B TECH I YEAR- COURSE STRUCTURE AI&ML

I Year B. Tech - I Semester

S.No	Subject Code	SUBJECT	L	Т	P	С	MAX. MARKS	
							INT	EXT
1	R22A0001	English	2	0	0	2	40	60
2	R22A0023	Mathematics – I	3	1	0	4	40	60
3	R22A0201	Principles of Electrical and Electronics Engineering	3	0	0	3	40	60
4	R22A0301	Computer Aided Engineering Graphics	2	0	3	4	40	60
5	R22A0501	Programming for Problem Solving	3	0	0	3	40	60
6	R22A0081	English Language and Communication Skills Lab	-	0	2	1	40	60
7	R22A0281	Principles of Electrical and Electronics Engineering Lab	-	0	3	1.5	40	60
8	R22A0581	Programming for Problem Solving Lab	-	0	3	1.5	40	60
9	R22A0004	Environmental Science	2	0	0	0	40	60
		Total	15	1	11	20	360	540

I Year B. Tech - II Semester

S.No	Subject Code	SUBJECT	L	Т	P	С	MAX. MARKS	
0.110							INT	EXT
1	R22A0002	Professional English	2	0	0	2	40	60
2	R22A0024	Mathematics – II	3	1	0	4	40	60
3	R22A0021	Applied Physics	3	1	0	4	40	60
4	R22A0022	Engineering Chemistry	3	0	0	3	40	60
5	R22A0502	Problem Solving using Python Programming	3	0	0	3	40	60
6	R22A0082	Applied Physics/Engineering Chemistry Lab	-	0	3	1.5	40	60
7	R22A0582	Problem Solving using Python Programming Lab	-	0	3	1.5	40	60
8	R22A0083	Engineering and Computing Hardware Workshop	-	0	2	1	40	60
9	R22A0003	Human Values and Professional Ethics	2	0	0	0	40	60
		Total	16	2	8	20	360	540

II Year B. Tech - I Semester

S.No	Subject Code	SUBJECT	L	Т	Р	С	MAX. MARKS	
O.I.VO							INT	EXT
1	R22A0027	Statistical Inference and Stochastic Process	3	1	0	4	40	60
2	R22A0503	Data Structures	3	0	0	3	40	60
3	R22A0561	Computer Organization and Architecture	3	1	0	4	40	60
4	R22A0505	Software Engineering	3	0	0	3	40	60
5	R22A0509	Operating Systems	3	0	0	3	40	60
6	R22A0583	Data Structures Lab	0	0	2	1	40	60
7	R22A0587	Operating Systems Lab	0	0	2	1	40	60
8	R22A0585	Software Engineering Lab	0	0	2	1	40	60
9	R22A0061	Public Policy & Governance	3	0	0	0	100	-
		Total	18	2	6	20	420	480

^{*}Mandatory course: Non-credit course, 50% of scoring is required for the award of the degree

II Year B. Tech - II Semester

S.No	Subject Code	SUBJECT	L	Т	P	С	MAX. MARKS	
0.140							INT	EXT
1	R22A0028	Discrete Mathematics	3	0	0	3	40	60
2	R22A1201	Automata Theory and Compiler Design	3	1	0	4	40	60
3	R22A0504	Database Management Systems	3	0	0	3	40	60
4	R22A6601	Artificial Intelligence	3	0	0	3	40	60
5	R22A0507	Object Oriented Programming through Java	3	0	0	3	40	60
6	R22A0584	Database Management Systems Lab	0	0	2	1	40	60
7	R22A0586	Java Programming Lab	0	0	2	1	40	60
8	R22A6691	Industry Oriented Project	0	0	4	2	40	60
9	R22A0005	Foreign Language: French	0	0	2	0	100	-
		Total	15	0	12	20	460	540

^{*}Mandatory course: Non-credit course, 50% of scoring is required for the award of the degree

I Year B. TECH -I-SEM

L/T/P/C 2 /- /-/2

(R22A0001) ENGLISH

INTRODUCTION

English is a global language which is a means to correspond globally. Keeping in account of its vital role in the global market, emphasis is given to train the students to acquire language and communication skills. The syllabus is designed to develop and attain the competency in communicative skills.

The lectures focus on the communication skills and the selected excerpts support as resources for the teachers to develop the relevant skills in the students. The lessons stimulate discussions and help in comprehending the content effectively. The focus is on skill development, nurturing ideas and practicing theskills.

COURSE OBJECTIVES:

- 1. To enable students to enhance their lexical, grammatical and communicative competence.
- 2. To equip the students to study the academic subjects with better perspective through theoretical and practical components of the designed syllabus.
- 3. To familiarize students with the principles of writing and to ensure error-free writing
- 4. To sharpen the speaking skills of learners by involving them in diverse activities such as group discussions, debates, conversations and roleplays.
- 5. To train students in soft skills with the help of case studies.

SYLLABUS

Reading Skills:

Objectives

- 1. To develop an awareness in the students about the significance of silent reading and comprehension.
- 2. To augment the ability of students to guess the meanings of words from context and grasp the overall message of the text, draw inferences etc.,
 - Skimming the text
 - Understanding the gist of an argument
 - Identifying the topic sentence
 - Inferring lexical and contextual meaning
 - Understanding discourse features
 - Recognizing coherence/sequencing of sentences
 - Scanning the text

NOTE:

The students will be trained in reading skills using the prescribed text for detailed study. They will be examined in reading and answering questions using 'unseen' passages which may be taken from authentic texts, such as magazines/newspaper articles.

Writing Skills:

Objectives

- 1. To develop an awareness in the students about basic formal writing skills.
- 2. To equip students with the components of different forms of writing, beginning with the required ones:
 - Writing sentences
 - Use of appropriate vocabulary
 - Coherence and cohesiveness

Formal and informal letter writing

Unit -I

J K Rowling's Convocation Speech at Harvard

Grammar – Tenses and Question Tags Vocabulary – word Formation - AffixesWriting

Writing – Paragraph Writing

Reading —The art of skimming and scanning

Reading Exercise Type 1

(Match the statements to the text they referto)

Unit - II

"The Road not taken" by Robert Frost

Grammar – Direct and Indirect Speech

Vocabulary – One-Word Substitutes, Standard Abbreviations,

Synonyms and Antonyms

Writing – Essay Writing (Introduction, body and conclusion)

Reading – Reading – The art of Intensive and Extensive - Reading

Exercise Type 2

Unit - III

Satya Nadella's Email to His Employees on his First Day as CEO of Microsoft

Grammar – Voices

Vocabulary – Transitive and Intransitive

Writing – E-mail Writing, Letter Writing

(complaints, requisitions, apologies).

Reading — Reading Comprehension- Reading Exercise Type3

(Reading between the lines)

Unit - IV

"Abraham Lincoln's Letter to His Son's Teacher"

Grammar – Articles, Punctuation Vocabulary – PhrasalVerbs
Writing – PrécisWriting

Reading – Reading Exercise Type4 (Clozetest)

Unit -V

Abdul Kalam's Biography

Grammar – Subject-Verb Agreement, Noun-Pronoun

Agreement Vocabulary- Commonly ConfusedWords

Writing – MemoWriting

Reading - Reading Exercise Type5 (Identifyingerrors)

REFERENCE BOOKS:

- 1. Practical English Usage. Michael Swan. OUP.1995.
- 2. Remedial English Grammar. F.T. Wood.Macmillan.2007
- 3. https://www.britannica.com/biography/A-P-J-Abdul-Kalam
- 4. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press.2006.
- $5. \ Communication Skills. Sanjay Kumarand Pushpa Lata. Oxford University Press. 2011.$

^{*} Exercises apart from the textbook shall also be used for classroom tasks.

COURSE OUTCOMES:

After completion of the course students will be able to:

- 1. Gain competence and proficiency in 'productive' skills, i.e., writing and speaking with the recognition of the need for life-long learning of thesame
- 2. Hone their language abilities in terms of comprehending complex technical texts with a potential to reviewliterature
- 3. Present ideas clearly and logically to analyze data and provide valid conclusions in writtencommunication
- 4. Enrich their grammatical accuracy and fluency to be adept at both the active and passiveskills
- 5. Represent old conventions with a set of the new by professional verbal communicativeability.

I Year B. TECH -I-SEM

L/T/P/ C 3/1/-/ 4

(R22A0023)MATHEMATICS -I

COURSE OBJECTIVES: To learn

- The concept of a Rank of the matrix and applying the concept to know the consistency and solving the system of linear equations.
- The concept of Eigen values, Eigen vectors and Diagonolisation.
- The maxima and minima of functions of several variables.
- The Applications of first order ordinary differential equations.
- The methods to solve higher order differential equations.

UNIT I: Matrices

Introduction ,Types of matrices ,Rank of a matrix - Echelon form and Normal form, Consistency of system of linear equations (Homogeneous and Non-Homogeneous)-Gauss elimination method and Gauss-Siedel iteration method.

UNIT II: Eigen values and Eigen vectors

Linear dependence and independence of vectors, Eigen values and Eigen vectors and their properties, Diagonalisation of a matrix. Cayley-Hamilton theorem(without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem; Quadratic forms and Nature of the Quadratic Forms; Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

UNIT III: Multi Variable Calculus (Differentiation)

Functions of two variables, Limit, Continuity, Partial derivatives, Total differential and differentiability, Derivatives of composite and implicit functions, Jacobian-functional dependence and independence, Maxima and minima and saddle points, Method of Lagrange multipliers, Taylors theorem for two variables.

UNIT IV:First Order Ordinary Differential Equations

Exact, Equations reducible to exact form, Applications of first order differential equations - Newton's law of cooling, Law of natural growth and decay, Equations not of first degree-Equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type

UNIT V: Differential Equations of Higher Order

Linear differential equations of second and higher order with constant coefficients: Non-homogeneous term of the type $f(x) = e^{ax}$, sinax, cosax, x^n , $e^{ax} V$ and $x^n V$ - Method of variation of parameters, Equations reducible linear ODE with constant coefficients-Cauchy's Euler equation and Legendre's equation.

Text Books

- i) Higher Engineering Mathematics by B V Ramana ., Tata McGraw Hill.
- ii) Higher Engineering Mathematics by B.S. Grewal, Khanna Publishers.
- iii) Advanced Engineering Mathematics by Kreyszig , John Wiley & Sons .

Reference Books

- i) Advanced Engineering Mathematics by R.K Jain & S R K Iyenger, Narosa Publishers.
- ii) Ordinary and Partial Differential Equations by M.D. Raisinghania, S.Chand Publishers
- iii) Engineering Mathematics by N.P Bali and Manish Goyal.

Course Outcomes: After learning the concepts of this paper the student will be able to

- 1. Analyze the solution of the system of linear equations and to find the Eigen values and Eigen vectors of a matrix.
- 2. Reduce the quadratic form to canonical form using orthogonal transformations.
- 3. Find the extreme values of functions of two variables with / without constraints.
- 4. Solve first order, first degree differential equations and their applications.
- 5. Solve higher order differential equations.
- 6. Analyze the nature of sequence and series.

I Year B. TECH -I-SEM

L/1/P/C 3/-/-/3

3/-/-/3
(R22A0201)PRINCIPLES OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE OBJECTIVES:

- 1. To understand the basic concepts of electrical circuits and analyze Circuits using Network Theorems.
- 2. To get overview of single phase A.C. circuits and three phase A.C. circuits.
- 3. To introduce the concept of DC Machines and Single-Phase Transformers.
- 4. To study the concepts of p-n diodes, rectifiers and Zener diodes.
- 5. To study the concepts of BJTs, JFET and MOSFETs.

UNIT –I: **INTRODUCTION TO ELECTRICAL CIRCUITS**: Concept of Circuit and Network, R-L-C Parameters, Ohms law and its limitations, Kirchhoff's Laws-KVL, KCL.

NETWORK ANALYSIS (D.C EXCITATION): Series and parallel connections of Resistive Networks, voltage division and current division, Mesh analysis, Nodal analysis

NETWORK THEOREMS: Thevenin's Theorem, Norton's Theorem and Superposition Theorem(for independent sources).

UNIT-II: SINGLE PHASE A.C. CIRCUITS: Average value, R.M.S. value, form factor and peak factor for sinusoidal wave form.Concept of phase, phasor representation of sinusoidal quantities phasedifference, Sinusoidal response of pure R, L, C.

THREE PHASE A.C. CIRCUITS: Advantages of Three phase over single phase, Voltage and Current relationship in star and delta connections.

UNIT-III:MACHINES:

DC Generator: principle of operation and working, Action of commutator, constructional features, basic concept of Lap and wave windings, emf equation.

DC Motor: principle of operation, Back emf and its significance, torque equation-Gross torque and Shaft torque. **Single Phase Transformer:** principle of operation, emf equation, problems on emf equation.

UNIT-IV:

P-N JUNCTION DIODE: P-N junction diode, symbol and forward biased and reverse biased conditions, V-I characteristics of P-N junction diode, Half wave, Full wave and Bridge rectifiers. **ZENER DIODE**: Symbol, construction, principle of operation and its applications.

UNIT-V:

BIPOLAR JUNCTION TRANSISTOR: Symbols, types, Construction and Principle of Operation of N-P-N and P-N-P transistors, Amplifying Action, Common Emitter, Common Base and Common Collector configurations. JFET, Symbol, Construction, Principle of operation, and its Characteristics, MOSFET (Enhancement and Depletion mode) Symbol, Construction, Principle of Operation and its Characteristics.

TEXTBOOKS:

- 1. EngineeringCircuitAnalysis-WilliamHayt,JackE.Kemmerly,SMDurbin,McGrawHill Companies.
- 2. ElectricCircuits-A.Chakrabarhty, DhanipatRai&Sons.
- 3. ElectricalMachines-P.S.Bimbra,KhannaPublishers.
- 4. "ElectronicDevices&Circuits", SpecialEdition-MRCET,McGrawHillPublications,2017.
- 5. IntegratedElectronicsAnalogDigitalCircuits,JacobMillmanandD.Halkias,McGrawHill.
- 6. ElectronicDevicesandCircuits, S.Salivahanan, N.Sureshkumar, McGrawHill.

