(Autonomous Institution - UGC, Govt. of India) **UG Model question paper**

Time: 3 hours **Mathematics-II** Max Marks: 70

Note: This question paper contains of 5 sections. Answer five questions, choosing one question from each section and each question carries 14 marks.

Section-I

1. a) Prove that
$$\Delta = \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{\delta^2}{4}}$$

b) Find the unique polynomial P(x) of degree 2 or less such that P(1) = 1, P(3) = 27, P(4) = 64 using Lagrange interpolation formula [10M]

OR

2. a) Use Gauss forward interpolation formulae to find f(22) from the following [7M]

X	20	25	30	35	40	45
F(x)	354	332	291	260	231	204

b) By the fixed point iteration process, find the root correct to 3-decimal places, of the equation 3x = cosx+1[7M]

Section-II

3. a) By the method of least squares, find the straight line that best fits the following data [7M]

X	0	5	10	15	20	25
F(x)	12	15	17	22	24	30

b) Evaluate $\int_0^{\pi} \sin x \ dx$ by dividing the range into 6 equal parts using

(i) Trapezoidal rule

(ii) Simpson's 1/3rd rule

[7M]

[4M]

4. a) Find the Solution of $\frac{dy}{dx} = x - y$, y(0) = 1 at x=0.1,0.2 using modified Euler's method.

[5M]

b) Evaluate $\int_0^1 \frac{1}{1+x} dx$ by Simpson's $1/3^{rd}$ and $3/8^{th}$ rule

[4M]

c) Given that y' = y - x, y(0)=2 find y(0.2) using Runge -Kutta 4th order

[5M]

Section-III

5. a) Find the Fourier series representing f(x) = x, $0 < x < 2\pi$ [5M]

b) Obtain the Fourier Cosine Series for $f(x) = x \sin x$, $0 < x < \pi$ and show that

$$\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} + \dots = \frac{\pi - 2}{4}$$
 [9M]

6. a) Find the Fourier series of periodicity 3 for $f(x) = 2x-x^2$ in 0 < x < 3[7M] b) Express f(x) = x as a half-range cosine series in the interval 0 < x < 2[7M] **Section-IV** 7. a) Solve the partial differential equation $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$ [4M] b) Solve $z(p^2-q^2) = x - y$ [4M] c) Solve by the method of separation of variables $2xz_x - 3yz_y = 0$ [6M] OR 8. a) Solve $z^2 = pqxy$ by charpit's method [7M] b) Solve $p^2+q^2 = x^2+y^2$ [7M] **Section-V** 9. a) Find the Laplace transform of e^{3t} - $2e^{-2t}$ + $\sin 2t + \cos 3t + \sinh t$ - $2\cosh 3t + 8$ [4M] b) Using Laplace transform, evaluate $\int_0^\infty te^{-t} sint dt$ [10M] 10. a) Find inverse Laplace transform of $\frac{5s-2}{s^2(s+2)(s-1)}$ [4M] b) Find $L\{\int_0^t te^{-t} \sin 4t dt\}$ [6M] c) Find the inverse Laplace transform of $\frac{e^{-\pi(s+2)}}{s+2}$ [4M]

(Autonomous Institution - UGC, Govt. of India) **UG Model question paper**

Max Marks: 70 **Mathematics-II**

Note: This question paper contains of 5 sections. Answer five questions, choosing one question from each section and each question carries 14 marks.

Section-I

1. a) Explain Regula-Falsi method geometrically.

[4M]

b) Using Lagrange's interpolation formula, find y(10) from the following table

[10M]

X	5	6	9	11
у	12	13	14	16

Time: 3 hours

2. a) The following are the measurements T made on a curve recorded by the oscilograph representing a change of current 1 due to a change in the conditions of an electric current. [7M]

T	1.2	2.0	2.5	3.0
I	1.36	0.58	0.34	0.2

Using Largrange's formula, find I at t = 1.6.

b) Find a positive root x-cosx = 0 by bisection method.

