

CA

OPERATING SYSTEMS LABMANUAL

B.TECH

(II YEAR – I SEM)

(2023-24)

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

(AIML)

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGCACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally(Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

Department of Computer Science & Engineering

(Artificial Intelligence & Machine Learning)

Vision

To be a premier centre for academic excellence and research through innovative
interdisciplinary collaborations and making significant contributions to the
community, organizations, and society as a whole.

Mission

 To impart cutting-edge Artificial Intelligence technology in accordance with
industry norms.

 To instill in students a desire to conduct research in order to tackle challenging
technical problems for industry.

 To develop effective graduates who are responsible for their professional
growth, leadership qualities and are committed to lifelong learning.

Quality Policy

 To provide sophisticated technical infrastructure and to inspire students to
reach their full potential.

 To provide students with a solid academic and research environment for a
comprehensive learning experience.

 To provide research development, consulting, testing, and customized training
to satisfy specific industrial demands, thereby encouraging self-employment
and entrepreneurship among students.

Department of Computer Science & Engineering

(Artificial Intelligence & Machine Learning)

Programme Educational Objectives (PEO):

PEO1: To possess knowledge and analytical abilities in areas such as maths, science,

and fundamental engineering.

PEO2: To analyse, design, create products, and provide solutions to problems in

Computer Science and Engineering.

PEO3: To leverage the professional expertise to enter the workforce, seek higher

education, and conduct research on AI-based problem resolution.

PEO4: To be solution providers and business owners in the field of computer

science and engineering with an emphasis on artificial intelligence and machine

learning.

Programme Specific Outcomes (PSO):

After successful completion of the program a student is expected to have specific
abilities to:

PSO1: To understand and examine the fundamental issues with AI and ML

applications.

PSO2: To apply machine learning, deep learning, and artificial intelligence

approaches to address issues in social computing, healthcare, vision, language

processing, speech recognition, and other domains.

PSO3: Use cutting-edge AI and ML tools and technology to further your study and

research.

Operating System AY-2023-2024

Department of CI Page 5

PROGRAMOUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with
appropriate consideration for the public health and safety, and the cultural, societal, and
environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader
in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multi-disciplinary environments.

12. Life- long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological
change.

Operating System AY-2023-2024

Department of CI Page 6

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

 Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

GENERAL LABORATORY INSTRUCTIONS

1. Students are advised to come to the laboratory at least 5 minutes before (to starting time), thosewho

come after 5 minutes will not be allowed into the lab.

2. Plan your task properly much before to the commencement, come prepared to the lab withthe

synopsis / program / experiment details.

3. Student should enter into the laboratory with:

a. Laboratory observation notes with all the details (Problem statement, Aim, Algorithm,Procedure,

Program, Expected Output, etc.,) filled in for the lab session.

b. Laboratory Record updated up to the last session experiments and other utensils (if any)needed in

the lab.

c. Proper Dress code and Identity card.

4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer systemallotted to

you by the faculty.

5. Execute your task in the laboratory, and record the results / output in the lab observationnote

book, and get certified by the concerned faculty.

6. All the students should be polite and cooperative with the laboratory staff, must maintain the

discipline and decency in the laboratory.

7. Computer labs are established with sophisticated and high end branded systems, which shouldbe

utilized properly.

8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the lab sessions.

Misuse of the equipment, misbehaviors with the staff and systems etc., will attract severe

punishment.

9. Students must take the permission of the faculty in case of any urgency to go out ; if anybody found

loitering outside the lab / class without permission during working hours willbe treated seriously and

punished appropriately.

10. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves the lab after

completing the task (experiment) in all aspects. He/she must ensure the system / seat is kept

properly.

Head of the Department Principal

Operating System AY-2023-2024

Department of CI Page 7

IIYear B.Tech CSE A‐ IML- I Sem

OBJECTIVES:

L T/P/D C

- -/3/- 1.5

(R22A0587) OPERATING SYSTEMS LAB

1. To provide an understanding of the design aspects of operating system concepts through simulation
2. Introduce basic Linux commands, system call interface for process management, inter-process
communication and I/O in Unix.
3. Student will learn various process and CPU scheduling Algorithms through simulation programs
4. Student will have exposure to System calls and simulate them.
5. Student will learn deadlocks and process management & Inter Process communication and simulate

WEEK 1:
Practice File handling utilities, Process utilities, Disk utilities, Networking commands, Filters, Text
processing utilities and Backup utilities.
WEEK 2:
Write a shell script that receives any number of file names as arguments checks if every argument
supplied is a file or directory and reports accordingly. Whenever the argument is a file it reports no of
lines present in it.
WEEK 3:
Simulate the following CPU scheduling algorithms. a)FCFS b) SJF c) Round Robin d) Priority.
WEEK 4:
Simulate Bankers Algorithm for Dead Lock Avoidance; Simulate Bankers Algorithm for Dead Lock
Prevention.
WEEK 5:

a) Write a C program to simulate the concept of Dining-philosophers problem.
b) Write a C program to simulate producer-consumer problem using Semaphores
WEEK 6:
a) Write a C program to implement kill(), raise() and sleep()functions.
b) Write a C program to implement alarm(), pause() and abort()functions
c) Write a program that illustrate communication between two process using unnamed pipes
WEEK 7:
a) Write a program that illustrates communication between two process using named pipes or FIFO.
b) Write a C program that receives a message from message queue and display them.
WEEK 8:
Write a C program that illustrates two processes communicating using Shared memory.
WEEK 9:
Simulate all page replacement algorithms a) FIFO b) LRU c) OPTIMAL
WEEK 10:
Write a C program that takes one or more file/directory names as command line input and reports
following information A) File Type B) Number Of Links C) Time of last Access D) Read, write and execute
permissions
WEEK 11
a) Implement in c language the following UNIX commands using system calls i) cat ii) ls iii) Scanning
Directories (Ex: opendir(),readdir(),etc.)
b) Write a C program to create child process and allow parent process to display “parent” and the child
to display “child” on the screen
WEEK 12:
Write a C program to simulate disk scheduling algorithms. a) FCFS b) SCAN c) C-SCAN

