA activities are performed on every software project.

Use of metrics is an important part of developing a strategy to improve the quality

ofboth software processes and work products.

SOFTWARE QUALITY ASSURANCE

Definition of Software Quality serves to emphasize:

Conformance to software requirements is the foundation from which software quality

ismeasured.

Specified standards are used to define the development criteria that are used to

guide themanner in which software is engineered.

Software must conform to implicit requirements (ease of use, maintainability,

Department of CSE III Year/I Sem

Software Engineering Page 56

reliability,etc.) as well as its explicit requirements.

SQA Activities

Prepare SQA plan for the project.

Participate in the development of the project's software process description.

Review software engineering activities to verify compliance with the defined

softwareprocess.

Audit designated software work products to verify compliance with those defined

as partof the software process.

Ensure that any deviations in software or work products are documented and

handledaccording to a documented procedure.

Record any evidence of noncompliance and reports them to management.

SOFTWARE REVIEWS

Purpose is to find errors before they are passed on to another software engineering

activity or released to the customer.

Software engineers (and others) conduct formal technical reviews (FTRs) for

softwarequality assurance.

Using formal technical reviews (walkthroughs or inspections) is an effective means

forimproving software quality.

FORMAL TECHNICAL REVIEW

A FTR is a software quality control activity performed by software engineers and

others.The objectives are:

To uncover errors in function, logic or implementation for any representation of

thesoftware.

To verify that the software under review meets its requirements.

To ensure that the software has been represented according to predefined standards.To

achieve software that is developed in a uniform manner and

To make projects more manageable.

Review meeting in FTR

The Review meeting in a FTR should abide to the following constraintsReview

meeting members should be between three and five.

Every person should prepare for the meeting and should not require more than two

hours ofwork for each person.

The duration of the review meeting should be less than two hours.

The focus of FTR is on a work product that is requirement specification, a detailed

component design, a source code listing for a component.

The individual who has developed the work product i.e, the producer informs the

projectleader that the work product is complete and that a review is required.

Department of CSE III Year/I Sem

Software Engineering Page 57

The project leader contacts a review leader, who evaluates the product for

readiness, generates copy of product material and distributes them to two or three

review members foradvance preparation.

Each reviewer is expected to spend between one and two hours reviewing the

product,making notes

The review leader also reviews the product and establish an agenda for the review

meetingThe review meeting is attended by review leader, all reviewers and the

producer.

One of the reviewer act as a recorder, who notes down all important points

discussed inthe meeting.

The meeting(FTR) is started by introducing the agenda of meeting and then the

producer introduces his product. Then the producer “walkthrough” the product,

thereviewers raise issues which they have prepared in advance.

If errors are found the recorder notes down

Review reporting and Record keeping

During the FTR, a reviewer(recorder) records all issues that have been raisedA

review summary report answers three questions

What was reviewed?Who reviewed it?

What were the findings and conclusions?

Review summary report is a single page form with possible attachments

The review issues list serves two purposesTo identify problem areas in the product

To serve as an action item checklist that guides the producer as corrections are made

Review Guidelines

Review the product, not the producerSet an agenda and maintain it

Limit debate and rebuttal

Enunciate problem areas, but don’t attempt to solve every problem notedTake return

notes

Limit the number of participants and insist upon advance preparation.Develop a

checklist for each product i.e likely to be reviewed Allocate resources and schedule

time for FTRS

Conduct meaningful training for all reviewerReview your early reviews

Software Defects

Industry studies suggest that design activitiesintroduce 50-65% of all defects or errors

during the software process

Review techniques have been shown to be upto 75% effective in uncovering design

flaws which ultimately reduces the cost of subsequent activities in the software

process

Statistical Quality Assurance Information about software defects is collected and

categorized.Each defect is traced back to its cause

Department of CSE III Year/I Sem

Software Engineering Page 58

Using the Pareto principle (80% of the defects can be traced to 20% of the causes)

isolate the "vital few" defect causes.

Move to correct the problems that caused the defects in the "vital few”

Six Sigma for Software Engineering

The most widely used strategy for statistical quality assurance

Three core steps:

1. Define customer requirements, deliverables, and project goals via well-defined

methods of customer communication.

2. Measure each existing process and its output to determine current quality

performance (e.g., compute defect metrics)

3. Analyze defect metrics and determine vital few causes.

For an existing process that needs improvement

1. Improve process by eliminating the root causes for defects

2. Control future work to ensure that future work does not reintroduce causes of

defects

If new processes are being developed

1. Design each new process to avoid root causes of defects and to meetcustomer

requirements

2. Verify that the process model will avoid defects and meet customerrequirements

SOFTWARE RELIABILITY

Defined as the probability of failure free operation of a computer program in a

specified environment for a specifiedtime period

Can be measured directly and estimated using historical anddevelopmental data

Software reliability problems can usually be traced back toerrors in design or

implementation.

Measures of Reliability

Mean time between failure (MTBF) = MTTF + MTTRMTTF = mean time to failure

MTTR = mean time to repair

Availability = [MTTF / (MTTF + MTTR)] x 100%

ISO 9000 Quality Standards

ISO (International Standards Organization) is a group or consortium of 63 countries

established to plan and fosters standardization. ISO declared its 9000 series of

standards in 1987. It serves as a reference for the contract between independent parties.