REFERENCEBOOKS

- 1. NetworkanalysisbyM.EVanValkenburg,PHIlearningpublications.
- 2. Networkanalysis-N.CJaganandC.Lakhminarayana,BSpublications.
- 3. ElectricalCircuitsbyA.Sudhakar,ShyammohanandSPalli,McGrawHillCompanies.
- 4. ElectricalMachinesbyl.J.Nagrath&D.P.Kothari,TataMcGraw-HillPublishers.
- 5. Electronic Devices and Circuits, K.LalKishore, B.S Publications

6. Electronic Devices and Circuits, G.S.N.Raju, I.K.International Publications, NewDelhi, 2006.

COURSEOUTCOMES:

After the course completion the students will be able to

- 1. Apply the basic RLC circuit elements and its concepts to networks and circuits.
- 2. Analyze the circuits by applying network theorems to solve them to find various electrical parameters.
- 3. Illustrate the single-phase AC circuits along with the concept of impedance parameters and power.
- 4. Understand the Constructional Details and Principle of Operation of DC Machines and Transformers
- 5. To understand the concepts of p-n diode, rectifiers and Zener diode
- 6. To understand the concepts of BJTs, JFET and MOSFETs

I Year B. TECH -I-SEM

L/T/P/ 2/-/2/3

(R22A0301) COMPUTER AIDED ENGINEERING GRAPHICS

COURSE OBJECTIVES:

- 1 To learn basic engineering graphics and Auto CAD concepts.
- 2 To learn the 2D principles of orthographic projections and Multiple views of the same
- 3 To know the planes and solid Projection
- 4 To gain the capability of designing 3D objects with isometric principles by using computer aided sketches
- 5 To know the conversion of Orthographic Views to isometric Views and isometric to Orthographic views

UNIT 1

Introduction to Auto CAD: Introduction to software interface Standard toolbar/menu, Understanding the co-ordinate systems-2D and 3D Visualisation, Setting the Paper sizes and title block importance, printing and plotting. Draw commands: line, arc, circle, rectangle, polygons, ellipse, polyline, splines, text. Modify commands: copy, mirror, offset, arrays, move, extend, break, trim, lengthen, chamfer, fillet.etc., Constraints: horizontal, vertical, parallel, concentric, perpendicular, symmetric, equal, collinear. Dimensioning Commands: Dimensioning and Dimension Style. Division: Line division, and circle division. Polygons: Constructing regular polygons - inscribed and circumscribed methods and general method.

UNIT 2

Projection of Points: Introduction to reference planes, four quadrants, importance of reference lines. Projection of points in all the four quadrants

Projection of Lines: Parallel to both the reference planes, Parallel to one plane and perpendicular to other plane, Inclined to one plane and parallel to other plane, Inclined to both planes

UNIT 3

Projections of Planes: Introduction to Regular planes. Parallel/Perpendicular to one reference plane, Inclined to one plane and Inclined to both the reference planes.

Projections of Solids: Introduction - Prisms, Pyramids, Cone and Cylinder, Axis parallel and perpendicular to one reference plane, Axis inclined to one reference plane.

UNIT 4

Isometric Projection: Introduction, Isometric projection of simple plane figures, Solids - right regular prisms, pyramids, cylinder, cone – H.P, V.P

UNIT 5

Conversions: Conversion of Isometric Views to Orthographic Views and Orthographic Views to Isometric Views

TEXT BOOKS:

- 1. Engineering Drawing N.D. Bhatt & V.M. Panchal, 48th edition, 2005 Charotar Publishing House, Gujarat.
- 2. "Computer Aided Engineering Drawing" by Dr. M H Annaiah, Dr C N Chandrappa and Dr B Sudheer Prem Kumar Fifth edition, New Age International Publishers

REFERENCE BOOKS:

- 1. Computer Aided Engineering Drawing S. Trymbaka Murthy, I.K. International Publishing House Pvt. Ltd., New Delhi, 3rd revised edition-2006.
- 2. Engineering Graphics K.R. Gopalakrishna, 32nd edition, 2005- Subash Publishers, Bangalore.

COURSE OUTCOMES:

After the completion of course the student will be capable to

- 1. To produce geometric construction, dimensioning & Curves and detail drawings.
- 2. To compile Projections of points, lines, then create virtual drawing by using computer
- 3. To sketch the Planes and Solid Projections
- 4. To develop isometric drawings of simple objects reading the orthographic projections of those objects.
- 5. To understand and visualize the 3-D view of engineering objects. Elaborate the conversions of 2D 3D and Vice-Versa

I Year B. TECH -I-SEM

L/T/P/C 3/-/-/3

(R22A0501)PROGRAMMING FOR PROBLEM SOLVING

COURSE OBJECTIVES:

- 1. To Understand the use of computer system in problem solving and to build program logic with algorithms and flowcharts.
- 2. To learn the syntax and semantics of C programming language.
- 3. To learn the usage of structured programming approach in solving problems.
- 4. To learn the usage of strings and pointers.
- 5. Understand the usage of structures and files.

UNIT-I:Introduction toProgramming:

Computer Languages, Compilers, Compiling and executing a program, Representation of Algorithms and Flowcharts with examples.

Introduction to C Programming Language:

Structure of a C Program, I/O: Simple input and output with scanf() and printf(), C Tokens- Keywords, Identifiers, Constants, Variables, Data types, Operators, Expressions and precedence, Expression evaluation, Type conversion.

UNIT-II: Conditional Branching and Arrays:

Control Structures – Selection Statements (Decision Making)- if and switch statements, nested if-else, Iteration and loops: use of while, do-while and for loops, nested loops, use of goto, break and continue statements.

Arrays: Definition, one and two dimensional arrays, creating, accessing and manipulating elements of arrays.

UNIT- III: Designing Structured Programs using Functions:

Functions: Declaring a function, Categories of functions, passing parameters to functions: call by value, call by reference, passing arrays to functions, Scope- Local Vs Global, Storage classes, Recursion with example programs.

UNIT-IV: Strings and Pointers:

Strings: Introduction to strings, Declaration and Initialization, String input/output functions, String manipulation functions with example programs, Array of Strings.

Pointers: Defining pointers, Declaration and Initialization, accessing variables through pointers, Pointers to arrays, Pointers to functions, Pointers to structures, Command line arguments, Enumeration data type, Dynamic Memory Management Functions: malloc(), calloc(), realloc() and free().

UNIT-V: Structures and File handling in C:

Structures: Defining structures, Declaration and Initialization, Array of structures, unions.

Files: Text and Binary files, Opening and Closing files, File input /output functions, Creating and Reading and writing text files, Appending data to existing files.

TEXTBOOKS:

- 1. JeriR.Hanly and Elliot B.Koffman, Problem solving and Program Design in C 7thEdition, Pearson.
- 2. Mastering C, K.R. Venugopal, S R Prasad, Tata McGraw-Hill Education.
- 3. Computer Programming, E.Balagurusamy, First Edition, TMH.
- 4. Computer Science: A Structured Programming Approach Using C, B.A.Forouzan and R.F. Gilberg, Third Edition, Cengage Learning.

REFERENCEBOOKS:

- 1. BrianW.KernighanandDennisM.Ritchie,TheCProgrammingLanguage,PrenticeHallofIndia.
- 2. YashavantKanetkar,LetUsC,18thEdition,BPB.
- 3. Programming in C, Stephen G.Kochan, Fourth Edition, Pearson Education.

4. Herbert Schildt, C:The CompleteReference,McGrawHill,4thEdition.

COURSE OUTCOMES: The student will be able

- 1. To write algorithms and to draw flowcharts for solving problems.
- 2. To convert the algorithms/flowcharts to C programs.
- 3. To code and test a given logic in the C programming language.
- 4. To decompose a problem into functions and to develop modular reusable code.
- 5. To use arrays, pointers, strings, structures and files to write C programs.

I Year B. TECH -I-SEM

-/-/2/1

(R22A0081) ENGLISH LANGUAGE AND COMMUNICATION SKILLS LAB

The Language Lab focuses on the production and practice of sounds of the English language and familiarizes the students with its use in everyday situations and contexts.

OBJECTIVES:

- 1. To facilitate computer-aided multi-media instruction enabling individualized and independent language learning
- 2. To sensitize the students to the nuances of English speech sounds, word accent, intonation and rhythm
- 3. To bring about a consistent accent and intelligibility in their pronunciation, ample speaking opportunities are provided.
- 4. To improve the fluency in spoken English and neutralize mother tongue influence
- 5. To train students to use language appropriately for interviews, group discussions and public speaking

English Language and Communication Skills Labs two parts:

A.Computer Assisted Language Learning (CALL) Lab

B.Interactive Communication Skills (ICS) Lab

The following course content is prescribed for the English Language and Communication Skills Lab

UNIT -I

CALL Lab: Introduction to Phonetics -Speech Sounds -Vowels and Consonants- Transcriptions ICS Lab: Ice-Breaking activity - JAM session

UNIT -II

CALL Lab: Pronunciation: Past Tense Markers and Plural Markers

ICS Lab: Situational Dialogues/Role Plays--Greetings - Taking Leave - Introducing Oneself and Others -Requests and Seeking Permissions

UNIT-III

CALL Lab: Syllable and Syllabification

ICS Lab: Communication at Workplace- Situational Dialogues/Role Plays - Seeking Clarifications -Asking for and Giving Directions - Thanking and Responding - Agreeing and Disagreeing - Seeking and Giving Advice

UNIT-IV

CALL Lab: Word Stress and Intonation

ICS Lab:Information transfer – from visual to verbal - maps, charts, tables and graphs

CALL Lab: Errors in Pronunciation- Accent - the Influence of Mother Tongue (MTI)

ICS Lab: Making a Short Speech - Extempore

ELCS Lab:

1. Computer Assisted Language Learning (CALL) Lab:

The Computer aided Language Labfor 60 students with 60 systems, one master console, LAN facility and English language software for self-study by learners.

System Requirement (Hardware component):

Computer network with LAN with minimum 60 multimedia systems with the following specifications:

- i) P-IV Processor
 - a) Speed -2.8 GHZ
 - b) RAM -512 MB Minimum
 - c) HardDisk -80 GB

ii) Headphones of High quality

2. Interactive Communication Skills (ICS) Lab:

A Spacious room with movable chairs and audio-visual aids with a Public Address System, a T. V., a digital stereo –audio & video system and camcorder etc.

DISTRIBUTION AND WEIGHTAGE OF MARKS

English Language Laboratory Practical Examination:

- 1. The practical examinations for the English Language Laboratory shall be conducted as per the University norms prescribed for the core engineering practical sessions.
- 2. For the Language lab sessions, there shall be a continuous evaluation during the year for 30 marks and 70 year-end Examination marks. Of the 30 marks, 20 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The year-end Examination shall be conducted by the teacher concerned with the help of another member of the staff of the same department of the other institution.

OUTCOMES:

- 1. Learning with precision through computer-assisted individualized and independent language learning to work independently in engineering set up.
- 2. Improved conversational reception and articulation techniques in the course of repetitive instruction thereby gaining confidence both in institutional and professional environment.
- 3. Accuracy in pronunciation and restoring Standard English thereby crafting better command in English language so that the students have a cutting edge over others in society.
- 4. Imbibing appropriate use of language in situations to work as an individual and as o leader in diverse teams
- 5. Equip themselves with the pre-requisites, and relevant techniques to effectively attend corporate interviews

I Year B. TECH -I-SEM

L/T/P/C -/-/3/1.5

(R22A0281)PRINCIPLES OF ELECTRICAL AND ELECTRONICS ENGINEERING LAB

COURSE OBJECTIVES:

- 1. To design an electrical system.
- 2. To analyze a given network by applying various circuit laws and network theorems.
- 3. To expose the students to the operation of DC machine and transformer.
- 4. To exhibit the students to the operation of PN junction diode and Zener diode.
- 5. To expose the students to the operation of Rectifier.

Among the following experiments any 10 are to be conducted

- 1. Verification of KVL and KCL.
- Verification of Thevenin's theorem.
- 3. Verification of Norton's theorem.
- 4. Verification of Super position theorem.
- 5. MagnetizationcharacteristicsofDCshuntgenerator.
- 6. Speed control of DC shunt motor using armature control method.
- 7. Speed control of DC shunt motor using flux control method
- 8. Load test on single phase transformer.
- 9. PN Junction diode characteristics.
- 10. Zener diode characteristics.
- 11. Half wave rectifier.
- 12. Full wave rectifier.

COURSE OUTCOMES:

At the end of the course, students would be able to

- 1. Explain the concept of circuit laws and network theorems and apply them to laboratory measurements.
- 2. Be able to systematically obtain the equations that characterize the performance of an electric circuit as well as solving them.
- 3. Perform the required tests on transformers and DC motors.
- 4. Plot the characteristics of Zener diodes.
- 5. Determine the working of rectifiers in detail.

I Year B. TECH -I-SEM

L/T/P/C -/-/3/1.5

(R22A0581)PROGRAMMINGFOR PROBLEM SOLVING LAB

COURSE OBJECTIVES:

- 1. To work with an IDE to create, edit, compile, run and debug programs.
- 2. To analyze the various steps in program development.
- 3. To develop programs to solve basic problems by understanding basic concepts in C like operators, control statements etc.
- 4. To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc.
- 5. To create, read from and write to text and binary files.

Practice sessions:

- a. Write a simple program that prints the results of all the operators available in C (includingpre/postincrement,bitwiseand/or/not,etc.).Readrequiredoperandvaluesfrom standard input.
- b. Writeasimpleprogramthatconvertsonegivendatatypetoanotherusingautoconversionandcasting. Takethev aluesfromstandard input.

Simple numeric problems:

- a. Write a program for finding the max and min from the three numbers.
- b. Write the program for the simple, compound interest.
- c. Write a program that declares Class awarded for a given percentage of marks, where mark

<40%= Failed, 40% to <60% = Second class, 60% to <70%=First class, >= 70% = Distinction. Read percentage from standard input.

d. Write a program that prints a multiplication table for a given number and the number of rows in the table. For example, for a number 5 and rows=3,the output should be:

5 x1=5

5 x2=10

5 x3=15

Expression Evaluation:

- a. A building has 10 floors with a floor height of 3 meters each. A ball is dropped from the top ofthebuilding. Find the time taken by the ball to reach each floor. (Use the formulas = ut + (1/2) at ^2 where u and a are the initial velocity in m/sec(=0) and acceleration in m/sec^2 (=9.8 m/s^2)).
- b. WriteaCprogram, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,*, /, % and use Switch Statement).
- c. Write a C program to find the factorial of a given number.
- d. WriteaCprogramtofindthesumofindividualdigitsofapositiveintegerandtestgivennumberispalindrom
- e. A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
- f. Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.
- g. Write a C program to find the roots of a Quadratic equation.