Operating System AY-2023-2024

Department of CI Page 8

REFERENCE BOOKS:
1. Operating Systems – Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson
Education/PHI
2. Operating System - A Design Approach-Crowley, TMH.
3. Modern Operating Systems, Andrew S Tanenbaum, 2nd edition, Pearson/PHI
4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education
5. UNIX Internals: The New Frontiers, U. Vahalia, Pearson Education

COURSE OUTCOMES:
1. To provide an understanding of the design aspects of operating system concepts through simulation
2. Introduce basic Linux commands, system call interface for process management, inter process
communication and I/O in Unix.
3. Student will learn various process and CPU scheduling Algorithms through simulation programs
4. Student will have exposure to System calls and simulate them.
5. Student will learn deadlocks and process management & Inter Process communication and simulate
them

Operating System AY-2023-2024

Department of CI Page 1

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(UGC-Autonomous Institution , Govt. of India)
(Permanently Affiliated to JNTUH, Approved by AICTE-Accredited by NBA & NAAC- A-Grade; ISO 9001:2008
Certified) Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE
Operating Systems Lab Manual (R22A0587))

TABLE OF CONTENTS

EXP.N
O

NAMEOF THE EXPERIMENT PAGE.NO

1

File handling utilities ,Process utilities,Disk utilities
Networking commands,Filters,Text processing Utilities
Backup utilities

1-9

2
Write a shell script that receives any number of file names as arguments checks if
every argument supplied is a file or directory and reports accordingly. Whenever the
argument is a file it reports no of lines present in it.

10-12

3 Simulate the following CPU scheduling algorithms. a)FCFS b) SJF c) Round Robin
d) Priority.

13-18

4

Simulate Bankers Algorithm for Dead Lock Avoidance 19-25

Simulate Bankers Algorithm for Dead Lock

5

Write a C program to simulate the concept of Dining 25-33

Write a C program to simulate producer

6

Write a C program to implement kill(), raise() and sleep()functions. 34-41
Write a C program to implement alarm(), pause() and abort()functions

Write a program that illustrate communication between two process using unnamed
pipes

7

Write a program that illustrates communication between two process using named
pipes or FIFO.

42-51

Write a C program that receives a message from message queue and display them.

8
Write a C program that illustrates two processes communicating using Shared
memory.

52-57

9 Simulate all page replacement algorithms a) FIFO b) LRU c) OPTIMAL 58-66

10 Write a C program that takes one or more file/directory names as command line input
and reports following information A) File Type B) Number Of Links C) Time of last
Access D) Read, write and execute permissions

67-72

11

a) Implement in c language the following UNIX commands using system calls i) cat ii) ls
iii) Scanning Directories (Ex: opendir(),readdir(),etc.)

73-80

b) Write a C program to create child process and allow parent process to display
“parent” and the child to display “child” on the screen

12 Write a C program to simulate disk scheduling algorithms. a) FCFS b) SCAN c) C-SCAN 81-85

Ix

Operating System AY-2023-2024

Department of CI Page 2

WEEK 1

AIM : Practice File handling utilities, Process utilities, Disk utilities, Networking commands, Filters, Text

processing utilities and Backup utilities.

FILE HANDLING UTILITIES
Cat Command: cat linux command concatenates files and print it on the standard output.

To Create a new file:
cat > file1.txt
This command creates a new file file1.txt. After typing into the file press control+d(^d) simultaneously to end
the file.

To Append data into the file: To append data into the same file use append operator >> to write into thefile,
else the file will be overwritten (i.e., all of its contents will be erased).

cat >> file1.txt

To display a file: This command displays the data in the file.cat file1.txt

Toconcatenate several files and display:
cat file1.txt file2.txt

The above cat command will concatenate the two files (file1.txt and file2.txt) and it will display the output in
the screen. Some times the output may not fit the monitor screen. In such situation you canprint those files in
a new file or display the file using less command.

cat file1.txt file2.txt | less

Toconcatenate several files and to transfer the output to anotherfile.
cat file1.txt file2.txt > file3.txt

In the above example the output is redirected to new file file3.txt.

rm COMMAND:
rm linux command is used to remove/delete the file from the directory.

To Remove / Delete a file: Here rm command will remove/delete the file file1.txt.rm file1.txt

To delete a directory tree:
rm -ir tmp

This rm command recursively removes the contents of all subdirectories of the tmp directory,prompting you
regarding the removal of each file, and then removes the tmpdirectory itself.

To remove more files at once: rm command removes file1.txt and file2.txt files at the same time.rm file1.txt
file2.txt

cd COMMAND: cd command is used to change the directory.

cd linux-command
This command will take you to the sub-directory(linux-command) from its parent directory.

Operating System AY-2023-2024

Department of CI Page 3

Ex:

cd ..
This will change to the parent-directory from the current working directory/sub-directory.

cd ~
This command will move to the user's home directory which is "/home/username".

cp COMMAND:
cp command copy files from one location to another. If the destination is an existing file, then
the file is overwritten; if the destination is an existing directory, the file is copied into the directory (the
directory is not overwritten).

Copy two files:
cp file1.txt file2.txt
The above cp command copies the content of file1.txt to file2.txt

ls COMMAND:
ls command lists the files and directories under current working directory. Display root directory contents:

ls /
lists the contents of root directory.

Display hidden files and directories:
ls -a
lists all entries including hidden files and directories.

Display inode information:
ls –i

ln COMMAND:
ln command is used to create link to a file (or) directory. It helps to provide soft link for desired files.

Inode will be different for source and destination.
ln -s file1.txt file2.txt

Creates a symbolic link to 'file1.txt' with the name of 'file2.txt'. Here inode for 'file1.txt' and 'file2.txt'will be
different.

mkdir command: Use this command to create one or more new directories.

Include one or more instances of the “<DIRECTORY” variable (separating each with a whitespace), and set
each to the complete path to the new directory to be created.

mkdir OPTION <DIRECTORY>

rmdir command:

mv command:

diff command:

comm command:

wc command:

Operating System AY-2023-2024

Department of CI Page 4

PROCESS UTILITIES:

ps Command:
ps command is used to report the process status. ps is the short name for Process Status.

1. ps: List the current running processes.
Output:
PID TTY TIME CMD
2540 pts/1 00:00:00 bash

2. ps –f : Displays full information about currently running processes.