[7M]

Section-II

3. a) Evaluate $\int_{0}^{1} \frac{dx}{1+x} by$ (i) Trapezoidal (ii) Simpson's one –third rule. [7M]

b) Fit a second degree parabola to the following data:

[7M]

X	0	1	2	3	4
F(x)	1	1.8	1.3	2.5	6.3

4. a) Solve the following using R-K fourth method y = y - x, y(0) = 2, h = 0.2 find y(0.2). [7M]

b) Fit a curve of the form $y = ae^{bx}$ to the data

[7M]

X	0	1	2	3
Y	1.05	2.10	3.85	8.3

Section-III

[7M]

5. a) Expand $f(x) = e^x$, $-\pi < x < \pi$ as a Fourier Series. Derive a series for $\frac{\pi}{\sinh \pi}$ [

b) Find the Fourier series in $[-\Pi, \Pi]$ for the function $f(x) = \begin{cases} \frac{1}{2}(\Pi + x) & \text{for } -\Pi \le x \le 0 \\ \frac{1}{2}(\Pi + x) & \text{for } 0 \le x \le \Pi \end{cases}$

6. a) Find Fourier coefficient a_n for $f(x) = x^2$ in (0,2) [4M]

b) Obtain the Fourier Series expansion of f(x) given that $f(x) = (\pi - x)^2$ in $0 < x < 2\pi$

and deduce the value of
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + --- = \frac{\pi^2}{6}$$
. [10M]

Section-IV

7. a) Solve $p^2 + q^2 = 4pq$. [7M]

b) solve the partial differential equation $x^2 p^2 + y^2 q^2 = z^2$ [7M]

OR

8. a) Form the partial differential equations by eliminating the arbitrary functions.

i)
$$z = f(x^2 + y^2)$$
 ii) $z = yf(x) + xg(y)$ [7M]

b) Solve
$$(z^2 - 2yz - y^2) p + (xy + zx) q = xy - zx$$
. [7M]

Section-V

9. Solve by Laplace transform

$$\frac{d^3y}{dt^3} + 2 \frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0, y(0) = 1, y'(0) = y''(0) = 2$$
 [14M]

OR

10. (a) Find
$$L^{-1}\left\{\frac{S+1}{(S^2+2S+2)^2}\right\}$$
 [5M]

(b) Find the Laplace transform of
$$e^{-3t}$$
 (2cos5t - 3sin5t) [5M]

(Autonomous Institution – UGC, Govt. of India) UG Model question paper

Mathematics- II Max Marks: 70

Note: This question paper contains of 5 sections. Answer five questions, choosing one question from each section and each question carries 14 marks.

Section-I

- 1. a) Using Newton Raphson method find the square root of a number [2M]
 - b) Using bisection method ,find the negative root of $x^3 4x + 9 = 0$ correct to two decimals [12M]

OR

2. a) <u>Using appropriate interpolation formula</u>, find y(8) from the following table [7M]

X	0	5	10	15	20	25
у	7	11	14	18	24	32

Time: 3 hours

b) A curve passes through the points (0,18), (1,10), (3,-18) and (6,90). Find the slope of the curve at x=2

Section-II

3. a) Derive normal equations for fitting a straight line

[4M]

b) Using Modified Eulers method find y(0.2) y(0.4) with h=0.2, given that $\frac{dy}{dx}$ =x + siny, y(0)=1 [10M]

OR

- 4. a) Evaluate $\int_0^1 \frac{1}{1+x} dx$ by using trapezoidal, simpson's 1/3, Simpsons 3/8 rule [7M]
 - b) Fit a parabola of the form $y = ax^2 + bx + c$

[7M]

X	1	2	3	4	5	6	7
у	2.3	5.2	9.7	16.5	29.4	35.5	54.4

Section-III

5. a) Find the Fourier series of period 2π for the function $f(x) = x^2 - x$ in $(-\pi, \pi)$.

Hence deduce the sum of the series
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + --- = \frac{\pi^2}{6}$$
.