Arrays, Functions and Pointers:

- a. Write a C program to find the minimum, maximum and average in an array of integers.
- b. Write a C program that uses functions to perform the following:
 - 1. Addition of Two Matrices

- 2. Multiplication of Two Matrices
- c. Write a C program to find the Transpose of a matrix.
- d. Write a function to swap the values of two variables using call by value.
- e. Write a function to swap the values of two variables using call by reference.
- f. Write C programs that use both recursive and non-recursive functions
 - 1. To find the factorial of a given integer.
 - 2. To find the GCD(greatest common divisor) of two given integers.
- g. Write a program for reading elements using a pointer into an array and display the values using the array.
- h. Write a program for display values reverse order from an array using a pointer.
- i. Write a program through a pointer variable to sum of n elements from an array.

Strings:

- a. Write a C program that uses functions to perform the following operations:
 - 1. To insert a sub-string into a given main string from a given position.
 - 2. To delete n Characters from a given position in a given string.
- b. Write a C program to determine if the given string is a palindrome or not(Spelled same in both directions with or without a meaning like madam, civic, noon, abcba, etc.)
- c. Write a C program that displays the position of a character ch in the string S or-1 if S doesn't contain ch.
- d. Write a C program to count the lines, words and characters in a given text.

Structures:

- a. Write a C program to create a structure named book and display the contents of a book.
- b. Write a C program to create a structure named student and display the details of 5 students using array of structures.
- c. Write a C program to calculate total and percentage marks of a student using structure.

Files:

- a. Write a C program to display the contents of a file to standard output device.
- b. Write a C program which copies one file to another file.
- c. Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command line arguments.
- d. Write a C program to merge two files into a third file (i.e.,the contents of the first file followed by those of the second are put in the third file).

Miscellaneous:

- a. Write a menu driven C program that allows a user to enter n numbers and then choose between finding the smallest, largest, sum, oraverage. The menu and all the choices are to be functions. Use a switch statement to determine what action to take. Display an error message if an invalid choice is entered.
- b. Write a C program to construct a pyramid of numbers as follows:

1		1
1 2	* *	22
1 23	* **	3 33
		4 444

TEXTBOOKS:

- 1. Jeri R. Hanly and Elliot B.Koffman, Problem solving and Program Design in C 7th Edition, Pearson.
- 2. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rdEdition).

REFERENCEBOOKS:

- 1. BrianW.Kernighan and DennisM.Ritchie,The CProgramming Language,PHI.
- 2. E.Balagurusamy, Computerfundamentalsand C, 2nd Edition, McGraw-Hill.
- 3. YashavantKanetkar,LetUsC,18thEdition,BPB.
- 4. R.G.Dromey, Howtosolveitby Computer, Pearson (16th Impression).
- 5. Programmingin C,Stephen G.Kochan,FourthEdition,PearsonEducation.
- 6. HerbertSchildt,C:The CompleteReference,McGrawHill,4thEdition.

7. ByronGottfried,Schaum'sOutlineofProgrammingwithC,McGraw-Hill.

COURSE OUTCOMES:

After completion of the course, Students will be able to:

- Formulate the algorithms for simple problems.
- identify and correct logical errors encountered during execution.
- Represent and manipulate data with arrays, strings, structures and pointers.
- create, read and write to and from simple text and binary files.
- Modularize the code with functions so that they can bere used.

I Year B. TECH -I-SEM

L/T/P/C -/-/3/1.5

(R22A0082) APPLIED PHYSICS LAB/ENGINEERING CHEMISTRY LAB

COURSE OBJECTIVES:

- 1. To experience the mechanical oscillations and resonance phenomena.
- 2. To verify the concepts of light.
- 3. To analyze voltage/current phase behavior of RC and LCR circuits.
- 4. To study the characteristics of semiconductor devices.
- 5. To understand the concepts of laser.

LIST OF EXPERIMENTS:

- 1. Melde's experiment –Frequency of electrical vibrator.
- 2. Newton's Rings Radius of curvature of Plano convex lens.
- 3. Laser -Wave length of light by using Diffraction grating.
- 4. CR circuit Time constant of RC circuit.
- 5. LCR Circuit- Quality factor and resonance frequency of LCR circuit.
- 6. LED -Characteristics of LED.
- 7. Solar cell -Characteristics of Solar cell.
- 8. Optical fiber- Numerical aperture of an optical fiber.
- 9. Torsional pendulum- Rigidity modulus of given wire (demonstrative).
- 10. Hall Effect Hall coefficient of semiconducting samples (demonstrative).

REFERENCE BOOKS:

- 1. Practical physics by Dr. Aparna, Dr K.V Rao, V.G.S. Publications.
- 2. Engineering physics practical lab manual MRCET

COURSE OUTCOMES:

- 1. Students can compare the elastic constants of different metallic wires, and also determine the ac frequency of vibrating bar.
- 2. Students can illustrate the interference of light phenomena.
- 3. Wavelength of the given laser can be determined by using diffraction phenomenon
- 4. By understanding electrical principles, Time constant of RC and resonance phenomenon of LCR circuits can be analyzed.
- 5. V-I characteristics of various semiconductor devices can be illustrated.

(R22A0082) ENGINEERING CHEMISTRY LAB

COURSE OBJECTIVES:

The students will be able:

- 1. To understand and explain scientifically the various chemistry related problems in the industry/engineering and develop experimental skills for building technical competence.
- 2. To familiarize with the practical implementation of fundamental concepts.
- 3. To gain hands on experience in handling the instruments.
- 4. To demonstrate the digital and instrumental methods of analysis.
- 5. To correlate the practical aspects with theoretical concepts.

List of Experiments

Titrimetry:

- 1. Estimation of Hardness of water by EDTA method.
- 2. Estimation of Ferrous ion by Dichrometry

Instrumental Methods

Conductometry:

- 3. Estimation of concentration of HCl by Conduct o metric titrations.
- 4. Estimation of concentration of Acetic acid by Conduct o metric titrations.

Potentiometry:

- 5. Estimation of concentration of HCl by Potentiometric titrations.
- 6. Estimation of amount of Fe²⁺ by Potentiometric titration using KMnO₄.

Colorimetry:

7. Estimation of Copper by Colorimetric method.

Preparation

8. Preparation of a Polymer-Bakelite

Physical Property

9. Determination of Surface Tension of a given liquid by Stalagmometer.

Corrosion control method

10. Electroplating of Copper on an Iron object.

Text Book:

- 1. Inorganic quantitative analysis, Vogel
- 2. A text book on experiments and calculation in Engineering Chemistry by S.S. Dara

Suggested Readings:

- 1. Practical Engineering Chemistry by K. Mukkanti, etal, B.S. Publications, Hyderabad.
- 2. Text Book of engineering chemistry by R. N. Goyal and HarrmendraGoel, Ane Books Private Ltd.

COURSE OUTCOMES:

The students will be able:

- 1. To estimate the total hardness present in a sample of water.
- 2. To know the strength of an acid by conduct o metric and potentiometric methods.
- 3. To find the amount of Cu²⁺ present in unknown sample using colorimetric method.
- 4. To prepare a thermosetting polymer.
- 5. To determine the surface tension of a given liquid.
- 6. To understand the electroplating method for corrosion protection of metals.

I Year B. TECH -I-SEM

L/T/P/C -/-/2/1

(R22A0083) ENGINEERING AND COMPUTING HARDWARE WORKSHOP

It is consisting of 2 parts: Part I: Computing Hardware Workshop
Part II: Engineering Workshop

COURSE OBJECTIVES:

- Understand the internal structure of computer system and learn to diagnose minor problems with the computer functioning.
- Know the proper usage and threats of the World Wide Web & Study in detail about the various features of Ms-Word, Excel, PowerPoint and Google Forms
- To obtain the knowledge about Electrical wiring and Soldering Desoldering procedures.
- To provide hands on experience in usage of different engineering materials, tools equipments and processes which are common in the engineering field.
- To develop professional attitude, team work, precision and safety practices at work place.

Part I: COMPUTING HARDWARE WORKSHOP

Task- 1: PC HARDWARE

Identification of the peripherals of a computer, components in a CPU and its functions.Block diagram of the CPU along with the configuration of each peripheral. Functions of Motherboard. Assembling and Disassembling of PC. Installation of OS. Basic Linux commands.

Task- 2: TROUBLESHOOTING

Hardware Troubleshooting: Students are to be given a PC which does not boot due to proper assembly or defective peripherals and the students should be taught to identify and correct the problem.

Software Troubleshooting: Students have to be given a malfunctioning CPU due to system software problems. They should identify the problem and fix it to get the computer back to working condition.

Task 3: INTERNET

Web Browsers, Access of websites, Surfing the Web, Search Engines, Customization of web browsers, proxy settings, bookmarks, search toolbars, pop-up blockers. Antivirus downloads, Protection from various threats.

MS OFFICE

Task 4: MICROSOFT WORD

Overview of MS word features. Usage of Hyperlink, Symbols, Spell Check, Track Changes. Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word. Using Word to create Project Certificate, Project Abstract, News Letter, Resume.

Task 5: MICROSOFT EXCEL

Overview of Excel Features Excel formulae & Functions, conditional formatting, Charts, Hyper linking, Renaming and Inserting worksheets, Data Analysis functions.

Creating a Scheduler (Features: - Gridlines, Format Cells, Summation, auto fill, Formatting)

Calculating GPA (Features: - Cell Referencing, Formulae and functions in excel

Task 6: MICROSOFT POWER POINT

Overview of PowerPoint features, Insertion of images, slide transition, Custom animation, Hyperlinks.

Task 7: GOOGLE FORMS

Google forms introduction, opening Google forms, editing forms, add questions, copy duplicate questions, delete questions, required questions, more button, form color and themes, preview form, advance form settings, send form, view responses, close form

PART II: ENGINEERING WORKSHOP

A. List of Experiments:

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lampwiring
- 3. Stair casewiring
- 4. Soldering and Desoldering practice components, devices and circuits using general

1. Purpose PCB.

Note: Minimum ONE experiment need to be conducted in each trade

A. TRADES FOR EXERCISES:

At least two exercises from each trade:

1. Carpentry:

To prepare T-Lap Joint, Dovetail Joint.

To prepare Mortise & Tenon Joint.

2. Fitting:

To prepare V-Fit, Dovetail Fit & Semi-circular fit.

3. Tin-Smithy:

To make Square Tin, Rectangular Tray & Conical Funnel.

Note: Minimum ONE experiment need to be conducted in each trade

Trades to demonstrate:

- 1. Plumbing
- 2. Foundry
- 3. Welding
- 4. Black smithy
- 5. Metal cutting (Water Plasma)

Note: Minimum a total of 3 trades to be demonstrated.

TEXT BOOKS - IT WORKSHOP

- 1. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education
- 2. Excel Functions and Formulae, Bernd held, Theodor Richardson, Third Edition

TEXT BOOKS - ENGINEERING WORKSHOP

- 1. Workshop Manual, P. Kannaiah and K. L. Narayana, 3rd Edition, Scitech, 2015
- 2. Printed Circuit Boards Design, Fabrication, Assembly and Testing, R. S. Khandpur, Tata McGraw-Hill Education, 2005.

COURSE OUTCOMES:

- Ability to identify, assemble and troubleshoot the major components of a computer and perform the installation of Operating System.
- Capacity to make effective usage of the internet for academics and develop professional documents, spreadsheets and presentations.
- Students will be able to understand the domestic, illumination, stair-case wiring procedures and soldering de soldering practice
- The student will have hands-on experience on manufacturing of components using different trades of engineering processes
- The student will be able to perform in a team, adhering to industrial safety practices and follow professional working standards.

I Year B. TECH -I-SEM

L/T/P/C 2/-/-

(R22A0004) ENVIRONMENTAL SCIENCE

COURSE OBJECTIVES: On successful completion of this course, students will be able:

- 1. CO1: To distinguish the inter relationship between living organism and environment.
- 2. CO2: To categorize various types of natural resources available on the earth surface.
- 3. CO3: To detect the causes, and control measures of various types of environmental pollution.
- 4. CO4: To articulate the issues related to solid waste and its management.
- 5. CO5: To explain and understand the importance of Sustainable development.

COURSE OUTCOMES: The basic concepts included in this course will help the student to:

- 1. CO1: Differentiate between various biotic and abiotic components of ecosystem.
- 2. CO2: Describe the various types of natural resources.
- 3. CO3: Examine the problems associated with waste management.
- 4. CO4: Evaluate the causes, and apply control measures of various types of environmental pollutions.
- 5. CO5: Develop technologies on the basis of ecological principles on environment which in turn helps in sustainable development.

UNIT-I ECOSYSTEMS (6 hours)

Definition, Scope and Importance of Ecosystem; Structure of an Ecosystem - abiotic and biotic component; Functions of an ecosystem- food chains, food webs and ecological pyramids.

Activities: Activities: Case studies, poster making, Essays on biotic components.

UNIT-II NATURAL RESOURCES (6hours)

Classification of Resources: Definition of natural resource - renewable and non -renewable resources. Forest resources - functions and uses of forests, Deforestation - causes and consequences. Water resources - Dams - benefits and environmental problems over dams. Renewable resources - solar energy (solar cells), hydro power, biogas and bio-fuel.

Activities: Case studies, seminars, Group Project works, to prepare rain water harvesting models, to demonstrate the generation of electricity with the utilization of non-conventional energy resources.

UNIT-III ENVIRONMENTAL POLLUTION AND TECHNIQUES (6 hours)

Definition, Types of pollution- Air pollution- causes, effects, control measures of air pollution and prevention techniques. Water pollution- causes, effects, control measures and techniques.

Activities: Work sheets, Debate, seminars, surrounding case studies.

UNIT-IV SOLID WASTE MANAGEMENT (5 hours)

Definition of Solid waste, characteristics of solid waste; Solid waste management- collection, transportation, processing treatment and disposal methods; e-waste management; 3R techniques- reduce, reuse and recycle. **Activities**: Quiz, Puzzles, Seminars, Case studies.