Output:
UID PID PPID C STIME TTY TIME CMD

nirmala 2540 2536 0 15:31 pts/1 00:00:00 bash

3. kill COMMAND: kill command is used to kill the background process.

Step by Step process:
• Open a process music player or any file.xmms
press ctrl+z to stop the process.
• To know group id or job id of the background task.jobs -l
It will list the background jobs with its job id as,
• xmms 3956
• kmail 3467
To kill a job or process.
• kill 3956
kill command kills or terminates the background process xmms.

Disk utilities:
du (abbreviated from disk usage) is a standard Unix program used to estimate file spaceusage—space used
under a particular directory or files on a file system.

$du kt.txt pt.txt /* the first column displayed the file's disk usage */

8 kt.txt
4 pt.txt

Using -h option: As mentioned above, -h option is used to produce the output in humanreadable format.

$du -h kt.txt pt.txt
8.0K kt.txt4.0K pt.txt
/*now the output is in human readable format i.e in Kilobytes */

Using -a option

$du -a kartik
8 kartik/kt.txt
4 kartik/pt.txt
4 kartik/pranjal.

4 kartik/thakral.png
4 kartik/thakral
24 kartik

png

AY-2023-2024
Operating System

Department of CI Page 5

/*so with -a option used all the files (under directory kartik) disk usage info is displayed alongwith
the thakral sub-directory */

df command : Report file system disk space usage

$df kt.txt
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/the2 1957124 1512 1955612 1% /snap/core
/* the df only showed the disk usage details of the file system that contains file kt.txt */

//using df without any filename //
$df
/* in this case df displayed the disk usage details of all mounted file systems */

Using -h : This is used to make df command display the output in human-readable format.

//using -h with df//
$df -h kt.txt
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/the2 1.9G 1.5M 1.9G 1% /snap/core
/*this output is easily understandable by the user and all cause of -h option */

NETWORKING COMMANDS

ping
The ping command sends an echo request to a host available on the network. Using this
command, you can check if your remote host is responding well or not.
Syntax: $ping hostname or ip-address

The above command starts printing a response after every second. To come out of thecommand,
you can terminate it by pressing CNTRL + C keys.

$ping google.com
PING google.com (74.125.67.100) 56(84) bytes of data.
64 bytes from 74.125.67.100: icmp_seq=1 ttl=54 time=39.4 ms

ftp: ftp stands for File Transfer Protocol. This utility helps you upload and download your filefrom
one computer to another computer.

Syntax $ftp hostname or ip-address

$ftp amrood.com
Connected to amrood.com.
220 amrood.com FTP server (Ver 4.9 Thu Sep 2 20:35:07 CDT 2009)Name (amrood.com:amrood):
amrood
331 Password required for amrood.Password:
230 User amrood logged in.ftp> dir
200 PORT command successful.
….
ftp> quit
221 Goodbye.

telnet:
Telnet is a utility that allows a computer user at one site to make a connection, login and then
conduct work on a computer at another site. Once you login using Telnet, you can perform all the
activities on your remotely connected machine.

AY-2023-2024
Operating System

Department of CI Page 6

C:>telnet amrood.comTrying...
Connected to amrood.com.Escape character is '^]'. login: amrood
amrood's Password:

**WELCOME TO AMROOD.COM *

$ logoutLINUX PROGRAMMING LAB021-2022

Connection closed.C:>

Finger:
The finger command displays information about users on a given host. The host can be either
local or remote.
Check all the logged-in users on the local machine −
$ finger
Login Name Tty Idle Login Time Office
amrood pts/0 Jun 25 08:03 (62.61.164.115)

Check all the logged-in users on the remote machine –
$ finger @avtar.com
Login Name Tty Idle Login Time Office amrood pts/0 Jun 25 08:03 (62.61.164.115)

Get the information about a specific user available on the remote machine −
$ finger amrood@avtar.com

Ifconfig: Ifconfig is used to configure the network interfaces.

FILTERS
more COMMAND:
more command is used to display text in the terminal screen. It allows only backwardmovement.

1. more -c index.txt
Clears the screen before printing the file .

2. more -3 index.txt
Prints first three lines of the given file. Press Enter to display the file line by line.

head COMMAND:
head command is used to display the first ten lines of a file, and also specifies how many linesto
display.

1. head index.php
This command prints the first 10 lines of 'index.php'.

2. head -5 index.php
The head command displays the first 5 lines of 'index.php'.

3. head -c 5 index.php
The above command displays the first 5 characters of 'index.php'.

tail COMMAND:
tail command is used to display the last or bottom part of the file. By default it displays last10
lines of a file.

1. tail index.php
It displays the last 10 lines of 'index.php'.

2. tail -2 index.php
It displays the last 2 lines of 'index.php'.

mailto:amrood@avtar.com

AY-2023-2024
Operating System

Department of CI Page 7

3. tail -n 5 index.php

It displays the last 5 lines of 'index.php'.

4. tail -c 5 index.php
It displays the last 5 characters of 'index.php'.

cut COMMAND:
cut command is used to cut out selected fields of each line of a file. The cut command uses
delimiters to determine where to split fields.

cut -c1-3 text.txt
Output:
Thi
Cut the first three letters from the above line.

paste COMMAND:
paste command is used to paste the content from one file to another file. It is also used to set
column format for each line.

paste test.txt>test1.txt
Paste the content from 'test.txt' file to 'test1.txt' file.

sort COMMAND:
sort command is used to sort the lines in a text file.

1. sort test.txt

Sorts the 'test.txt'file and prints result in the screen.
2. sort -r test.txt

Sorts the 'test.txt' file in reverse order and prints result in the screen.

uniq
Report or filter out repeated lines in a file.

uniq myfile1.txt > myfile2.txt - Removes duplicate lines in the first file1.txt and outputs the
results to the second file.

TEXT PROCESSING UTILITIES
echo: display a line of text or echo command prints the given input string to standard output.eg.
echo I love India
echo $HOME

wc: print the number of newlines, words, and bytes in fileseg. wc file1.txt

nl: which lets you number lines in files.

eg. $ nl file11 hi
join- Join command is used for merging the lines of different sorted files based on the presence
of common field into a single line. The second line will be appended at the end ofthe first line
and cursor is placed at the end of line after joining.