[7M]

b) Find the half – range cosine series for the function $f(x) = (x-1)^2$ in the interval 0 < x < 1

and show that
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$$

[7M]

6. Find the Fourier expansion of $f(x) = x\cos x$ in $0 < x < 2\pi$ [14M]

Section-IV

7. a) Using the method of separation of variables solve $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$ given

$$u = 3e^{-y} - e^{-5y}$$
 Where x=0 [10M]

b) Form the partial differential equations by eliminating the arbitrary functions. [4M] $(i)z = f(x^2 + y^2)$ (ii)z = yf(x) + xg(y)

OR

[7M]

8. a) Solve by charpit's method px + qy = pq

b) Solve
$$\frac{x^2}{p} + \frac{y^2}{q} = z$$
 [7M]

Section -V

9. a) Show that $\int_0^\infty t^2 e^{-4t} \cdot \sin 2t \, dt = \frac{11}{500}$ [4M]

b) Using the Convolution theorem find $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$ [10M]

OR

10. Solve by Laplace transform

$$\frac{d^3y}{dt^3} + 2\frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0, y(0) = 1, y'(0) = y''(0) = 2$$
 [14M]

(Autonomous Institution – UGC, Govt. of India) UG Model question paper

Time: 3 hours Mathematics- II Max Marks: 70

Note: This question paper contains of 5 sections. Answer five questions, choosing one question from each section and each question carries 14 marks.

Section-I

1. a) Find a root of an equation $3x = \cos x + 1$ using Newton Raphson Method.

b) Find a root of an equation $e^x \sin x = 1$ using Regula Falsi Method.

[7+7M]

OR

2. a) Find f(22) from the following table using Gauss forward formula

[7+7M]

X	20	25	30	35	40	45
у	354	332	291	260	231	204

b) Find y (10), Given that Y (5) = 12, y(6) = 13, y(9) = 14, Y (11) = 16 using Lagrange's formula

Section-II

3. a) Fit a parabola $y = a + bx + cx^2$ to the data given below

[7+7M]

X	1	2	3	4	5
у	10	12	8	10	14

b) Find the value $\int_{1}^{10} \frac{dx}{x}$ using Simpsons 3/8 rule

OR

- 4. a) Solve $y = y x^2$, y(0) = 1, by Picard's method upto the third approximation. Hence find the value of f(.1), y(0.2). [7+7M]
 - b) Use Eulers method of find y(0.1),y(0.2) given $y' = (x^3 + xy^2)e^{-x}$, y(0) = 1

Section-III

5. a) If $f(x) = \cosh ax$ expand f(x) as a Fourier series in $[-\pi, \pi]$.

[7+7M]

b) Obtain the half-range sine series for $f(x) = e^x in(0, \pi)$

6. a) Find the Fourier series of period 2π for the function $f(x) = x^2 - x$ in $(-\pi, \pi)$. Hence deduce the sum of the series $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \frac{\pi^2}{6}$. [7+7M]

b) Find half- range Fourier sine series for f(x) = ax + b in 0 < x < 1.

Section-IV

- 7. a)Form the partial differential equation by eliminating the constants from $(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$ where α is a parameter [7+7M]
 - b) Solve the partial differential equation $x^2p^2 + y^2q^2 = 1$

8. Solve the equation $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, $u(x, 0) = 6e^{-3x}$ by the method of separation of variables [14M]

9. a) Find Laplace transform of (i) $e^{-3t} \left(2\cos 5t - 3\sin 5t\right)$ (ii) $L\left\{e^{3t}\sin^2 t\right\}$ [7+7M]b)State and prove second shifting theorem

OR

10. a) Find
$$L^{-1}\left\{\frac{s+3}{s^2-10s+29}\right\}$$
 [7+7M]

b) Using the convolution theorem find $L^{-1} \left\{ \frac{s}{\left(s^2 + a^2\right)^2} \right\}$

(Autonomous Institution – UGC, Govt. of India) UG Model question paper

Time: 3 hours Mathematics- II Max Marks: 70

Note: This question paper contains of 5 sections. Answer five questions, choosing one question from each section and each question carries 14 marks.