UNIT-V SUSTAINABLE DEVELOPMENT (4 hours)

Definition of sustainable development, sustainable development goals, threats to sustainability, strategies to achieve sustainable development.

Activities: Worksheets, seminars, slogans, group projects.

TEXT BOOKS

- 1. Textbook of Environmental Studies for Undergraduate Courses by ErachBharucha for University Grants Commission
- 2. Environmental Studies by R. Rajagopalan, Oxford University Press.
- 3. Textbook of Environmental Science and Technology Dr. M. Anji Reddy 2007, BS Publications
- 4. Dr. P. D Sharma, "Ecology and Environment", Rastogi Publications, New Delhi, 12 Edition, 2015

REFERENCE BOOKS

- 1. Environmental Studies by Anubha Kaushik, 4 Edition, New age international publishers
- 2. Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Pvt. Ltd, New Delhi
- 3. Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHL Learning Pvt. Ltd, New Delhi
- 4. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition

I Year B. TECH -II-SEM

L/T/P/C 2 /- /-/2

(R22A0002) PROFESSIONAL ENGLISH

INTRODUCTION:

English is a tool for global communication and is the dominant language, which is sweeping almost all the fields in the world. It has become a necessity for people to speak in English comfortably, if they want to enter the global workforce. Hence, the course is designed to help the students to meet the global standards. Each unit focuses on English skill-set to improve: Interview skills, giving presentations and professional etiquette.

COURSE OBJECTIVES:

- 1 To enrich students to express themselves appropriately and fluently in professional contexts.
- 2 To enhance their employability through regular participation in group discussions and interviewskills.
- 3 To lay foundation with writing strategies for the future workplaceneeds.
- 4 To acquaint students with different components of professional presentationskills.
- 5 To equip students with necessary training in listening to comprehend dialects of English language.

UNIT-I

"Mokshagundam Visvesvaraya"

Speaking - Description of Pictures, Places, Objects and Persons

Grammar - 'If'Clauses

Vocabulary - Homonyms, homophones andhomographs

Writing - ParagraphWriting

NOTE: Listening and speaking tasks are solely for lab purpose and not for testing in the examinations.

UNIT -II

Speaking - Small Talks

Grammar - Finite and Non-finite verbs

Vocabulary - Standard Abbreviations (Mini Project)

Writing - Job Application – Cover letter

NOTE: Listening and speaking tasks are solely for lab purpose and not for testing in the examinations.

Unit -III

Speaking - Oral presentations

Grammar - Transformation of Sentences

Vocabulary -Idioms

Writing - Abstract Writing

NOTE: Listening and speaking tasks are solely for lab purpose and not for testing in the examinations.

Unit - IV

'How a Chinese Billionaire Built Her Fortune'

Speaking - Telephonic Expressions and Conversations

Grammar - Auxiliary verbs & model Verbs, Degrees of Comparison

Vocabulary - Word Analogy

Writing - Job Application - Resume

NOTE: Listening and speaking tasks are solely for lab purpose and not for testing in the examinations.

Unit - V

Speaking - Group discussion

Grammar - Common Errors, Prepositions

Vocabulary - Technical Vocabulary

Writing - Report Writing

NOTE: Listening and speaking tasks are solely for lab purpose and not for testing in the examinations.

REFERENCE BOOKS:

- 1. Practical English Usage. Michael Swan. OUP.1995.
- 2. Remedial English Grammar. F.T. Wood.Macmillan.2007
- 3. Skills Annexe& Epitome of Wisdom B.Tech 1st Year English Study Material, JNTUH.
- 4. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press.2006.
- 5. CommunicationSkills.SanjayKumarandPushpaLata.OxfordUniversityPress.2011.
- 6. ExercisesinSpokenEnglish.Parts.I-III.CIEFL,Hyderabad.OxfordUniversityPress
- 7. 'English for Engineers'. Cambridge University Press

I Year B. TECH -II-SEM

L/T/P/C 3 /1/-/4

(R22A0024)MATHEMATICS-II

OBJECTIVES:

- The aim of numerical methods is to provide systematic methods for solving problems in a numerical form using the given initial data, also used to find the roots of an equation and to solve differential equations.
- The objective of interpolation is to find an unknown function which approximates the given data points and the objective of curve fitting is to find the relation between the variables x and y from given data and such relationships which exactly pass through the data (or) approximately satisfy the data under the condition of sum of least squares of errors.
- PDE aims at forming a function with many variables and also their solution methods, Method of separation of variables technique is learnt to solve typical second order PDE.
- Evaluation of multiple integrals.
- In many engineering fields the physical quantities involved are vector valued functions. Hence the vector calculus aims at basic properties of vector-valued functions and their applications to line, surface and volume integrals.

UNIT – I: Interpolation

Interpolation: Introduction, errors in polynomial interpolation, Finite differences - Forward differences, Backward differences, central differences. Newton's formulae for interpolation, Gauss's central difference formulae, Interpolation with unevenly spaced points - Lagrange's Interpolation.

Curve fitting: Fitting a straight line, second degree curve, exponential curve, power curve by method of least squares.

UNIT - II: Numerical Methods

Solution of algebraic and transcendental equations: Introduction, Bisection Method, Method of false position, Newton Raphson method and their graphical interpretations.

Numerical integration: Generalized quadrature - Trapezoidal rule, Simpson's 1/3rd and Simpson's 3/8th rules.

Numerical solution of ordinary differential equations: Solution by Taylor's series method, Euler's method, Euler's modified method, Runge-Kutta fourth order method.

UNIT III: Partial Differential Equations

Introduction, formation of partial differential equation by elimination of arbitrary constants and arbitrary functions, solutions of first order Lagrange's linear equation and non-linear equations, Charpit's method, Method of separation of variables for second order equations and applications of PDE to one dimensional equation (Heat equation).

Unit IV: Double and Triple Integrals

Double and triple integrals (Cartesian and polar), Change of order of integration in double integrals, Change of variables (Cartesian to polar). Applications: Areas (by double integrals) and volumes (by double integrals and triple).

Unit V: Vector Calculus

Introduction, Scalar point function and vector point function, Directional derivative, Gradient, Divergence, Curl and their related properties, Laplacian operator, Line integral - work done, Surface integrals, Volume integral. Green's Theorem, Stoke's theorem and Gauss's Divergence Theorems (Statement & their Verification).

Text Books:

- a. Higher Engineering Mathematics by B V Ramana ., Tata McGraw Hill.
- b. Higher Engineering Mathematics by B.S. Grewal, Khanna Publishers.

c. Mathematical Methods by S.R.Klyenger, R.K.Jain, Narosa Publishers.

Reference Books:

- i) Elementary Numerical Analysis by Atkinson-Han, Wiley Student Edition.
- ii) Advanced Engineering Mathematics by Michael Greenberg -Pearson publishers.
- iii) Introductory Methods of Numerical Analysis by S.S. Sastry, PHI

Course Outcomes: After learning the contents of this paper the student will be able to

- 1. Find the most appropriate relation of the data variables using curve fitting and this method of data analysis helps engineers to understand the system for better interpretation and decision making.
- 2. Find the roots of algebraic, non algebraic equations.
- 3. Solve first order linear and non-linear partial differential equations.
- 4. Evaluate multiple integrals.
- 5. Evaluate the line, surface, volume integrals and converting them from one to another using vector integral theorems.

I Year B. TECH -II-SEM

L/T/P/C 3/1/-/4

(R22A0021) APPLIED PHYSICS

COURSE OBJECTIVES:

- 1 To understand the basic principles of lasers and optical fibers.
- 2 To interpret dual nature of the matter and behavior of a particle quantum mechanically.
- 3 To classify the solids depending upon electrical conductivity.
- 4 To understand the concepts of semiconductors and devices.
- 5 To analyze dielectric and magnetic properties of the materials.

UNIT - I

LASERS & FIBER OPTICS

(15 Hours)

Lasers: Characteristics of lasers, Absorption, Spontaneous and stimulated emissions, Einstein's Coefficients, Population inversion, meta stable state, types of pumping, lasing action, construction and working of Ruby Laser, Helium-Neon Laser, Semiconductor diode Laser, Applications of lasers.

Fiber Optics: Introduction to optical fiber, Construction and working principle of an Optical Fiber, Acceptance angle and Numerical aperture, Types of Optical fibers - Mode and index profile, Losses in optical fiber, Optical Fiber in Communication System, Applications of optical fibers.

UNIT - II

QUANTUM MECHANICS (10 Hours)

Wave nature of particles, de Broglie's hypothesis, matter waves, Heisenberg's uncertainty principle, Davisson and Germer's experiment, G.P Thomson experiment, Schrodinger time-independent wave equation-significance of wave function, Particle in one dimensional square well potential.

UNIT - III

FREE ELECTRON THEORY OF METALS

(12 Hours)

Free electron theory (Classical & Quantum)- Assumptions, Merits and drawbacks, Fermi level, Density of states, Periodic potential, Bloch's theorem, Kronig – Penny model (qualitative) , E –k diagram, Effective mass, Origin of energy bands in solids, Classification of materials : Metals, semiconductors and insulators.

UNIT-IV

SEMICONDUCTOR PHYSICS (15 Hours)

Intrinsic and Extrinsic semiconductors, Direct and Indirect band gap semiconductors, Carrier concentration in intrinsic and extrinsic semiconductors. Dependence of Fermi level on carrier concentration and temperature, Formation of PN Junction, V-I characteristics of PN Junction diode, Energy Diagram of PN diode, Hall effect, semiconductor materials for optoelectronic devices - LED, Photo diode, Solar cell.

UNIT - V

DIELECTRICS AND MAGNETIC PROPERTIES OF MATERIALS

(12 Hours)

Dielectrics: Introduction, Types of polarizations – Electronic, Ionic and Orientation polarization (qualitative) and calculation of polarizabilities, Internal fields in Solid, Clausius-Mossotti relation, Piezo-electricity and Ferro-electricity.

Magnetism: Introduction, Classification of Dia, Para, Ferro magnetic materials based on magnetic moment, Properties of Anti-Ferro and Ferri magnetic materials, Hysteresis curve based on domain theory, Soft and Hard magnetic materials.

COURSE OUTCOMES:

- 2 Can apply the principles of laser to understand various lasers and fiber optic systems.
- 3 Basic principles of quantum mechanics can be used to analyze the microscopic behavior of a particle.
- 4 Classification of solids can be made by understanding the band structure of solids.
- 5 Concepts of semiconductors can be applied to predict the importance of electronic devices relevant to engineering domains.
- 6 Examine dielectric, magnetic properties of the materials and apply them in material technology.

TEXT BOOKS:

- 1. Engineering Physics by Kshirsagar & Avadhanulu, S. Chand publications.
- 2. Modern Engineering Physics-Dr K Vijaya Kumar & Dr S Chandralingam, S. Chand Publications.

3. Engineering Physics- B.K.Pandey, S.Chaturvedi, Cengage Learning.

REFERENCES:

- 1. Engineering Physics R.K. Gaur and S.L. Gupta, DhanpatRai Publishers.

- Engineering Physics, S Mani Naidu- Pearson Publishers.
 Engineering physics 2nd edition –H.K. Malik and A.K. Singh.
 Engineering Physics P.K. Palaniswamy, Scitech publications.
- 5. Physics by Resnick and Haliday.

I Year B. TECH -I-SEM

L/T/P/C 2/0/0/2

(R22A0022) ENGINEERING CHEMISTRY

COURSE OBJECTIVES: The students will be able to

- 1. Acquire the knowledge of electrochemistry and batteries which are essential for the engineers and in industry.
- 2. Analyze engineering problems related to corrosion and develop different corrosion control techniques.
- 3. Identify different types of polymers, composites and their applications in various engineering fields.
- 4. Gain knowledge on wide variety of advanced materials like nano and smart materials which have excellent engineering properties.
- 5. Analyze water for its various parameters and its significance in industrial and domestic applications.

Unit I Electrochemistry (8 hours)

Introduction - Types of cells - Electrolytic and Electrochemical cells (construction and working of Galvanic Cell) - Electrode potential- Cell potential (EMF); Nernst equation and its applications; Electrochemical series and its applications. Batteries - Classification of batteries - primary, secondary and fuel cells with examples. Primary cells - Lithium cells; Secondary cells - Lead acid battery and Lithium ion battery; Fuel cells - Differences between battery and a fuel cell; Construction, working and applications of H₂-O₂ fuel cell.

Unit II Corrosion: (8 hours)

Causes and effects of corrosion – Theories of corrosion - Chemical (oxidation) and Electrochemical corrosion – mechanism of electrochemical corrosion (Evolution of Hydrogen and Absorption of Oxygen); Corrosion control methods - Cathodic protection - Sacrificial anode and Impressed current cathodic methods; Surface coatings – methods of application - Electroplating (Cu-plating) and Electroless plating (Ni-plating) - advantages and applications of electroplating/electroless plating.

Unit III Water and its treatment: (8 hours)

Introduction – hardness of water – causes of hardness; Types of hardness - temporary and permanent – expression and units of hardness-numerical problems; Potable water and its specifications; Disinfectation of water by chlorination and ozonization. Boiler troubles - caustic embrittlement, scales and sludges; External treatment of water – Ion exchange process; Desalination of water – Reverse osmosis.

Unit IV Polymers: (10 hours)

Introduction - Classification of polymers; Types of polymerization - addition and condensation polymerisation with examples. **Plastics** - thermoplastic and thermosetting resins; preparation, properties and engineering applications of Polyvinylchloride (PVC), Teflon (PTFE), and Bakelite. **Rubbers** - Natural rubber and its vulcanization. **Conducting polymers** - classification of conducting polymers – mechanism of conduction in trans-Polyacetylene and applications of conducting polymers. **Bio-degradable polymers** – preparation, properties and applications of Poly-Lactic acid.**Composite materials:** Introduction - Fibre reinforced plastics (FRPs) - Glass fibre reinforced, Carbon fibre reinforced plastics and their applications.

Unit V Advanced Materials: (8 hours)

Nanomaterials: Introduction and classification of nanomaterials; preparation of nanomaterials - Sol-gel method; applications of nanomaterials (industrial and medicinal); Carbon nanotubes (CNTs)-applications. **Smart materials:** Introduction - Types of smart materials - examples and applications of piezoelectric materials and shape memory alloys.