AY-2023-2024
Operating System

Department of CI Page 8

Grep (Global Regular Expression Searching for a pattern), fgrep and egrep
$ grep ―s ales director‖ emp1 emp2

$fgrep ‗good bad great‘ userfile
$egrep ‗good | bad | great‘ userfile

cat, head, tail, sort, uniq, cut, paste and etc.

BACKUP UTILITIES
Linux backup and restore can be done using backup commands tar, cpio, dump and restore.

Backup Restore using tar command

tar: tape archive is used for single or multiple files backup and restore on/from a tape or file.

$tar cvf /dev/rmt/0 *

Options: c -> create ; v -> Verbose ; f->file or archive device ; * -> all files and directories .

$tar cvf /home/backup *
Create a tar called backup in home directory, from all file and directories s in the currentdirectory.

Viewing a tar backup on a tape or file
$tar tvf /dev/rmt/0 ## view files backed up on a tape device.
$tar tvf /home/backup ## view files backed up inside the backup
Note: t option is used to see the table of content in a tar file.

Extracting tar backup from the tape
$tar xvf /home/backup ## extract / restore files in to current directory.
Note : x option is used to extract the files from tar file. Restoration will go to present directoryor
original backup path depending on relative or absolute path names used for backup.

Backup restore using cpio command

Using cpio command to backup all the files in current directory to tape.
find . -depth -print | cpio -ovcB > /dev/rmt/0

cpio expects a list of files and find command provides the list, cpio has to put these file onsome
destination and a > sign redirect these files to tape. This can be a file as well .

Viewing cpio files on a tape

cpio -ivtB < /dev/rmt/0
Options i -> input ; v->verbose; t-table of content; B-> set I/O block size to 5120 bytes

Restoring a cpio backup
cpio -ivcB < /dev/rmt/0
Options i -> input ; v->verbose; t-table of content; B-> set I/O block size to 5120 bytes

AY-2023-2024
Operating System

Department of CI Page 9

AY-2023-2024
Operating System

Department of CI Page
10

Operating System AY-2023-2024

Department of CI Page 11

WEEK 2
AIM : Write a shell script that receives any number of file names as arguments checks if every
argument supplied is a file or directory and reports accordingly. Whenever the argument is a file it
reports no of lines present in it.

ALGORITHM:

step 1: if arguments are less than 1 print Enter at least one input file name and goto step 9
Step 2: selects list a file from list of arguments provided in command line
Step 3: check for whether it is directory if yes print is directory and goto step 9
step 4: check for whether it is a regular file if yes goto step 5 else goto step 8
Step 5: print given name is regular file
step 6: print No of lines in file
step 7: goto step
step 8: print not a file or adirectory
step 9: stop

Script name: 2a.sh

for x in $*
do
if [-f $x]
then
echo " $x is a file "
echo " no of lines in the file are "
wc -l $x
elif [-d $x]
then
echo " $x is a directory "
else
echo " enter valid filename or directory name "
fi

done

OUTPUT

guest-glcbIs@ubuntu:~$sh 2a.sh dir1 d1
dir1 is a directory
d1 is a file
no of lines in the file are 2

Operating System AY-2023-2024

Department of CI Page 12

Operating System AY-2023-2024

Department of CI Page 13

AY--2023-2024
Operating System

Department of CI Page 14

WEEK 3

AIM : To write a C program to simulate the following non-preemptive CPU scheduling algorithms to
find turnaround time and waiting time for the following.
a) FCFS b) SJF c) Round Robin d) Priority

DESCRIPTION
Assume all the processes arrive at the same time.

FCFSCPU SCHEDULING ALGORITHM
For FCFS scheduling algorithm, read the number of processes/jobs in the system, their CPU burst times.
The scheduling is performed on the basis of arrival time of the processes irrespective of their other
parameters. Each process will be executed according to its arrival time. Calculate the waiting time and
turnaround time of each of the processes accordingly.

SJF CPU SCHEDULING ALGORITHM
For SJF scheduling algorithm, read the number of processes/jobs in the system, their CPU burst times.
Arrange all the jobs in order with respect to their burst times. There may be two jobs in queue with the
same execution time, and then FCFS approach is to be performed. Each process will be executed
according to the length of its burst time. Then calculate the waiting time and turnaround time of each
of the processes accordingly.

ROUND ROBIN CPU SCHEDULING ALGORITHM
For round robin scheduling algorithm, read the number of processes/jobs in the system, their CPU
burst times, and the size of the time slice. Time slices are assigned to each process in equal portions
and in circular order, handling all processes execution. This allows every process to get an equal
chance. Calculate the waiting time and turnaround time of each of the processes accordingly.

PRIORITY CPU SCHEDULING ALGORITHM
For priority scheduling algorithm, read the number of processes/jobs in the system, their CPU burst
times, and the priorities. Arrange all the jobs in order with respect to their priorities. There may be two
jobs in queue with the same priority, and then FCFS approach is to be performed. Each process will be
executed according to its priority. Calculate the waiting time and turnaround time of each of the
processes accordingly.

PROGRAM

a) FCFS CPU SCHEDULING ALGORITHM
#include<stdio.h>
#include<conio.h>
main()
{
int bt[20], wt[20], tat[20], i, n;
float wtavg, tatavg;
printf("\nEnter the number of processes -- ");
scanf("%d", &n);
for(i=0;i<n;i++)
{

AY--2023-2024 Operating System

Department of CI Page 12

scanf("%d", &bt[i]);
}
wt[0] = wtavg = 0;
tat[0] = tatavg = bt[0];
for(i=1;i<n;i++)
{
wt[i] = wt[i-1] +bt[i-1];
tat[i] = tat[i-1] +bt[i];
wtavg = wtavg + wt[i];
tatavg = tatavg + tat[i];
}
printf("\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");
for(i=0;i<n;i++)
printf("\n\t P%d \t\t %d \t\t %d \t\t %d", i, bt[i], wt[i], tat[i]);
printf("\nAverage Waiting Time -- %f", wtavg/n);
printf("\nAverage Turnaround Time -- %f", tatavg/n);
}