Section-I

1. a) Prove $\mathbf{E} \nabla = \Delta = \nabla \mathbf{E}$

[2M]

b) Find a positive root of the equation by iteration method: 3x = cosx+1 correct to 3-decimal places [6M]

c) Using Lagrange's interpolation formula, find y (10) from the following table. [6M]

X	5	6	9	11
Y	12	13	14	16

(OR)

2. a) Use Gauss forward interpolation formulae to find f(22) from the following

[7M]

X	20	25	30	35	40	45	
F(x)	354	332	291	260	231	204	

b) Using bisection method, find the negative root of $x^3 - 4x + 9 = 0$

[7M]

Section-II

3. a) B y the method of least squares, find the straight line that best fits the following data [7M]

X	0	5	10	15	20	25
F(x)	12	15	17	22	24	30

b) Evaluate $\int_0^{\pi} (\frac{\sin x}{x}) dx$ by dividing the range into 6 equal parts using

(i) Trapezoidal rule

(ii) Simpson's 1/3rd rule

[7M]

(OR)

4. a) Solve $y = y - x^2$, y(0) = 1, by Picard's method up to the third approximation.

Hence find the value of y(0.1), y(0.2).

[7M]

b) Solve the following using R-K fourth method y = y - x, y(0) = 2, h = 0.2 find y(0.2).

[7M]

Section-III

5. a) Expand $f(x) = e^{ax}$ in Fourier series in $0 < x < 2\pi$

[5M]

b) Obtain the Fourier Cosine Series for $f(x) = x \sin x$, $0 < x < \pi$ and show that

$$\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} + \dots = \frac{\pi - 2}{4}$$
 (OR)

6. a) Expand $f(x) = \cos x$ for $0 < x < \Pi$ in half range sine series. [6M] b) Find the Fourier series of periodicity 3 for $f(x) = 2x-x^2$ in 0 < x < 3[8M] **Section-IV** 7. a) Solve the partial differential equation $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$ [4M] b) Solve $z(p^2-q^2) = x - y$ [4M] c) Solve by the method of separation of variables $2xz_x - 3yz_y = 0$ [6M] OR 8. a) Solve $z^2 = pqxy$ by Charpit's method [7M] b) Solve $p^2+q^2 = x^2+y^2$ [7M] **Section-V** 9. a) Find the Laplace transform of Sin2t.cost [2M] b) Find $L^{-1} \left[\frac{4}{(s+1)(s+2)} \right]$ [2M] b) Using Laplace transform, evaluate $\int_0^\infty t e^{-t} sint dt$ [10M] (OR) 10. a) Find the inverse Laplace transform of $\frac{e^{-\pi(s+2)}}{s+2}$ [4M] b) Solve $y^{111} + 2y^{11} - y^1 - 2y = 0$ using Laplace Transformation given that $y(0) = y^{1}(0) = 0$ and $y^{11}(0) = 6$

[10M]

(Autonomous Institution – UGC, Govt. of India) UG Model question paper

Mathematics - II Time: 3 hours Max Marks: 70 **Note:** This question paper contains of 5 sections. Answer five questions, choosing one question from each section and each question carries 14 marks. Section-I 1. a) Define Root of an equation [2M] b) Find out the square root of 25 given a=2.0, b=7.0 using Bisection Method. [6M] c) Find a real root of $x + \log_{10} x - 2 = 0$ using Newton Raphson Method. [6M] OR 2. a) If the interval of differencing is unity, P.T. $\Delta \tan^{-1}(n-1/n) = \tan^{-1}(1/2n^2)$ [2M] b) Using Gauss formula, find y(8) from the following table 1. [6M] 0 5 10 15 20 25 X 7 11 18 24 32 14 У c) A Curve passes through the points (0,18), (1,10), (3,-18) and (6,90). Find the slope of the curve at x=2. [6M] 90 18 10 -18 **Section-II** 3. a) Find y(0.1) using Taylor's Series Method given that $y^1 = y^2 + x$ [2M] b) Evaluate $\int_0^1 \frac{1}{1+x} dx$ by using trapezoidal, simpson's 1/3, Simpson's 3/8 rules. [6M] c) Using Modified Euler's method find y(0.2) y(0.4) with h=0.2, given that $\frac{dy}{dx}$ =x + siny, y(0)=1[6M] OR 4. a) Write the normal equations of a straight line [2M]

c) Compute y(0.1) and y(0.2) by R-K method of 4^{th} order for the D.E. $y^1 = xy + y^2$,

b) Fit a second degree parabola to the following data:

3

x:

0

1 2

f(x): 1 1.8 1.3 2.5 6.3

y(0)=1 [6M]

[6M]

Section-III

- 5. a) Write Euler's formula. [2M]
 - b) Obtain Fourier series expansion of $f(x) = (\pi x)^2$ in $0 < x < 2\pi$ and deduce the

value of
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$$
 [6M]

c) Express $f(x) = x^2$ as a Fourier series in [-l, l] [6M]

OR

- 6. a) If $f(x) = x^2 2$, $-2 \le x \le 2$ Find a_0 . [2M]
 - b) Find the half range sine series for $f(x) = x(\pi x)$, in $0 < x < \pi$ Deduce that

$$\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots = \frac{\pi^3}{32}$$
 [6M]

c) Find a Fourier series with period 3 to represent $f(x) = x + x^2$ in (0,3)

Section-IV

- 7. a) Form the partial differential equation by eliminating the arbitrary constants *a and b* from z=ax+by+ab [2M]
 - b) Solve px + qy = pq [6M]
 - c) Find the integral surface of $x(y^2 + z)p y(x^2 + z)q = (x^2 y^2)z$ which contains the straight line x+y=0, z=1 [6M]

OR

8. a) Form a partial differential equation by eliminating the arbitrary function

$$\mathbf{z} = f(\mathbf{x}^2 + \mathbf{y}^2) \tag{2M}$$

b) Solve
$$x^2p^2 + y^2q^2 = 1$$
 [6M]

c) Solve $z(p^2 - q^2) = x - y$ [6M]

Section-V

- 9. a) Find $L\{\cosh at \sin at\}$ [2M]
 - b) Find L.T of $e^{-t} \int_0^t \frac{\sin t}{t} dt$ [6M]
 - c) Use convolution theorem to evaluate $L^{-1}\left\{\frac{1}{s(s^2+4)^2}\right\}$ [6M]

10. a) Find
$$L^{-1}\left\{\frac{s+3}{s^2-10s+29}\right\}$$

b) Find the inverse Laplace Transform of
$$\frac{1}{s^2(s^2+a^2)}$$
 [6M]

[2M]

c) Solve
$$\frac{d^2x}{d^2t} + 9x = \cos 2t$$
 using L.T. given x (0) =1, x $(\frac{\pi}{2})$ = -1. [6M]

(Autonomous Institution – UGC, Govt. of India)
UG Model question paper

Time: 3 hours Mathematics- II Max Marks: 70

Note: This question paper contains of 5 sections. Answer five questions, choosing one question from each section and each question carries 14 marks.

Section-I

- 1 a) Explain about root graphically.
 - b) Derive a formula to find Cube root of N Using Newton Raphson method and hence find cube root of 15.
 - c) Find a root of an equation $e^x \sin x = 1$ using method of False Position.

OR

- 2. a) *Prove* $(1 + \Delta)(1 \nabla) = 1$
 - b) Using Gauss back ward difference formula, find y(8) from the following table

			10			
у	7	11	14	18	24	32

c) A curve passes through the points (0,18),(1,10),(3,18) and (6,90). Find the slope of the curve at x=2.

Section-II

- 3. a) Derive the normal equation to fit the straight line y = a + bx
 - b) Solve the equation $\frac{dy}{dx} = x y^2$ with the conditions y(0) = 1 and y'(0) = 1. Find y(0.2) and y(0.4) using Taylor's series method

OR

4. a) Fit a parabola $y = a + bx + cx^2$ to the data given below

X	1	2	3	4	5
у	10	12	8	10	14

b) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by dividing the range into 6 equal parts using Trapezoidal rule, Simpson's rule, Simpson's 3/8th rules.