Suggested Text Books:

- 1. Engineering Chemistry by P.C. Jain & M. Jain: Dhanpat Rai Publishing Company (P) Ltd, New Delhi. 16thEdition.
- 2. Engineering Chemistry by Prasanta Rath, B. Rama Devi, C. H. Venkata Ramana Reddy, SubhenduChakroborty, Cengage Learning Publication, India Private Limited, 2018.
- 3. Engineering Analysis of Smart Material Systems by Donald J. Leo, Wiley, 2007.

Reference Books:

- 1. Engineering Chemistry by Shashi Chawla, Dhanpat Rai Publishing Company (P) Ltd, New Delhi.
- 2. Engineering Chemistry, by S. S. Dara, S. Chand & Company Ltd, NewDelhi.
- 3. P.W. Atkins, J.D. Paula, "Physical Chemistry", Oxford, 8thedition (2006).
- 4. B.R. Puri, L.R. Sharma and M.S. Pathania, "Principles of Physical Chemistry", S. Nagin Chand & Company Ltd., 46thedition (2013).

COURSE OUTCOMES: The student will be able to

- 1. Relate the knowledge of operating principles of various types of electrochemical cells, including batteries, to optimize the need for sustainable development.
- 2. Analyze and develop technically sound, economic and sustainable solutions for complex engineering problems related to corrosion and its effects.
- 3. Identify, formulate and develop polymeric compounds used in various engineering materials for futuristic engineering applications.
- 4. Apply the knowledge of nanotechnology and smart materials to find solutions for various engineering problems.
- 5. Familiarize with the fundamentals of water treatment technologies and the considerations for its design and implementation in water treatment plants.

I Year B. TECH -II-SEM

L/T/P/C

3/-/-/3

(R22A0502)PROBLEM SOLVING USING PYTHON PROGRAMMING

COURSE OBJECTIVES:

This course will enable students

- 1. To read and write simple Python programs.
- 2. To develop Python programs with conditionals and loops.
- 3. To develop Python programs with using arrays and functions.
- 4. To use Python data structures—lists, tuples, dictionaries.
- 5. To do input/output with files in Python.

UNIT-I

Introduction to Python Programming Language: Introduction to Python Language, Features of Python, Python Installation, Python Input and Output Statements, Numeric Data Types: int, float, boolean, complex and string and its operations, Standard Data Types: List, Tuples, Sets and Dictionaries, Data Type conversions, Comments in Python.

UNIT-II

Variables and Operators: Understanding Python variables, multiple variable declarations, Operators in Python: Arithmetic operators, Assignment operators, Comparison operators, Logical operators, Identity operators, Membership operators, Bitwise operators, Precedence of operators, Expressions.

Control Flow and Loops: Indentation, if statement, if-else statement, chained conditional if- elif -else statement, Loops: While loop, for loop using ranges, Loop manipulation using break, continue and pass.

UNIT-III

Arrays: Advantages of Arrays, Creating an Array, Importing the Array Module, Indexing and Slicing on Arrays, Types of arrays, working with arrays using numpy.

UNIT-IV

Functions: Defining a function, Calling Functions, Passing parameters and arguments, Python Function arguments: Positional Arguments, Keyword Arguments, Default Arguments, Variable-length arguments, Scope of the Variables in a Function–Local and Global Variables, Fruitful Functions, Anonymous functions or Lambda functions, Powerful Lambda functions in Python.

UNIT-V

File Handling in Python: Introduction to files, Text files and Binary files, Access Modes, Writing Data to a File, Reading Data from a File, File input / output functions.

Error Handling in Python: Introduction to Errors and Exceptions: Compile-Time Errors, Logical Errors, Runtime Errors, Types of Exceptions, Python Exception Handling Using try, except and finally statements.

COURSE OUTCOMES:

Upon completion of the course, students will be able to

- 1. Read, write, execute by hand simple Python programs.
- 2. Structure simple Python programs for solving problems.
- 3. Decompose a Python program into arrays and functions.
- 4. Represent compound data using Python lists, tuples, dictionaries.
- 5. Read and write data from/to files in Python programs.

TEXT BOOKS

- 1. R.NageswaraRao, "Core Python Programming", dream tech.
- 2. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist" 2ndedition, Updated for Python3, Shroff/O'Reilly Publishers, 2016.
- 3. Python Programming: A Modern Approach, Vamsi Kurama, Pearson.

REFERENCEBOOKS:

- 1. Core Python Programming, W. Chun, Pearson.
- 2. Introduction to Python, Kenneth A. Lambert, Cengage.
- 3. Learning Python, MarkLutz, Orielly.

I Year B. TECH -II-SEM

L/T/P/C -/-/3/1.5

(R22A0082) APPLIED PHYSICS LAB/ENGINEERING CHEMISTRY LAB

COURSE OBJECTIVES:

- 1. To experience the mechanical oscillations and resonance phenomena.
- 2. To verify the concepts of light.
- 3. To analyze voltage/current phase behavior of RC and LCR circuits.
- 4. To study the characteristics of semiconductor devices.
- 5. To understand the concepts of laser.

LIST OF EXPERIMENTS:

- 1. Melde's experiment –Frequency of electrical vibrator.
- 2. Newton's Rings Radius of curvature of Plano convex lens.
- 3. Laser -Wave length of light by using Diffraction grating.
- 4. CR circuit Time constant of RC circuit.
- 5. LCR Circuit- Quality factor and resonance frequency of LCR circuit.
- 6. LED -Characteristics of LED.
- 7. Solar cell -Characteristics of Solar cell.
- 8. Optical fiber- Numerical aperture of an optical fiber.
- 9. Torsional pendulum- Rigidity modulus of given wire (demonstrative).
- 10. Hall Effect Hall coefficient of semiconducting samples (demonstrative).

REFERENCE BOOKS:

- 1. Practical physics by Dr. Aparna, Dr K.V Rao, V.G.S. Publications.
- 2. Engineering physics practical lab manual MRCET

COURSE OUTCOMES:

- 1. Students can compare the elastic constants of different metallic wires, and also determine the ac frequency of vibrating bar.
- 2. Students can illustrate the interference of light phenomena.
- 3. Wavelength of the given laser can be determined by using diffraction phenomenon
- 4. By understanding electrical principles, Time constant of RC and resonance phenomenon of LCR circuits can be analyzed.
- 5. V-I characteristics of various semiconductor devices can be illustrated.

(R22A0082) ENGINEERING CHEMISTRY LAB

COURSE OBJECTIVES:

The students will be able:

- 1. To understand and explain scientifically the various chemistry related problems in the industry/engineering and develop experimental skills for building technical competence.
- 2. To familiarize with the practical implementation of fundamental concepts.
- 3. To gain hands on experience in handling the instruments.
- 4. To demonstrate the digital and instrumental methods of analysis.
- 5. To correlate the practical aspects with theoretical concepts.

List of Experiments

Titrimetry:

- 1. Estimation of Hardness of water by EDTA method.
- 2. Estimation of Ferrous ion by Dichrometry

Instrumental Methods

Conductometry:

- 3. Estimation of concentration of HCl by Conductometric titrations.
- 4. Estimation of concentration of Acetic acid by Conductometric titrations.

Potentiometry:

- 5. Estimation of concentration of HCl by Potentiometric titrations.
- 6. Estimation of amount of Fe²⁺ by Potentiometric titration using KMnO₄.

Colorimetry:

7. Estimation of Copper by Colorimetric method.

Preparation

8. Preparation of a Polymer-Bakelite

Physical Property

9. Determination of Surface Tension of a given liquid by Stalagmometer.

Corrosion control method

10. Electroplating of Copper on an Iron object.

Text Book:

- 1. Inorganic quantitative analysis, Vogel
- 2. A text book on experiments and calculation in Engineering Chemistry by S.S. Dara

Suggested Readings:

- 1. Practical Engineering Chemistry by K. Mukkanti, etal, B.S. Publications, Hyderabad.
- 2. Text Book of engineering chemistry by R. N. Goyal and HarrmendraGoel, Ane Books Private Ltd.

COURSE OUTCOMES:

The students will be able:

- 1. To estimate the total hardness present in a sample of water.
- 2. To know the strength of an acid by conductometric and potentiometric methods.
- 3. To find the amount of Cu²⁺ present in unknown sample using colorimetric method.
- 4. To prepare a thermosetting polymer.
- 5. To determine the surface tension of a given liquid.
- 6. To understand the electroplating method for corrosion protection of metals.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

I Year B. TECH -II-SEM

L/T/P/C -/-/3/1.5

(R22A0582)PROBLEM SOLVING USING PYTHON PROGRAMMINGLAB

COURSE OBJECTIVES

This course will enable the students:

- 1. Able to understand Syntax and Semantics and create Arrays and Functions in Python.
- 2. Able to learn different data types Lists, Dictionaries in Python.
- 3. Able to know how to execute the programs using loops and control statements.
- 4. Able to learn decision making and Functions in Python.
- 5. Able to know how to handle Files and exceptions in Python.

Week 1:

- A) Write python program to print HelloWorld.
- B) Write a python program to get string, int, float input from user.
- C) Write a python program to add 2 numbers.

Week 2:

- A) Create a list and perform the following methods
 - 1)insert() 2)remove() 3)append() 4)len() 5)pop() 6) clear()
- B) Write a python program to find the length of list.
- C) Write a python program to find the smallest and largest number in the list.

Week 3:

- A) Create a tuple and perform the following methods
 - 1) Add items 2) len() 3)check for item in tuple 4)Access iems
- B) Write a python program using the following methods:1)count2)index
- C) Write a python program using "+" and "*" operations which resulting a new tuple.

Week 4:

- A) Create a dictionary and apply the following methods
 - 1) Print the dictionary items 2)access items 3)use get() 4)change values 5)use len()
- B) Write a python code to convert list of tuples into dictionaries.
- C) Write python program to store data in list, tuple, set, dictionary and then try to print them.

Week 5:

- A) Write a python program to perform arithmetic, assignment, logical and comparison operators.
- B) Write a Python program to add two positive integers without using the '+' operator. (use bitwise operator)
- C) Write a Python program to perform the basic four operators(+,-,*,/).

Week 6:

- A) Write a simple python program to declare a variable in different possible ways.
- B) Write a python program to show precedence of operators using the expression:z=(v+w)*x/y
- C) Write a python program to check whether the values of a list exist or not (use membership operator) and also perform identity operation.

Week 7:

- A) Write a python program to print a number is positive/negative using if-else.
- B) Write a python program to find largest number among three numbers.
- C) Write a python Program to read a number and display corresponding day using if-elif-else.
- D)Write a python program to print list of numbers using range and for loop.

Week 8:

- A) Write a python code to print the sum of natural numbers using while loop.
- B) Write a python program to print the factorial of given number.
- C) Write a python program to find the sum of all numbers stored in a list using for loop.

Week 9:

- A) Using a numpy module create an array and check the following:
- 1. Type of array 2. Axes of array 3. Shape of array
- 4. Type of elements in array

- B) Using a numpy module create array and check the following:
- 1. List with type float 2. 3*4 array with all zeros 3. From tuple 4. Random values

Week10:

- A) Write python program in which a function is defined and calling that function prints Hello World.
- B) Write python program in which a function (with single string parameter) is defined and calling that function prints the string parameters given to function.
- C) Write a python program using with any one of python function argument.

Week11:

- A) Write a program to double a given number and add two numbers using lambda().
- B) Write a program for filter() to filter only even numbers from a given list.
- C) Write a program for map() function to double all the items in the list?
- D) Write a program to find sum of the numbers for the elements of the list by using reduce().

Week12:

- A) Write a python program to open and write "hello world" into a file.
- B) Write a python program to write the content "hi python programming" for the existing file.
- C) Write a python program to read the content of a file.

Week 13:

- A) Write a python program to append data to an existing file and then displaying the entire file.
- B) Write a python program to open a new file, add some data into it and display the contents of that file.

Week 14:

- A) Write a python program to handle the Zero Divison Error exception.
- B) Write a python program to demonstrate multiple except block with a single try block.

TEXT BOOKS:

- 1. R.NageswaraRao, "Core Python Programming", dream tech.
- 2. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", SecondEdition, Updated for Python3, Shroff /O' Reilly Publishers, 2016.

COURSE OUTCOMES:

After completion of the course, Students will be able to:

- 1. Evaluate Problem solving and programming capability.
- 2. Describe the Numbers, Math functions, Strings, List, Tuples and Dictionaries in Python.
- 3. Implement conditional and loop for python programs.
- 4. Express different Decision Making statements, Arrays and Functions.
- 5. Understand and summarize different File handling operations and exceptions.

MALLA REDDY COLLEGE OF ENGINEERING ANDTECHNOLOGY

I Year B. TECH -II-SEM
L/T/P/C
-/-/2/1

(R22A0083) ENGINEERING AND COMPUTING HARDWARE WORKSHOP

It is consisting of 2 parts: Part I: Computing Hardware Workshop
Part II: Engineering Workshop

COURSE OBJECTIVES:

- Understand the internal structure of computer system and learn to diagnose minor problems with the computer functioning.
- Know the proper usage and threats of the World Wide Web & Study in detail about the various features of Ms-Word, Excel, PowerPoint and Google Forms
- To obtain the knowledge about Electrical wiring and Soldering Desoldering procedures.
- To provide hands on experience in usage of different engineering materials, tools equipments and processes which are common in the engineering field.
- To develop professional attitude, team work, precision and safety practices at work place.

Part I: COMPUTING HARDWARE WORKSHOP

Task- 1: PC HARDWARE

Identification of the peripherals of a computer, components in a CPU and its functions. Block diagram of the CPU along with the configuration of each peripheral. Functions of Motherboard. Assembling and Disassembling of PC. Installation of OS. Basic Linux commands.

Task-2: TROUBLESHOOTING

Hardware Troubleshooting: Students are to be given a PC which does not boot due to proper assembly or defective peripherals and the students should be taught to identify and correct the problem.

Software Troubleshooting: Students have to be given a malfunctioning CPU due to system software problems. They should identify the problem and fix it to get the computer back to working condition.

Task 3: INTERNET

Web Browsers, Access of websites, Surfing the Web, Search Engines, Customization of web browsers, proxy settings, bookmarks, search toolbars, pop-up blockers. Antivirus downloads, Protection from various threats.