INPUT

Enter the number of processes -- 3

Enter Burst Time for Process 0 -- 24

Enter Burst Time for Process 1 -- 3

Enter Burst Time for Process 2 -- 3

OUTPUT

PROCESS BURST TIME WAITING TIME RNAROUND TIME
P0 24 0 24
P1 3 24 27
P2 3 27 30

Average Waiting Time-- 17.000000
Average Turnaround Time -- 27.000000

b) SJF CPU SCHEDULING ALGORITHM
 #include<stdio.h>
int main()
{
int p[20], bt[20], wt[20], tat[20], i, k, n, temp;
float wtavg, tatavg;
printf("\nEnter the number of processes -- ");
scanf("%d", &n);
for(i=0;i<n;i++)
{
p[i]=i;
printf("Enter Burst Time for Process %d -- ", i);
scanf("%d", &bt[i]);
}
for(i=0;i<n;i++) for(k=i+1;k<n;k++)
if(bt[i]>bt[k])
{
temp=bt[i];
bt[i]=bt[k];

AY--2023-2024 Operating System

Department of CI Page 13

bt[k]=temp;

temp=p[i];
p[i]=p[k];
p[k]=temp;
}
wt[0] = wtavg = 0;
tat[0] = tatavg = bt[0];
for(i=1;i<n;i++)
{
wt[i] = wt[i-1] +bt[i-1];
tat[i] = tat[i-1] +bt[i];
wtavg = wtavg + wt[i]; tatavg = tatavg + tat[i];
}
printf("\n\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");
for(i=0;i<n;i++)
printf("\n\t P%d \t\t %d \t\t %d \t\t %d", p[i], bt[i], wt[i], tat[i]);
printf("\nAverage Waiting Time -- %f", wtavg/n);
printf("\nAverage Turnaround Time -- %f", tatavg/n);
}

SAMPLE INPUT

Enter the number of processes -- 4
Enter Burst Time for Process 0 -- 6
Enter Burst Time for Process 1 -- 8
Enter Burst Time for Process 2 -- 7

Enter Burst Time for Process 3 -- 3

SAMPLE OUTPUT

PROCESS BURST TIME WAITING TIME URNAROUND TIME
P3 3 0 3
P0 6 3 9
P2 7 9 16
P1 8 16 24

Average Waiting Time -- 7.000000
Average Turnaround Time -- 13.000000

C)ROUND ROBIN CPU SCHEDULING ALGORITHM
#include<stdio.h>

main()
{
int i,j,n,bu[10],wa[10],tat[10],t,ct[10],max;float awt=0,att=0,temp=0;
printf("Enter the no of processes -- ");
scanf("%d",&n);

for(i=0;i<n;i++)
{
printf("\nEnter Burst Time for process %d -- ", i+1);
scanf("%d",&bu[i]);
ct[i]=bu[i];
}
printf("\nEnter the size of time slice -- ");scanf("%d",&t);
max=bu[0]; for(i=1;i<n;i++)
if(max<bu[i])

max=bu[i];for(j=0;j<(max/t)+1;j++)
for(i=0;i<n;i++)
if(bu[i]!=0)

AY--2023-2024 Operating System

Department of CI Page 14

if(bu[i]<=t)

{
tat[i]=temp+bu[i];
temp=temp+bu[i];
bu[i]=0;
}
else
{
bu[i]=bu[i]-t; temp=temp+t;

}

for(i=0;i<n;i++)
{wa[i]=tat[i]-ct[i];att+=tat[i];
awt+=wa[i];
}
printf("\nThe Average Turnaround time is -- %f",att/n); printf("\nThe Average Waiting time is
",awt/n);
printf("\n\tPROCESS\t BURST TIME \t WAITING TIME\tTURNAROUND TIME\n");
for(i=0;i<n;i++)
printf("\t%d \t %d \t\t %d \t\t %d \n",i+1,ct[i],wa[i],tat[i]);
}

SAMPLE INPUT
Enter the no of processes – 3

Enter Burst Time for process 1 – 24

Enter Burst Time for process 2 -- 3

Enter Burst Time for process 3 -- 3

Enter the size of time slice – 3

PROCESS BURST TIME AITING TIME TURNAROUND TIME
1 24 6 30
2 3 4 7
3 3 7 10

SAMPLE OUTPUT
The Average Turnaround time is – 15.666667
The Average Waiting time is -- 5.666667

AY--2023-2024 Operating System

Department of CI Page 15

d) PRIORITY CPU SCHEDULING ALGORITHM
#include<stdio.h>main()
{
int p[20],bt[20],pri[20], wt[20],tat[20],i, k, n, temp;float wtavg, tatavg;
printf("Enter the number of processes --- ");scanf("%d",&n);

for(i=0;i<n;i++)
{
p[i] = i;
printf("Enter the Burst Time & Priority of Process %d --- ",i);scanf("%d %d",&bt[i], &pri[i]);
}
for(i=0;i<n;i++)
for(k=i+1;k<n;k++)
if(pri[i] > pri[k])
{
temp=p[i];p[i]=p[k]; p[k]=temp;

temp=bt[i]; bt[i]=bt[k]; bt[k]=temp;

temp=pri[i]; pri[i]=pri[k];pri[k]=temp;

}
wtavg = wt[0] = 0;
tatavg = tat[0] = bt[0];
for(i=1;i<n;i++)
{
wt[i] = wt[i-1] + bt[i-1];
tat[i] = tat[i-1] + bt[i];

wtavg = wtavg + wt[i]; tatavg = tatavg + tat[i];
}
printf("\nPROCESS\t\tPRIORITY\tBURST TIME\tWAITING TIME\tTURNAROUND TIME");
for(i=0;i<n;i++)
printf("\n%d \t\t %d \t\t %d \t\t %d \t\t %d ",p[i],pri[i],bt[i],wt[i],tat[i]);
printf("\nAverage Waiting Time is --- %f",wtavg/n); printf("\nAverage Turnaround Time is ---

%f",tatavg/n);
}

INPUT

Enter the number of processes --5 Enter the Burst Time & Priority of
Process 0 --- 10