The ISO 9000 standard determines the guidelines for maintaining a quality system. The

ISO standard mainly addresses operational methods and organizational methods such

as responsibilities, reporting, etc. ISO 9000 defines a set of guidelines for the

production process and is not directly concerned about the product itself.

Department of CSE III Year/I Sem

Software Engineering Page 59

Types of ISO 9000 Quality Standards

The ISO 9000 series of standards is based on the assumption that if a proper stage

is followed for production, then good quality products are bound to follow

automatically. Thetypes of industries to which the various ISO standards apply are as

follows.

1. ISO 9001: This standard applies to the organizations engaged in design,

development,production, and servicing of goods. This is the standard that applies to

most software development organizations.

2. ISO 9002: This standard applies to those organizations which do not design

products butare only involved in the production. Examples of these category

industries contain steel andcar manufacturing industries that buy the product and

plants designs from external sources and are engaged in only manufacturing those

products. Therefore, ISO 9002 does not applyto software development organizations.

3. ISO 9003: This standard applies to organizations that are involved only in the

installationand testing of the products. For example, Gas companies.

An organization determines to obtain ISO 9000 certification applies to ISO

registrar office forregistration. The process consists of the following stages:

1. Application: Once an organization decided to go for ISO certification, it

applies to the registrar forregistration.

2. Pre-Assessment: During this stage, the registrar makes a rough assessment of the

organization.

3. Document review and Adequacy of Audit: During this stage, the registrar

reviews the documentsubmitted by the organization and suggest an improvement.

4. Compliance Audit: During this stage, the registrar checks whether the

organization has compiled thesuggestion made by it during the review or not.

Department of CSE III Year/I Sem

Software Engineering Page 60

5. Registration: The Registrar awards the ISO certification after the successful

completion of all thephases.

6. Continued Inspection: The registrar continued to monitor the organization time by

time.

	(Autonomous Institution – UGC, Govt. of India)
	MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
	III Year B.Tech CSE -I SEM 3 -/-/- 3 (R20A0511) SOFTWARE ENGINEERING
	UNIT -I:
	UNIT-II:
	UNIT-III:
	UNIT-IV:
	UNIT-V:
	TEXT BOOKS:
	REFERENCEBOOKS:
	Outcomes:
	MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	THE EVOLVING ROLE OF SOFTWARE
	Characteristics of software
	THE CHANGING NATURE OFSOFTWARE
	LEGACY SOFTWARE
	SOFTWARE MYTHS
	MANAGEMENT MYTHS
	CUSTOMER MYTHS
	PRACTITIONER’S MYTH

	SOFTWARE ENGINEERING - A LAYERED TECHNOLOGY
	A PROCESS FRAMEWORK
	Common process framework Umbrella activities Framework activities
	CAPABILITY MATURITY MODEL INTEGRATION(CMMI)
	CMMI
	PROCESS PATTERNS
	PROCESS ASSESSMENT
	PROCESS ASSESSMENT (1)
	APPROACHES TO SOFTWARE ASSESSMENT
	PERSONAL AND TEAM SOFTWARE PROCESS
	PROCESS MODELS
	INCREMENT 1
	:
	: (1)
	THE INCREMENTAL MODEL
	THE RAD (Rapid Application Development) MODEL

	Modeling
	THE RAD MODEL
	EVOLUTIONARY PROCESSMODEL

	LIMITATIONS OF PROTOTYPING
	THE SPIRAL MODEL
	UNIFIED PROCESS WORK PRODUCTS
	1. Inception Phase
	2. Elaboration Phase
	3. Construction Phase
	4. Transition Phase
	UNIT-II
	FUNCTIONAL REQUIREMENTS
	NON-FUNCTIONALREQUIREMENTS

	INTERFACE SPECIFICATION
	THE SOFTWARE REQUIREMENTS DOCUMENT
	IEEE requirements standard
	REQUIREMENTS ENGINEERING PROCESS
	SPIRAL REPRESENTATION OF REQUIREMENTSENGINEERING PROCESS
	FEASIBILITY STUDIES
	REQUIREMENTS ELICITATION ANALYSIS
	REQUIREMENTS VALIDATION
	VALIDATION TECHNIQUES
	REQUIREMENTS MANAGEMENT PLANNING
	Traceability
	SYSTEM MODELS
	Behavioral models

	DESIGN PROCESS AND DESIGN QUALITY
	DATA DESIGN AT ARCHITECTURE LEVEL
	DATA DESIGN AT COMPONENT LEVEL
	Data-flow architectures
	Call and return architectures
	Object-oriented architectures
	Layered architectures
	Object and Object Classes
	Object Oriented Design Process
	Interface analysis
	Interface design
	Implementation
	• Validation
	Interface Analysis
	User Analysis
	TASK ANALYSIS AND MODELING
	Design Evaluation Cycle: Steps:
	Risk Management
	Reactive Vs Proactive risk
	Software Risk
	Risk Identification
	Risk Projection
	Risk Refinement
	Risk Mitigation Monitoring And Management (RMMM)
	RMMM plan
	UNIT – V
	COST OF QUALITY
	SOFTWARE QUALITY ASSURANCE
	SQA Activities
	SOFTWARE REVIEWS
	FORMAL TECHNICAL REVIEW
	Review reporting and Record keeping
	Review Guidelines
	Six Sigma for Software Engineering
	Three core steps:
	SOFTWARE RELIABILITY
	ISO 9000 Quality Standards
	Types of ISO 9000 Quality Standards