MS OFFICE

Task 4: MICROSOFT WORD

Overview of MS word features. Usage of Hyperlink, Symbols, Spell Check, Track Changes. Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word. Using Word to create Project Certificate, Project Abstract, News Letter, Resume.

Task 5: MICROSOFT EXCEL

Overview of Excel Features Excel formulae & Functions, conditional formatting, Charts, Hyper linking, Renaming and Inserting worksheets, Data Analysis functions.

Creating a Scheduler (Features: - Gridlines, Format Cells, Summation, auto fill, Formatting) Calculating GPA (Features: - Cell Referencing, Formulae and functions in excel

Task 6: MICROSOFT POWER POINT

Overview of PowerPoint features, Insertion of images, slide transition, Custom animation, Hyperlinks.

Task 7: GOOGLE FORMS

Google forms introduction, opening Google forms, editing forms, add questions, copy duplicate questions, delete questions, required questions, more button, form color and themes, preview form, advance form settings, send form, view responses, close form

PART II: ENGINEERING WORKSHOP

A. List of Experiments:

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lampwiring
- 3. Stair casewiring
- 4. Soldering and Desoldering practice components, devices and circuits using general
- 2. Purpose PCB.

Note: Minimum ONE experiment need to be conducted in each trade

B.TRADES FOR EXERCISES:

At least two exercises from each trade:

4. Carpentry:

To prepare T-Lap Joint, Dovetail Joint.

To prepare Mortise & Tenon Joint.

5. Fitting:

To prepare V-Fit, Dovetail Fit & Semi-circular fit.

6. Tin-Smithy:

To make Square Tin, Rectangular Tray & Conical Funnel.

Note: Minimum ONE experiment need to be conducted in each trade

Trades to demonstrate:

- 1. Plumbing
- 2. Foundry
- 3. Welding
- 4. Black smithy
- 5. Metal cutting (Water Plasma)

Note: Minimum a total of 3 trades to be demonstrated.

TEXT BOOKS - IT WORKSHOP

- 1. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education
- 2. Excel Functions and Formulae, Bernd held, Theodor Richardson, Third Edition

TEXT BOOKS - ENGINEERING WORKSHOP

- 1. Workshop Manual, P. Kannaiah and K. L. Narayana, 3rd Edition, Scitech, 2015
- 2. Printed Circuit Boards Design, Fabrication, Assembly and Testing, R. S. Khandpur, Tata McGraw-Hill Education, 2005.

COURSE OUTCOMES:

- Ability to identify, assemble and troubleshoot the major components of a computer and perform the installation of Operating System.
- Capacity to make effective usage of the internet for academics and develop professional documents, spreadsheets and presentations.
- Students will be able to understand the domestic, illumination, stair-case wiring procedures and soldering de soldering practice
- The student will have hands-on experience on manufacturing of components using different trades of engineering processes
- The student will be able to perform in a team, adhering to industrial safety practices and follow professional working standards.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

I Year B. TECH -II-SEM

L/1/P/C 2/-/-/-

(R20A0003) HUMAN VALUES AND PROFESSIONAL ETHICS

COURSE OBJECTIVES:

This introductory course input is intended:

- 1. To help the students appreciate the essential complementarily between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
- 2. To facilitate the development of a holistic perspective among students towards life, profession and happiness, based on a correct understanding of the Human reality and the rest of Existence. Such a holistic perspective forms the basis of value based living in a natural way.
- 3. To highlight plausible implications of such a holistic understanding in terms of ethical human conduct, trustful and mutually satisfying human behavior and mutually enriching interaction with Nature.

UNIT - I:

Course Introduction - Need, Basic Guidelines, Content and Process for Value Education: Understanding the need, basic guidelines, content and process for Value Education. Self-Explorjation - what is it? - its content and process; 'Natural Acceptance' and Experiential Validation - as the mechanism for self-exploration. Continuous Happiness and ProsperityA look at basic Human Aspirations- Right understanding, Relationship and Physical Facilities- the basic requirements for fulfillment of aspirations of every human being with their correct priority. Understanding Happiness and Prosperity correctly - A critical appraisal of the current scenario. Method to fulfill the above human aspirations: understanding and living in harmony at various levels.

UNIT - II:

Understanding Harmony in the Human Being - Harmony in Myself! : Understanding human being as a co-existence of the sentient 'I' and the material 'Body'.

Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha. Understanding the Body as an instrument of 'I' (I being the doer, seer andenjoyer).

Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail. Programs to ensure Sanyam and Swasthya.

UNIT - III:

Understanding Harmony in the Family and Society - Harmony in Human - Human Relationship: Understanding harmony in the Family the basic unit of human interaction. Understanding values in human - human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) as the foundational values of relationship.

Understanding the meaning of Vishwas; Difference between intention and competence. Understanding the meaning of Samman, Difference between respect and differentiation; the other salient values inrelationship.

Understanding the harmony in the society (society being an extension of family):Samadhan, Samridhi, Abhay, Sah-astiva as comprehensive Human Goals. Visualizing a universal harmonious order in society - Undivided Society (Akhand Samaj), Universal Order (SarvabhaumVyawastha) - from family to worldfamily!

UNIT - IV:

Understanding Harmony in the nature and Existence - Whole existence as Coexistence: Understanding

the harmony in the Nature. Interconnectedness and mutual fulfillment among the four orders of nature - recyclability and self-regulation in nature.

Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all-pervasive space. Holistic perception of harmony at all levels of existence.

UNIT - V:

Implications of the above Holistic Understanding of Harmony on Professional Ethics: Natural acceptance of human values, Definitiveness of Ethical Human Conduct, Basic for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in professional ethics:

- a. Ability to utilize the professional competence for augmenting universal human order.
- b. Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems.
- C. Ability to identify and develop appropriate technologies and management patterns for above production systems.

TEXT BOOKS:

- 1. R. R. Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and ProfessionalEthics.
- 2. Prof. K. V. Subba Raju, 2013, Success Secrets for Engineering Students, Smart Student Publications, 3rdEdition.

REFERENCE BOOKS:

- 1. Ivan Illich, 1974, Energy & Equity, The Trinity Press, Worcester, and HarperCollins, USA
- 2. E. F. Schumancher, 1973, Small is Beautiful: a study of economics as if people mattered. Blond & Briggs,Britain.
- 3. A Nagraj, 1998 Jeevan Vidya ek Parichay, Divya Path Sansthan, Amarkantak.
- 4. Sussan George, 1976, How the Other Half Dies, Penguin Press, Reprinted 1986,1991.
- 5. P. L. Dhar, R. R. Gaur, 1990, Science and Humanism, CommonwealthPublishers.
 - A. N. Tripathy, 2003, Human Values, New Age International Publishers.
- 6. Subhas Palekar, 2000, How to practice Natural Farming, Pracheen(Vaidik) Krishi Tantra Shodh.Amravati.
- 7. Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, William W. Behrens III, 1972, Limits to Growth Club of Rome's report, UniverseBooks.
- 8. E G Seebauer& Robert L.Berry, 2000, Fundamentals of Ethics for Scientists & Engineers, Oxford UniversityPress.
- 9. M Govindrajan, S Natrajan& V. S Senthil kumar, Engineering Ethics (includingHumna Values), Eastern Economy Edition, Prentice Hall of IndiaLtd.

Relevant CDs, Movies, Documentaries & Other Literature:

- 1. Value Education website, http://www.uptu.ac.in
- 2. Story of Stuff, http://www.storyofstuff.com
- 3. Al Gore, An Inconvenient Truth, Paramount Classics, USA
- 4. Charle Chaplin, Modern Times, United Artists, USA
- 5. IIT Delhi, Modern Technology the UntoldStory

COURSE OUTCOMES:

- 1. The students will be able to obtain happiness and prosperity in their life.
- 2. They will develop harmony at all levels.
- 3. They can have satisfying human behavior throughout their life

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A0027) Statistical Inference and Stochastic Process

B.Tech. II Year I Sem. AIML

L T P C 3 0 0 3

Prerequisites: Mathematics courses of first year of study.

Course Objectives:

- The Number Theory basic concepts useful for cryptography etc
- The theory of Probability, and probability distributions of single and multiple random variables
- The sampling theory and testing of hypothesis and making inferences
- Stochastic process and Markov chains.

Course Outcomes: After learning the contents of this course, the student must be able to

- Apply the number theory concepts to cryptography domain
- Apply the concepts of probability and distributions to some case studies
- Correlate the material of one unit to the material in other units
- Resolve the potential misconceptions and hazards in each topic of study.

UNIT - I

Greatest Common Divisors and Prime Factorization: Greatest common divisors, The Euclidean algorithm, The fundamental theorem of arithmetic, Factorization of integers and the Fermat numbers **Congruences:** Introduction to congruences, Linear congruences, The Chinese remainder theorem, Systems of linear congruences

UNIT - II

Simple Linear Regression and Correlation: Introduction to Linear Regression, The Simple Linear Regression Model, Least Squares and the Fitted Model, Properties of the Least Squares Estimators, Inferences Concerning the Regression Coefficients, Prediction, Simple Linear Regression Case Study **Random Variables and Probability Distributions:** Concept of a Random Variable, Discrete Probability Distributions, Continuous Probability Distributions, Statistical Independence.

Discrete Probability Distributions: Binomial Distribution, Poisson distribution.

UNIT - III

Continuous Probability Distributions: Normal Distribution, Areas under the Normal Curve, Applications of the Normal Distribution, Normal Approximation to the Binomial

Fundamental Sampling Distributions: Random Sampling, Sampling Distributions, Sampling Distribution of Means and the Central Limit Theorem, Sampling Distribution of S2, t-Distribution, F-Distribution.

UNIT - IV

Estimation & Tests of Hypotheses: Introduction, Statistical Inference, Classical Methods of Estimation. Estimating the Mean, Standard Error of a Point Estimate, Prediction Intervals, Tolerance Limits, Estimating the Variance, Estimating a Proportion for single mean, Difference between Two Means, between Two Proportions for Two Samples and Maximum Likelihood Estimation.

UNIT - V

Stochastic Processes and Markov Chains: Introduction to Stochastic processes- Markov process. Transition Probability, Transition Probability Matrix, First order and Higher order Markov process, nstep transition probabilities, Markov chain, Steady state condition, Markov analysis.

TEXT BOOKS:

- Kenneth H. Rosen, Elementary number theory & its applications, sixth edition, Addison-Wesley, ISBN 978 0-321-50031-1
- 2. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics for Engineers & Scientists, 9th Ed. Pearson Publishers.
- 3. S. D. Sharma, Operations Research, Kedarnath and Ramnath Publishers, Meerut, Delhi

- 1. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications
- 2. T.T. Soong, Fundamentals of Probability And Statistics For Engineers, John Wiley & Sons Ltd, 2004.
- 3. Sheldon M Ross, Probability and statistics for Engineers and scientists, Academic Press.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A0503) DATA STRUCTURES

B.Tech. II Year I Sem. AI&ML

L T P C 3 0 0 3

Prerequisites: Programming for Problem Solving

Course Objectives

- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- · Introduces sorting and pattern matching algorithms

Course Outcomes

- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or combinations.
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and AVL-trees.

UNIT - I

Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks- Operations, array and linked representations of stacks, stack applications, Queues- operations, array and linked representations.

UNIT - II

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.

Hash Table Representation: hash functions, collision resolution-separate chaining, open addressing-linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

UNIT - III

Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, B- Trees, B+ Trees, AVL Trees, Definition, Height of an AVL Tree, Operations – Insertion, Deletion and Searching, Red –Black, Splay Trees.

UNIT - IV

Graphs: Graph Implementation Methods. Graph Traversal Methods.

Sorting: Quick Sort, Heap Sort, External Sorting- Model for external sorting, Merge Sort.

UNIT-V

Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2 nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
- 2. Data Structures using C A. S.Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2 nd Edition, R. F. Gilberg and B.A.Forouzan, Cengage Learning.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A0561) COMPUTER ORGANIZATION AND ARCHITECTURE

B.Tech. II Year I Sem. AIML

L T P C 3 1 0 4

Co-requisite: A Course on "Digital Electronics".

Course Objectives

- The purpose of the course is to introduce principles of computer organization and the basic architectural concepts.
- It begins with basic organization, design, and programming of a simple digital computer and introduces simple register transfer language to specify various computer operations.
- Topics include computer arithmetic, instruction set design, microprogrammed control unit, pipelining and vector processing, memory organization and I/O systems, and multiprocessors

Course Outcomes

- Understand the basics of instruction sets and their impact on processor design.
- Demonstrate an understanding of the design of the functional units of a digital computer system.
- Evaluate cost performance and design trade-offs in designing and constructing a computer processor including memory.
- Design a pipeline for consistent execution of instructions with minimum hazards.
- Recognize and manipulate representations of numbers stored in digital computers

UNIT - I

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output and Interrupt.

UNIT - II

Microprogrammed Control: Control memory, Address sequencing, micro program example, design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT - III

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point Representation.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating – point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

UNIT - IV

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory.

UNIT-V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor.

Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor arbitration, Interprocessor communication and synchronization, Cache Coherence.

TEXT BOOK:

1. Computer System Architecture – M. Morris Mano, Third Edition, Pearson/PHI.

- 1. Computer Organization Carl Hamacher, Zvonks Vranesic, SafeaZaky, V th Edition, McGraw Hill.
- 2. Computer Organization and Architecture William Stallings Sixth Edition, Pearson/PHI.
- 3. Structured Computer Organization Andrew S. Tanenbaum, 4th Edition, PHI/Pearson.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A0505) SOFTWARE ENGINEERING

B.Tech. II Year I Sem. AIML

L T P C 3 0 0 3

Course Objectives

- The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects.
- Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams

Course Outcomes

- Ability to translate end-user requirements into system and software requirements, using e.g.
 UML, and structure the requirements in a Software Requirements Document (SRD).
- Identify and apply appropriate software architectures and patterns to carry out high level design of a system and be able to critically compare alternative choices.
- Will have experience and/or awareness of testing problems and will be able to develop a simple testing report

UNIT - I

Introduction to Software Engineering: The evolving role of software, changing nature of software, software myths. **A Generic view of process**: Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI). **Process models**: The waterfall model, Spiral model and Agile methodology

UNIT - II

Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.

UNIT - III

Design Engineering: Design process and design quality, design concepts, the design model. Creating an architectural design: software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.

UNIT - IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging. Metrics for Process and Products: Software measurement, metrics for software quality.