Enter the Burst Time & Priority of Process 1 --- 1
Enter the Burst Time & Priority of Process 2 --- 2
Enter the Burst Time & Priority of Process 3 --- 1
Enter the Burst Time & Priority of Process 4 --- 5

AY--2023-2024 Operating System

Department of CI Page 16

 EXPECTED OUTPUT
PROCESS

PRIORITY

BURST TIME

WAITING TIME

TURNAROUND TIME
1 1 1 0 1
4 2 5 1 6
0 3 10 6 16
2 4 2 16 18
3 5 1 18 19

Average Waiting Time is --- 8.200000 Average Turnaround Time is --- 12.000000

AY--2023-2024 Operating System

Department of CI Page 17

AY--2023-2024 Operating System

Department of CI Page 18

AY--2023-2024 Operating System

Department of CI Page 19

AY--2023-2024 Operating System

Department of CI Page 20

AY--2023-2024 Operating System

Department of CI Page 21

WEEK 4

AIM: To Simulate Bankers Algorithm for Dead Lock Avoidance; Simulate Bankers Algorithm for Dead
Lock Prevention.

DESCRIPTION
In a multiprogramming environment, several processes may compete for a finite number of
resources. A processrequests resources; if the resources are not available at that time, the process
enters a waiting state. Sometimes, a waiting process is never again able to change state, because
the resources it has requested are held by other waiting processes. This situation is called a
deadlock. Deadlock avoidance is one of the techniques for handling deadlocks. This approach
requires that the operating system be given in advance additional information concerning which
resources a process will request and use during its lifetime. With this additional knowledge, it can
decide for each request whether or not the process should wait. To decide whether the current
request can be satisfied or must be delayed, the system must consider the resources currently
available, the resources currently allocated to each process, and the future requests and releases of
each process. Banker’s algorithm is a deadlock avoidance algorithm that is applicable to a system
with multiple instances of each resource type.

DEADLOCK AVOIDANCE : PROGRAM

#include<stdio.h>

int max[100][100];
int alloc[100][100];
int need[100][100];
int avail[100];

int n,r;
void input();
void show();
void cal();
int main()
{
int i,j;
printf("********** Banker's Algo ************\n");
input();
show();
cal();
getch();
return 0;
}
void input()
{
int i,j;
printf("Enter the no of Processes\t");
scanf("%d",&n);
printf("Enter the no of resources instances\t");
scanf("%d",&r);
printf("Enter the Max Matrix\n");

AY--2023-2024 Operating System

Department of CI Page 22

for(i=0;i<n;i++)
{
for(j=0;j<r;j++)
{
scanf("%d",&max[i][j]);
}
}
printf("Enter the Allocation Matrix\n");
for(i=0;i<n;i++)
{
for(j=0;j<r;j++)
{
scanf("%d",&alloc[i][j]);
}

}
printf("Enter the available Resources\n");
for(j=0;j<r;j++)
{
scanf("%d",&avail[j]);
}
}
void show()
{
int i,j;
printf("Process\t Allocation\t Max\t Available\t");
for(i=0;i<n;i++)
{
printf("\nP%d\t ",i+1);
for(j=0;j<r;j++)

{
printf("%d ",alloc[i][j]);
}
printf("\t");
for(j=0;j<r;j++)
{
printf("%d ",max[i][j]);
}
printf("\t");
if(i==0)
{
for(j=0;j<r;j++)
printf("%d ",avail[j]);
}
}
}
void cal()
{
int finish[100],temp,need[100][100],flag=1,k,c1=0;

AY--2023-2024 Operating System

Department of CI Page 23

int safe[100];
int i,j;
for(i=0;i<n;i++)
{
finish[i]=0;
}
//find need matrix
for(i=0;i<n;i++)
{
for(j=0;j<r;j++)

{
need[i][j]=max[i][j]-alloc[i][j];
}
}
printf("\n");
while(flag)
{
flag=0;
for(i=0;i<n;i++)
{
int c=0;
for(j=0;j<r;j++)
{
if((finish[i]==0)&&(need[i][j]<=avail[j]))
{
c++;
if(c==r)
{
for(k=0;k<r;k++)
{
avail[k]+=alloc[i][j];
finish[i]=1;
flag=1;
}
printf("P%d->",i);
if(finish[i]==1)
{
i=n;
}
}
}
}
}
}
for(i=0;i<n;i++)
{
if(finish[i]==1)
{

AY--2023-2024 Operating System

Department of CI Page 24

c1++;
}
else
{
printf("P%d->",i);
}

}
if(c1==n)
{
printf("\n The system is in safe state");
}
else
{
printf("\n Process are in dead lock");
printf("\n System is in unsafe state");
}
}
OUTPUT:
Enter the no of processes 5
Enter the no of resources instances 3
Enter the max matrix
7 5 3
3 2 2
9 0 2
2 2 2
4 3 3
Enter the allocation matrix
0 1 0
2 0 0
3 0 2
2 1 1
0 0 2
Enter available resources 3 2 2
P1->p3->p4->p2->p0->
The system is in safe state.

AY--2023-2024 Operating System

Department of CI Page 25

AY--2023-2024 Operating System

Department of CI Page 26

AY--2023-2024 Operating System

Department of CI Page 27

WEEK 5

AIM : a)To Write a C program to simulate the concept of Dining-philosophers problem.

DESCRIPTION
The dining-philosophers problem is considered a classic synchronization problem because it is an
example of a large class of concurrency-control problems. It is a simple representation of the need
to allocate several resources among several processes in a deadlock-free and starvation-free
manner. Consider five philosophers who spend their lives thinking and eating. The philosophers
share a circular table surrounded by five chairs, eachbelonging to one philosopher. In the center of
the table is a bowl of rice, and the table is laid with five single chopsticks. When a philosopher
thinks, she does not interact with her colleagues. From time to time, a philosopher gets hungry
and tries to pick up the two chopsticks that are closest to her (the chopsticks that are between her
and her left and right neighbors).

A philosopher may pick up only one chopstick at a time. Obviously, she cam1ot pick up a chopstick
that is already in the hand of a neighbor. When a hungry philosopher has both her chopsticks at
the same time, she eats without releasing her chopsticks. When she is finished eating, she puts
down both of her chopsticks and starts thinking again. The dining-philosophers problem may lead
to a deadlock situation and hence some rules have to be framed to avoid the occurrence of
deadlock.