Section-III

- 5. a) Obtain the Fourier Series expansion of f(x) given that $f(x) = (\pi x)^2$ in $0 < x < 2\pi$ and deduce the value of $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$.
 - b) Find cosine and sine series for $f(x) = \Pi x$ in $[0, \Pi]$

- 6. a) Find the Fourier series of period 2π for the function $f(x) = x^2 x$ in $(-\pi, \pi)$. Hence deduce the sum of the series $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \frac{\pi^2}{6}$.
 - b) Find the half range cosine series for the function $f(x) = (x-1)^2$ in the interval 0 < x < 1 and Hence show that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$

Section-IV

- 7. a) Form the partial differential equation by eliminating the arbitrary functions z = f(2x + y) + g(3x - y).
 - b) Solve the partial differential equation $\frac{x^2}{p} + \frac{y^2}{q} = z$ c) Solve $x^2(z-y)p + y^2(x-z)q = z^2(y-x)$

OR

- 8. a) Form the partial differential equation by eliminating the constants from $(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$ where α is a parameter.
 - b) Solve the equation $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$, $u(x,0) = 6e^{-3x}$ by the method of separation of variables
 - c) Solve $q^2y^2 = z(z-px)$

Section-V

- 9. a) Find $L\{e^{2t} + 4t^3 2\sin 3t + 3\cos 3t\}$
 - b) Evaluate $L\{t \sin 3t \cos 2t\}$
 - c) Find $L^{-1} \left\{ \frac{1}{s(s^2-1)(s^2+1)} \right\}$

- 10. a) Using Laplace transform, solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t}\sin t$, given that y(0)=0, $y^1(0)=1$.
 - b) Using the convolution theorem find $L^{-1} \left\{ \frac{s}{(s^2 + a^2)^2} \right\}$

(Autonomous Institution – UGC, Govt. of India) UG Model question paper

Time: 3 hours Mathematics- II Max Marks: 70

Note: This question paper contains of 5 sections. Answer five questions, choosing one question from each section and each question carries 14 marks.

Section-I

1. a) Find a real root of the equation $x^3 - x - 4 = 0$ by bisection method. [7M]

b) Find an approximate root of $x \log_{10} -1.2 = 0$ by Regular False method. [7M]

OF

2. a) Use Newton's forward difference formula to find the polynomial satisfied by (0, 5), (1, 12), (2, 37) and (3, 86). [7M]

b) Using Lagrange's interpolation formula, find y (10) from the following table

Section-II

3. a) Evaluate $\int_{0}^{1} \frac{dx}{1+x} by$ (i) Trapezoidal (i) Trapezoidal rule (ii) Simpson's rule [7M]

b) Fit a second degree parabola to the following data:

$$x: 0 1 2 3 4$$

 $F(x): 1 1.8 1.3 2.5 6.3$ [7M]

OR

4. a) Using Taylor series method, find an approximate value of y at x = 0.1, 0.2 for the

differential equation
$$y' - 2y = 3e^x$$
 for y (0) = 0. [15M]

Section-III

5. a) Find the Fourier expansions of $f(x) = x\cos x$; $0 < x < 2\pi$. [15M]

OR

6. a) Find the Fourier series of periodicity of $f(x) = 2x - x^2$, in 0 < x < 3. [7M]

b) Expand the function f(x) = x as a Fourier series in $(-\pi,\pi)$. [7M]

Section-IV

- 7. a) Form a partial differential equation by eliminating a, b, c from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ [7M]
 - b) Find the integral surface of $x(y^2+z)p-y(x^2+z)q=(x^2+y^2)z$. [7M]

OR

- 1. a) Solve (x + y) p + (y + z) q = (z + x) [7M]
 - b) Solve the partial differential equation $x^2p^2 + y^2q^2 = 1$ [7M]

Section-V

9. a) Find
$$L^{-1}\left\{\frac{3s-8}{4s^2+25}\right\}$$
 [7M]

b) Find
$$L^{-1}\left\{\frac{1}{s(s^2+2s+2)}\right\}$$
 [7M]

OR

10. Using Laplace transform, solve
$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = e^{-t}\sin t$$
, given that y (0) =0, y¹(0) =1 [15M]