UNIT-V

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM. **Quality Management:** Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

TEXT BOOKS:

- 1. Software Engineering, A practitioner's Approach- Roger S. Pressman, 6th edition, McGraw Hill International Edition.
- 2. Software Engineering- Sommerville, 7th edition, Pearson Education.

- 1. The unified modeling language user guide Grady Booch, James Rambaugh, Ivar Jacobson, Pearson Education.
- 2. Software Engineering, an Engineering approach- James F. Peters, Witold Pedrycz, John Wiley.
- 3. Software Engineering principles and practice- Waman S Jawadekar, The McGraw-Hill Companies.
- 4. Fundamentals of object-oriented design using UML Meiler page-Jones: Pearson Education.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A0509) OPERATING SYSTEMS

B.Tech. II Year I Sem. AI&ML

L T P C 3 0 0 3

Prerequisites:

- 1. A course on "Computer Programming and Data Structures".
- 2. A course on "Computer Organization and Architecture".

Course Objectives:

- Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization, deadlocks, memory management, file and I/O subsystems and protection)
- Introduce the issues to be considered in the design and development of operating system
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:

- Will be able to control access to a computer and the files that may be shared
- Demonstrate the knowledge of the components of computers and their respective roles in computing.
- Ability to recognize and resolve user problems with standard operating environments.
- Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use each effectively.

UNIT - I

Operating System - Introduction, Structures - Simple Batch, Multiprogrammed, Time-shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components, Operating System services, System Calls

Process - Process concepts and scheduling, Operations on processes, Cooperating Processes, Threads

UNIT - II

CPU Scheduling - Scheduling Criteria, Scheduling Algorithms, Multiple -Processor Scheduling. System call interface for process management-fork, exit, wait, waitpid, exec

Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock

UNIT - III

Process Management and Synchronization - The Critical Section Problem, Synchronization Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors **Interprocess Communication Mechanisms:** IPC between processes on a single computer system, IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV

Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping, Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page Replacement, Page Replacement Algorithms.

UNIT - V

File System Interface and Operations -Access methods, Directory Structure, Protection, File System Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close, Iseek, stat, ioctl system calls.

TEXT BOOKS:

- 1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley.
- 2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

- 1. Operating Systems- Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI
- 2. Operating System A Design Approach- Crowley, TMH.
- 3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI
- 4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education
- 5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A0583) DATA STRUCTURES LAB

B.Tech. II Year I Sem. AI&ML

L T PC 0 0 2 1

Prerequisites: A Course on "Programming for problem solving".

Course Objectives:

- It covers various concepts of C programming language
- It introduces searching and sorting algorithms
- It provides an understanding of data structures such as stacks and queues.

Course Outcomes:

- Ability to develop C programs for computing and real-life applications using basic elements like control statements, arrays, functions, pointers and strings, and data structures like stacks, queues and linked lists.

List o

Abi	ility to Implement searching and sorting algorithms
of Experiments:	
1.	Write a program that uses functions to perform the following operations on singly linked list.:
	i) Creation ii) Insertion iii) Deletion iv) Traversal
2.	Write a program that uses functions to perform the following operations on doubly linked list.:
	i) Creation ii) Insertion iii) Deletion iv) Traversal
3.	Write a program that uses functions to perform the following operations on circular linked list.:
	i) Creation ii) Insertion iii) Deletion iv) Traversal
4.	Write a program that implement stack (its operations) using i) Arrays ii) Pointers
5.	Write a program that implement Queue (its operations) using i) Arrays ii) Pointers
6.	Write a program that implements the following sorting methods to sort a given list of integers in ascending order

- i) Quick sort ii) Heap sort iii) Merge sort
- 7. Write a program to implement the tree traversal methods(Recursive and Non Recursive).
- 8. Write a program to implement
 - i) Binary Search tree iii) B+ Trees AVL ii) B Trees iv) v) Red - Black trees
- 9. Write a program to implement the graph traversal methods.
- 10. Implement a Pattern matching algorithms using Boyer- Moore, Knuth-Morris-Pratt

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
- 2. Data Structures using C A. S. Tanenbaum, Y. Langsam, and M. J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B. A. Forouzan, Cengage Learning.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A0587) OPERATING SYSTEMS LAB

B.Tech. II Year I Sem. AIML

L T P C 0 0 2 1

Prerequisites: A course on "Programming for Problem Solving", A course on "Computer Organization and Architecture".

Co-requisite: A course on "Operating Systems".

Course Objectives:

- To provide an understanding of the design aspects of operating system concepts through simulation
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:

- Simulate and implement operating system concepts such as scheduling, deadlock management, file management and memory management.
- Able to implement C programs using Unix system calls

List of Experiments:

- 1. Write C programs to simulate the following CPU Scheduling algorithms a) FCFS b) SJF c) Round Robin d) priority
- 2. Write programs using the I/O system calls of UNIX/LINUX operating system (open, read, write, close, fcntl, seek, stat, opendir, readdir)
- 3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention.
- 4. Write a C program to implement the Producer Consumer problem using semaphores using UNIX/LINUX system calls.
- 5. Write C programs to illustrate the following IPC mechanisms a) Pipes b) FIFOs c) Message Queues d) Shared Memory
- 6. Write C programs to simulate the following memory management techniques a) Paging b) Segmentation
- 7. Write C programs to simulate Page replacement policies a) FCFS b) LRU c) Optimal

TEXT BOOKS:

- 1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley
- 2. Advanced programming in the Unix environment, W.R.Stevens, Pearson education.

- 1. Operating Systems Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI
- 2. Operating System A Design Approach-Crowley, TMH.
- 3. Modern Operating Systems, Andrew S Tanenbaum, 2nd edition, Pearson/PHI
- 4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education
- 5. UNIX Internals: The New Frontiers, U. Vahalia, Pearson Education

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A0585) SOFTWARE ENGINEERING LAB

B.Tech. II Year I Sem. AIML

L T P C 0 0 2 1

Prerequisites

A course on "Programming for Problem Solving".

Co-requisite

A Course on "Software Engineering".

Course Objectives:

• To have hands on experience in developing a software project by using various software engineering principles and methods in each of the phases of software development.

Course Outcomes:

- Ability to translate end-user requirements into system and software requirements
- Ability to generate a high-level design of the system from the software requirements
- Will have experience and/or awareness of testing problems and will be able to develop a simple testing report

List of Experiments

Do the following seven exercises for any two projects given in the list of sample projects or any other Projects:

- 1. Development of problem statements.
- 2. Preparation of Software Requirement Specification Document, Design Documents and Testing Phase related documents.
- 3. Preparation of Software Configuration Management and Risk Management related documents.
- 4. Study and usage of any Design phase CASE tool
- 5. Performing the Design by using any Design phase CASE tools.
- 6. Develop test cases for unit testing and integration testing
- 7. Develop test cases for various white box and black box testing techniques.

Sample Projects:

- 1. Passport automation System
- 2. Book Bank
- 3. Online Exam Registration
- 4. Stock Maintenance System
- 5. Online course reservation system
- 6. E-ticketing
- 7. Software Personnel Management System
- 8. Credit Card Processing
- 9. E-book management System.
- 10. Recruitment system

TEXT BOOKS:

- 1. Software Engineering, A practitioner's Approach- Roger S. Pressman, 6th edition, McGraw Hill International Edition.
- 2. Software Engineering- Sommerville, 7th edition, Pearson Education.
- 3. The unified modeling language user guide Grady Booch, James Rambaugh, Ivar Jacobson, Pearson Education.

- 1. Software Engineering, an Engineering approach- James F. Peters, Witold Pedrycz, John Wiley.
- 2. Software Engineering principles and practice- Waman S Jawadekar, The McGraw-Hill

MRCETCAMPUS | AUTONOMOUS INSTITUTION - UGC, GOVT. OF INDIA

B.Tech III Year I Sem-CSE(AI&ML)

L/T/P/C 3/-/-/3

(R20A0066) PUBLIC POLICY AND GOVERNANCE

OPEN ELECTIVE - II

Course objectives:

- To make the students understand in-depth analysis of public policyand to solve its ills prevailing in the society.
- To provide an opportunity for the students to learn the basic areas of public policy analysis, implementation and evaluation.
- > To make understand the process and various approaches in public policy making
- > To understand the theories and issues of social coordination and the nature of all patterns of rule.
- To make the students understand the techniques of governance and emerging trends in public and private governance its policy-making and implementation.

Unit-I

Introduction of Public Policy: Definition, Nature, Scope and Importance of Public Policy, Evolution of Public Policy and Policy Sciences, Public Policy and Public Administration. **Approaches to Public Policy Analysis:** The Process Approach, The Logical Positivist Approach, The Phenomenological Approach, The Participatory Approach and Normative Approach

Unit-II

Theories and Process of Public Policy Making: Theories and Models of Policy Making, Perspectives of Policy Making Process, Institutions of Policy Making.

Unit-III

Policy Implementation and Evaluation: Concept of Policy Implementation, Techniques of Policy Implementation, Concept of Policy Evaluation, Constraints of Public Policy Evaluation

Unit-IV

Introduction of Governance: Definitions, Issues and Controversies, Reinventing Government, Reforming Institutions: The State, Market and Public domain. **State and Governance**: Origin and types of State, Democratic State and Democratic Administration, Neo-Liberalism and Rolling Back State and Governance as Government.

Unit-V

Citizen and Techniques of Governance: Rule of Law and Human Rights, Accountability, Participation, Representation. **Techniques of Governance:** Openness and Transparency, Citizen Charter, Social Audit. **Emerging Trends in Public and Private Governance:** An Overview, Market, Civil Society, Information and Communication Technology.

Text and Reference books

- 1. Introduction to Public Policy- Charles Wheelan, Naked Economics 2010.
- 2. Birkland Thomas A., (2005), An Introduction to The Policy Process: Theories, Concepts, And Models of Public Policy Making, Armonk; M.E. Sharpe.
- 3. Anderson J.E., (2006) Public Policy-Making: An Introduction, Boston, Houghton
- 4. Bardach, Eugene (1977), The Implementation Game: What Happens After a Bill Becomes a Law, Cambridge, MA: MIT.
- 5. Bell, S., and Hindmoor, A. (2009) Rethinking Governance: The Centrality of the State in Modern Society, Cambridge: Cambridge University Bell, Stephen and Andrew Hindmoor.
- 6. Joyee M. Mitchell & William C. Mitchell, Political Analysis & Public Policy: An Introduction to Political Science, Thomson Press Limited, New Delhi, 1972.

- 7. R.K. Sapru, Public Policy, Art and Craft of policy Analysis, PHI learning private limited, New Delhi, 2011.
- 8. Brian W. Hogwood & Lewis A. Gunn, Policy Analysis for the Real world, Oxford University, Press, 1986.

Course outcomes

After completion of the course, student will be able to

- 1. Understandpublic policy analysis and they will be able to understand policy evaluation and implementation.
- 2. Understand the public policy and governance on the largest gamut of its canvas.
- 3. Students will understand the what are emerging trends in public and private governance and various theories in public policy making
- 4. Understands various concepts, and techniques of governance and its policy-making decisions

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A0028) Discrete Mathematics

B.Tech. II Year II Sem. AIML

L T P C 3 1 0 3

Course Objectives:

- Introduces elementary discrete mathematics for computer science and engineering.
- Topics include formal logic notation, methods of proof, induction, sets, relations, algebraic structures, elementary graph theory, permutations and combinations, counting principles; recurrence relations and generating functions.

UNIT - I

Mathematical logic: Introduction, Statements and Notation, Connectives, Normal Forms, Theory of Inference for the Statement Calculus, The Predicate Calculus, Inference Theory of the Predicate Calculus.

UNIT - II

Set theory: Introduction, Basic Concepts of Set Theory, Representation of Discrete Structures, Relations and Ordering, Functions.

UNIT - III

Algebraic Structures: Introduction, Algebraic Systems, Semi groups and Monoids, Lattices as Partially Ordered Sets, Boolean Algebra.

UNIT - IV

Elementary Combinatorics: Basics of Counting, Combinations and Permutations, Enumeration of Combinations and Permutations, Enumerating Combinations and Permutations with Repetitions, Enumerating Permutation with Constrained Repetitions, Binomial Coefficient, The Binomial and Multinomial Theorems, The Principle of Exclusion.

UNIT - V

Graph Theory: Basic Concepts, Isomorphism and Subgraphs, Trees and their Properties, Spanning Trees, Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multi-graphs and Euler Circuits, Hamiltonian Graphs, Chromatic Numbers, The Four-Color Problem.

TEXT BOOKS:

- 1. Discrete Mathematical Structures with Applications to Computer Science: J.P. Tremblay, R. Manohar. McGraw-Hill. 1st ed.
- 2. Discrete Mathematics for Computer Scientists & Mathematicians: Joe I. Mott, Abraham Kandel, Teodore P. Baker, Prentis Hall of India. 2nd ed.

REFERENCE BOOKS:

- 1. Discrete and Combinatorial Mathematics an applied introduction: Ralph.P. Grimald, Pearson education, 5th edition.
 - 3. Discrete Mathematical Structures: Thomas Kosy, Tata McGraw Hill publishing co.

Course Outcomes:

- Understand and construct precise mathematical proofs
- Apply logic and set theory to formulate precise statements
- Analyze and solve counting problems on finite and discrete structures
- Describe and manipulate sequences
- Apply graph theory in solving computing problems

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A1201) AUTOMATA THEORY AND COMPILER DESIGN

B.Tech. II Year II Sem. AIML

L T P C 3 1 0 4

Prerequisite: Nil Course Objectives

- To introduce the fundamental concepts of formal languages, grammars and automata theory.
- To understand deterministic and non-deterministic machines and the differences between decidability and undecidability.
- Introduce the major concepts of language translation and compiler design and impart the knowledge of practical skills necessary for constructing a compiler.
- Topics include phases of compiler, parsing, syntax directed translation, type checking use of symbol tables, intermediate code generation

UNIT - I

Introduction to Finite Automata: Structural Representations, Automata and Complexity, the Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems.

Nondeterministic Finite Automata: Formal Definition, an application, Text Search, Finite Automata with Epsilon-Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The language of DFA, Conversion of NFA with €-transitions to NFA without €-transitions. Conversion of NFA to DFA

UNIT - II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to Regular Expressions.