PROGRAM

 #include<stdio.h>

#include<stdlib.h>

int tph, philname[20], status[20], howhung, hu[20], cho;

main()

{

int i;

printf("\n\nDINING PHILOSOPHER PROBLEM");

printf("\nEnter the total no. of philosophers: ");

scanf("%d",&tph);

for(i=0;i<tph;i++)

{

philname[i]=(i+1);

status[i]=1;

}

Printf("How many are hungry : ");

scanf("%d", &howhung);

if(howhung==tph)

{

printf("\n All are hungry..\nDead lock stage will occur");

printf("\nExiting\n");

}

else

{

for(i=0;i<howhung;i++)

{

printf("Enterphilosopher%dposition:",(i+1));

scanf("%d",&hu[i]);

status[hu[i]]=2;

}

AY--2023-2024 Operating System

Department of CI Page 28

}

do

{

printf("1.One can eat at a time\t2.Two can eat at a time\t3.Exit\nEnter your choice:");

scanf("%d", &cho);

switch(cho)

{

case 1:one();

break;

case

2:two();

break;

case 3: exit(0);

default: printf("\nInvalid option..");

}

}while(1);

}

}

one()

{

int pos=0, x, i;

printf("\nAllow one philosopher to eat at any time\n");

for(i=0;i<howhung; i++, pos++)

{

printf("\nP %d is granted to eat", philname[hu[pos]]);

for(x=pos;x<howhung;x++)

printf("\nP %d is waiting", philname[hu[x]]);

}

}

two()

{

int i, j, s=0, t, r, x;

printf("\n Allow two philosophers to eat at same time\n");

for(i=0;i<howhung;i++)

{

for(j=i+1;j<howhung;j++)

{

if(abs(hu[i]-hu[j])>=1&& abs(hu[i]-hu[j])!=4)

{

printf("\n\ncombination %d \n", (s+1));

t=hu[i];

r=hu[j];

s++;

printf("\nP %d and P %d are granted to eat", philname[hu[i]], philname[hu[j]]);

AY--2023-2024 Operating System

Department of CI Page 29

for(x=0;x<howhung;x++)

{

if((hu[x]!=t)&&(hu[x]!=r))

printf("\nP %d is waiting", philname[hu[x]]);

}

}

}

}

}

INPUT
DINING PHILOSOPHER PROBLEM
Enter the total no. of philosophers: 5How many are hungry : 3
Enter philosopher 1 position: 2
Enter philosopher 2 position: 4
Enter philosopher 3 position: 5

EXPECTED OUTPUT
1. One can eat at a time2.Two can eat at a time3.ExitEnter your choice: 1

Allow one philosopher to eat at any timeP 3 is granted to eat
P 3 is waitingP 5 is waitingP 0 is waiting
P 5 is granted to eatP 5 is waiting
P 0 is waiting
P 0 is granted to eatP 0 is waiting

1.One can eat at a time 2.Two can eat at a time 3.ExitEnter your choice: 2

Allow two philosophers to eat at same timecombination 1
P 3 and P 5 are granted to eatP 0 is waiting

combination 2
P 3 and P 0 are granted to eatP 5 is waiting

combination 3
P 5 and P 0 are granted to eatP 3 is waiting

1.One can eat at a time 2.Two can eat at a time 3.ExitEnter your choice: 3

AY--2023-2024 Operating System

Department of CI Page 30

AIM : b) To Write a C program to simulate producer-consumer problem using semaphores.

DESCRIPTION

Producer-consumer problem, is a common paradigm for cooperating processes. A producer process
produces information that is consumed by a consumer process. One solution to the producer-consumer
problem uses shared memory. To allow producer and consumer processes to run concurrently, there
must be available a buffer of items that can be filled by the producer and emptied by the consumer.
This buffer will reside in a region of memory that is shared by the producer and consumer processes. A
producer can produce one item while the consumer is consuming another item. The producer and
consumer must be synchronized, so that the consumer does not try to consume an item that has not yet
been produced.

PROGRAM
#include<stdio.h>
int main()
{
int buffer[10], bufsize, in, out, produce, consume,choice=0;
in = 0;
out = 0;
bufsize = 10;
while(choice !=3)
{
printf("\n1.Produce\t 2.Consume\t 3.Exit");
printf("\nEnter your choice:");
scanf("%d",&choice);
switch(choice)
{
case 1: if((in+1)%bufsize==out)
printf("\nBuffer is Full");
else
{
printf("\nEnter the value:");
scanf("%d", &produce);
buffer[in] = produce;
in = (in+1)%bufsize;
}
break;
case 2:
if(in == out) printf("\nBuffer is Empty"); else
{
consume = buffer[out];
printf("\nThe consumed value is %d", consume);
out = (out+1)%bufsize;
}break;
}
}
}

AY--2023-2024 Operating System

Department of CI Page 31

SAMPLE OUTPUT
1. Produce 2. Consume 3. ExitEnter your choice: 2
Buffer is Empty
1. Produce 2. Consume 3. ExitEnter your choice: 1
Enter the value: 100
1. Produce 2. Consume 3. ExitEnter your choice: 2
The consumed value is 100
1. Produce 2. Consume 3. ExitEnter your choice: 3

SAMPLE OUTPUT
2. Produce 2. Consume 3. ExitEnter your choice: 2
Buffer is Empty

1. Produce 2. Consume 3. ExitEnter your choice: 1
Enter the value: 100
1. Produce 2. Consume 3. ExitEnter your choice: 2
The consumed value is 100
1. Produce 2. Consume 3. ExitEnter your choice: 3

AY--2023-2024 Operating System

Department of CI Page 32

AY--2023-2024 Operating System

Department of CI Page 33

AY--2023-2024 Operating System

Department of CI Page 34

AY--2023-2024 Operating System

Department of CI Page 35

WEEK 6

AIM: To Implement kill(), raise() and sleep() functions using a C program.

kill() and sleep():

Program file name:

kill.c
#include <signal.h>

#include <stdio.h>
#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

// function declarationvoid

void sighup();

void sigint();
void sigquit();