Pumping Lemma for Regular Languages: Statement of the pumping lemma, Applications of the Pumping Lemma.

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Parse Trees, Ambiguity in Grammars and Languages.

UNIT - III

Push Down Automata: Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA and CFG's, Acceptance by final state

Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous description, The language of a Turing machine

Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable Problems about Turing Machines

UNIT - IV

Introduction: The structure of a compiler,

Lexical Analysis: The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens, The Lexical- Analyzer Generator Lex,

Syntax Analysis: Introduction, Context-Free Grammars, Writing a Grammar, Top-Down Parsing, Bottom- Up Parsing, Introduction to LR Parsing: Simple LR, More Powerful LR Parsers

UNIT-V

Syntax-Directed Translation: Syntax-Directed Definitions, Evaluation Orders for SDD's, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD's.

Intermediate-Code Generation: Variants of Syntax Trees, Three-Address Code

Run-Time Environments: Stack Allocation of Space, Access to Nonlocal Data on the Stack, Heap Management

TEXT BOOKS:

- 1. Introduction to Automata Theory, Languages, and Computation, 3nd Edition, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.
- 2. Theory of Computer Science Automata languages and computation, Mishra and Chandrashekaran, 2nd Edition, PHI.

REFERENCE BOOKS:

- 1. Compilers: Principles, Techniques and Tools, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman, 2nd Edition, Pearson.
- 2. Introduction to Formal languages Automata Theory and Computation, Kamala Krithivasan, Rama R. Pearson.
- 3. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
- 4. lex & yacc John R. Levine, Tony Mason, Doug Brown, O'reilly Compiler Construction, Kenneth C. Louden, Thomson. Course Technology.

Course Outcomes

- Able to employ finite state machines for modeling and solving computing problems.
- Able to design context free grammars for formal languages.
- Able to distinguish between decidability and undecidability.
- Demonstrate the knowledge of patterns, tokens & regular expressions for lexical analysis.
- Acquire skills in using lex tool and design LR parsers

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A0504) DATABASE MANAGEMENT SYSTEMS

B.Tech. II Year II Sem. AIML

L T P C 3 0 0 3

Prerequisites: A course on "Data Structures".

Course Objectives:

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes:

- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques

UNIT - I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS

Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model

UNIT - II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical database design, introduction to views, destroying/altering tables and views.

Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III

SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active databases.

Schema Refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, First, Second, Third normal forms, BCNF, lossless join decomposition, multivalued dependencies, Fourth normal form, Fifth normal form.

UNIT - IV

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log-Based Recovery, Recovery with Concurrent Transactions.

UNIT-V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree based Indexing, Comparison of File Organizations, Indexes- Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

TEXT BOOKS:

- 1. Database System Concepts, Silberschatz, Korth, McGraw hill, V edition.3rd Edition
- 2. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C. J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A6601) ARTIFICIAL INTELLIGENCE

B.Tech. II Year II Sem. AIML

L T P C 3 0 0 3

Prerequisite: Knowledge on Data Structures.

Course Objectives:

- To learn the distinction between optimal reasoning Vs. human like reasoning.
- To understand the concepts of state space representation, exhaustive search, heuristic
- search together with the time and space complexities.
- To learn different knowledge representation techniques.
- To understand the applications of AI, namely game playing, theorem proving, and machine learning.

Course Outcomes:

- Learn the distinction between optimal reasoning Vs human like reasoning and formulate an efficient problem space for a problem expressed in natural language. Also select a search algorithm for a problem and estimate its time and space complexities.
- Apply AI techniques to solve problems of game playing, theorem proving, and machine learning.
- Learn different knowledge representation techniques.
- Understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- Comprehend the applications of Probabilistic Reasoning and Bayesian Networks.
- Analyze Supervised Learning Vs. Learning Decision Trees

UNIT - I

Introduction to AI - Intelligent Agents, Problem-Solving Agents,

Searching for Solutions - Breadth-first search, Depth-first search, Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces.

UNIT-II

Games - Optimal Decisions in Games, Alpha–Beta Pruning, Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Knowledge-Based Agents, **Logic-**Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses.

UNIT-III

First-Order Logic - Syntax and Semantics of First-Order Logic, Using First Order Logic, Knowledge Engineering in First-Order Logic. Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification, Forward Chaining, Backward Chaining, Resolution.

Knowledge Representation: Ontological Engineering, Categories and Objects, Events.

UNIT-IV

Planning - Definition of Classical Planning, Algorithms for Planning with State Space Search, Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches. Hierarchical Planning.

UNIT-V

Probabilistic Reasoning:

Acting under Uncertainty, Basic Probability Notation Bayes' Rule and Its Use, Probabilistic Reasoning, Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient

Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First- Order Probability.

TEXT BOOK:

1. Artificial Intelligence: A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

- 1. Artificial Intelligence, 3rd Edn., E. Rich and K. Knight (TMH)
- 2. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
- 3. Artificial Intelligence, Shivani Goel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A0507) OBJECT ORIENTED PROGRAMMING THROUGH JAVA

B.Tech. II Year II Sem. AIML

L T P C 3 0 0 3

Course Objectives

- To Understand the basic object-oriented programming concepts and apply them in problem solving.
- To Illustrate inheritance concepts for reusing the program.
- To Demonstrate multitasking by using multiple threads and event handling
- To Develop data-centric applications using JDBC.
- To Understand the basics of java console and GUI based programming

Course Outcomes

- Demonstrate the behavior of programs involving the basic programming constructs like control structures, constructors, string handling and garbage collection.
- Demonstrate the implementation of inheritance (multilevel, hierarchical and multiple) by using extend and implement keywords
- Use multithreading concepts to develop inter process communication.
- Understand the process of graphical user interface design and implementation using AWT or swings.
- Develop applets that interact abundantly with the client environment and deploy on the server.

UNIT - I

Object oriented thinking and Java Basics- Need for oop paradigm, summary of oops concepts, coping with complexity, abstraction mechanisms. A way of viewing world – Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types, variables, scope and lifetime of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program, concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, method binding, inheritance, overriding and exceptions, parameter passing, recursion, nested and inner classes, exploring string class.

UNIT - II

Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules, super uses, using final with inheritance, polymorphism- method overriding, abstract classes, the Object class. Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces. Exploring java.io.

UNIT - III

Exception handling and Multithreading-- Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception subclasses. String handling, Exploring java.util. Differences between multithreading and multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads, inter thread communication, thread groups, daemon threads. Enumerations, autoboxing, annotations, generics.

UNIT - IV

Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes. The AWT class hierarchy, user interface components-labels, button, canvas, scrollbars, text components, check box, checkbox groups, choices,

lists panels – scrollpane, dialogs, menubar, graphics, layout manager – layout manager types – border, grid, flow, card and grid bag.

UNIT-V

Applets – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets. Swing – Introduction, limitations of AWT, MVC architecture, components, containers, exploring swing- JApplet, JFrame and JComponent, lcons and Labels, text fields, buttons – The JButton class, Check boxes, Radio buttons, Combo boxes, Tabbed Panes, Scroll Panes, Trees, and Tables.

TEXT BOOKS:

- 1. Java the complete reference, 7th edition, Herbert schildt, TMH.
- 2. Understanding OOP with Java, updated edition, T. Budd, Pearson education.

- 1. An Introduction to programming and OO design using Java, J.Nino and F.A. Hosch, John wiley & sons.
- 2. An Introduction to OOP, third edition, T. Budd, Pearson education.
- 3. Introduction to Java programming, Y. Daniel Liang, Pearson education.
- 4. An introduction to Java programming and object-oriented application development, R.A. Johnson- Thomson.
- 5. Core Java 2, Vol 1, Fundamentals, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education.
- 6. Core Java 2, Vol 2, Advanced Features, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education
- 7. Object Oriented Programming with Java, R.Buyya, S.T.Selvi, X.Chu, TMH.
- 8. Java and Object Orientation, an introduction, John Hunt, second edition, Springer. 9. Maurach's Beginning Java2 JDK 5, SPD.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A0584) DATABASE MANAGEMENT SYSTEMS LAB

B.Tech. II Year II Sem. AIML

L T P C 0 0 2 1

Co-requisites: "Database Management Systems"

Course Objectives:

- Introduce ER data model, database design and normalization
- Learn SQL basics for data definition and data manipulation

Course Outcomes:

- Design database schema for a given application and apply normalization
- Acquire skills in using SQL commands for data definition and data manipulation.
- Develop solutions for database applications using procedures, cursors and triggers

List of Experiments:

- 1. Concept design with E-R Model
- 2. Relational Model
- 3. Normalization
- 4. Practicing DDL commands
- 5. Practicing DML commands
- 6. A. Querying (using ANY, ALL, UNION, INTERSECT, JOIN, Constraints etc.)
 - B. Nested, Correlated subqueries
- 7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.
- 8. Triggers (Creation of insert trigger, delete trigger, update trigger)
- 9. Procedures
- 10. Usage of Cursors

TEXT BOOKS:

- 1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill, 3rd Edition
- 2. Database System Concepts, Silberschatz, Korth, McGraw Hill, V edition.

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C.J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A0586) JAVA PROGRAMMING LAB

B.Tech. II Year II Sem. AIML

L T P C 0 0 2 1

Course Objectives:

- To understand OOP principles.
- To understand the Exception Handling mechanism.
- To understand Java collection framework.
- To understand multithreaded programming.
- To understand swing controls in Java.

Course Outcomes:

- Able to write the programs for solving real world problems using Java OOP principles.
- Able to write programs using Exceptional Handling approach.
- Able to write multithreaded applications.
- Able to write GUI programs using swing controls in Java.

List of Experiments:

- Use Eclipse or Net bean platform and acquaint yourself with the various menus. Create a test
 project, add a test class, and run it. See how you can use auto suggestions, auto fill. Try code
 formatter and code refactoring like renaming variables, methods, and classes. Try debug step
 by step with a small program of about 10 to 15 lines which contains at least one if else condition
 and a for loop.
- 2. Write a Java program to demonstrate the OOP principles. [i.e., Encapsulation, Inheritance, Polymorphism and Abstraction]
- 3. Write a Java program to handle checked and unchecked exceptions. Also, demonstrate the usage of custom exceptions in real time scenario.
- 4. Write a Java program on Random Access File class to perform different read and write operations.
- 5. Write a Java program to demonstrate the working of different collection classes. [Use package structure to store multiple classes].
- 6. Write a program to synchronize the threads acting on the same object. [Consider the example of any reservations like railway, bus, movie ticket booking, etc.]
- 7. Write a program to perform CRUD operations on the student table in a database using JDBC.
- 8. Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -,*, % operations. Add a text field to display the result. Handle any possible exceptions like divided by zero.
- 9. Write a Java program that handles all mouse events and shows the event name at the center of the window when a mouse event is fired. [Use Adapter classes]

- 1. Java for Programmers, P. J. Deitel and H. M. Deitel, 10th Edition Pearson education.
- 2. Thinking in Java, Bruce Eckel, Pearson Education.
- 3. Java Programming, D. S. Malik and P. S. Nair, Cengage Learning.
- 4. Core Java, Volume 1, 9th edition, Cay S. Horstmann and G Cornell, Pearson.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY (R22A0005) FOREIGN LANGUAGE: FRENCH

B.Tech. II Year II Sem. AIML

L T P C 0 0 2 1

INTRODUCTION

In view of the growing importance of foreign languages as a communication tool in some countries of the world, French has been identified as one of the most popular languages after English. As a result, Frenchprogram is introduced to develop the linguistic and communicative skills of engineering students andto familiarize them to the French communication skills. This course focuses on basic oral skills.

OBJECTIVES

- 1. To inculcate the basic knowledge of the French language
- 2. To hone the basic sentence constructions in day to day expressions for communication intheir vocation
- 3. To form simple sentences that aids in day-to-day communication
- 4. To prepare the students towards DELF A1
- 5. To develop in the student an interest towards learning languages.

UNIT - I:

Speaking:Introduction to the French language and culture -Salutations - French alphabet -Introducing people

Writing: Understand and fill out a form

Grammar:The verbs "to be ' and "to have " in the present tense of the indicativeVocabulary: The numbers from 1 to 20 - Professions- Nationalities

UNIT - II:

Speaking: Talk about one's family - description of a person - express his tastes and preferences

- express possession - express

negation Writing:Write and

understand a short message

Grammar:Nouns (gender and number) - Articles - The-erverbs in the present-Possessiveadjectives - Qualifying adjectives

Vocabulary: The family - Clothes-Colors- The numbers from 1 to 100-The classroom

UNIT - III

Speaking: Talk about your daily activities - be in time - ask and indicate the date and time - talkabout sports and recreation - express the frequency

Writing: A letter to a friend

Grammar:The expression of time— The –ir verbs in the present- The verbs do, go, take, come,-Adverbs-Reflexive verbs

Vocabulary: The days and months of the year-The sports-Hobbies

UNIT-IV

Speaking: Express the quantity - ask and give the price - express the need, the will and thecapacity - compare (adjective) - speak at the restaurant / in the shops

Writing: A dialogue between a vendor and a customer at the market

Grammar: Verbs "to want", "to can"- Express capacity / possibility- Express will / desire - the

future tense

Vocabulary: The food - Meals-Fruits and vegetables- The parts of the body

UNIT - V

Speaking: Express the prohibition and the obligation - describe an apartment - talk about the weather / ask the weather - ask the opinion - give your opinion - express your agreement or disagreement

Writing: Descriptions

Grammar: Demonstrative adjectives- Prepositions- The verb 'must' to indicate obligation

and necessity in the present

Vocabulary: Seasons - Holidays-The city- Furniture

NOTE: The students are exposed to simple listening and reading activities.

REFERENCE BOOKS

- 1. Apprenons le François 1& 2, New Sarasvati House, 2015
- 2. A propos, A1, Langers International, 2010
- 3. Easy French Step-by-step by Myrna Bell Rochester
- 4. Ultimate French Beginner-Intermediate (Course book) By Livid Language
- 5. Ã L'Aventure: An Introduction to French Language and Francophone Cultures by EvelineCharvier-Berman, Anne C. Cummings.

COURSE OUTCOMES

- 1. The students will be able to communicate in French at A1 level.
- 2. The student will have an advantage in the competitive job market.
- 3. This course benefits the graduates when pursuing study *opportunities* in the countries where French is the official language.