// driver codevoid main()

int main(void)

{

int pid;
/* get child process */

if ((pid = fork()) < 0) {

perror("fork");

exit(1);

}

if (pid == 0)
{ /* child */ signal(SIGHUP, sighup);

signal(SIGINT, sigint);

signal(SIGQUIT, sigquit);

for (;;)

; /* loop for ever */

}
else /* parent */

{ /* pid hold id of child */

printf("\nPARENT: sending SIGHUP\n\n");

kill(pid, SIGHUP);

sleep(3); /* pause for 3 secs */
printf("\nPARENT: sending SIGINT\n\n");

kill(pid, SIGINT);

sleep(3); /* pause for 3 secs */

printf("\nPARENT: sending SIGQUIT\n\n");

kill(pid, SIGQUIT);

sleep(3);
}

}

// sighup() function definition

AY--2023-2024 Operating System

Department of CI Page 36

void sighup()

{

signal(SIGHUP, sighup); /* reset signal */

printf("CHILD: I have received a SIGHUP\n");

}

// sigint() function definitionvoid
void sigint()

{

signal(SIGINT, sigint); /* reset signal */

printf("CHILD: I have received a SIGINT\n");

}

// sigquit() function definition
void sigquit()

{

printf("My DADDY has Killed me!!!\n");

exit(0);

}
OP: $./a.out

EXPECTED OUTPUT:

raise():

Program file name: raise.c

#include <stdio.h>

 #include <stdlib.h>

 #include <signal.h>

void signal_handler(int signal)
{
/* Display a message indicating we have received a signal */
if (signal == SIGUSR1) printf("Received a SIGUSR1 signal\n");

/* Exit the application */exit(0);
}

int main(int argc, const char * argv[])
{
/* Display a message indicating we are registering the signal handler */printf("Registering the signal handler\n");

AY--2023-2024 Operating System

Department of CI Page 37

/* Register the signal handler */ signal(SIGUSR1, signal_handler);
/* Display a message indicating we are raising a signal */printf("Raising a SIGUSR1 signal\n");
/* Raise the SIGUSR1 signal */raise(SIGUSR1);
/* Display a message indicating we are leaving main */printf("Finished main\n");

return 0;
}

SAMPLE OUTPUT:
Registering the signal handler
Raising a SIGUSR1
ignal Received a SIGUSR1 signal

AY--2023-2024 Operating System

Department of CI Page 38

AIM: Implement alarm(), pause() and abort() functions using a C program.

Program file name: alarmpause.c

#define _POSIX_SOURCE

#include <unistd.h>

#include <signal.h>
#include <stdio.h>

#include <time.h>

void catcher(int signum)
{
puts("inside catcher. ");

}

void timestamp()
{
time_t t;
time(&t);

printf("the time is %s", ctime(&t));
}

main()
{
struct sigaction sigact;

sigemptyset(&sigact.sa_mask);
sigact.sa_flags = 0;
sigact.sa_handler = catcher;
sigaction(SIGALRM, &sigact, NULL);

alarm(10);
printf("before pause... ");
timestamp();
pause();
printf("after pause... ");
timestamp();
}

SAMPLE OUTPUT:
before pause... the time is Fri Jun 16 09:42:29 2001inside catcher...

after pause... the time is Fri Jun 16 09:42:39 2001

AY--2023-2024 Operating System

Department of CI Page 39

abort():

/* abort.c -- terminates execution abnormally */
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
abort();
printf("\"abort() called prior to printf()\"\n");

return 0;
}

AIM:- To write a C program that illustrate communication between two process usingunnamed pipes

Program file name: unnamed_pipe.c

#include<stdio.h>

#include<stdlib.h>

#include<sys/types.h>

#include<sys/stat.h>

#include<string.h>

#include<fcntl.h>

void server(int,int);

void client(int,int);

int main()

{
int p1[2],p2[2],pid;
pipe(p1);
pipe(p2);
pid=fork();
if(pid==0)
{
close(p1[1]);
close(p2[0]);
server(p1[0],p2[1]);
return 0;
}
close(p1[0]);
close(p2[1]);
client(p1[1],p2[0]);
wait();
return 0;
}

AY--2023-2024 Operating System

Department of CI Page 40

void client(int wfd,int rfd)
{
int i,j,n;
char fname[2000];
char buff[2000];
printf("ENTER THE FILE NAME :");
scanf("%s",fname);
printf("CLIENT SENDING THEREQUEST .. PLEASE WAIT\n");
sleep(10);
write(wfd,fname,2000);
n=read(rfd,buff,2000);
buff[n]='\0';
printf("THE RESULTS OF CLIENTS ARE.. \n");
write(1,buff,n);
}

void server(int rfd,int wfd)

{
int i,j,n;
char fname[2000];char buff[2000];

n=read(rfd,fname,2000);fname[n]='\0';

int fd=open(fname,O_RDONLY);sleep(10);

if(fd<0)
write(wfd,"can't open",9);
else
n=read(fd,buff,2000);
write(wfd,buff,n);
}

 EXPECTED OUTPUT

 Enter File name:file.txt
 CLIENT SENDING THEREQUEST PLEASE WAIT

AY--2023-2024 Operating System

Department of CI Page 41

AY--2023-2024 Operating System

Department of CI Page 42

AY--2023-2024 Operating System

Department of CI Page 43

AY--2023-2024 Operating System

Department of CI Page 44

WEEK 7
AIM :a) To Write a program that illustrates communication between two process using named pipes or FIFO.

Algorithm:
Create two processes, one is fifoserver_twoway and another one is fifoclient_twoway.

Algorithm for fifoserver_twoway :
step 1:Start
step 2: Creates a named pipe (using library function mkfifo())with name ―fifo_twowa y‖ in /tmp directory, if
not created.
step 3: Opens the named pipe for read and write purposes.
step 4: Here, created FIFO with permissions of read and write for Owner. Read for Group and nopermissions
for Others.
step 5: Waits infinitely for a message from the client.
step 6: If the message received from the client is not ―end‖, prints the message and reverses the string. The
reversed string is sent back to the client. If the message is ― end‖, closes the fifo and ends the process.
step 7:stop.

Algorithm for client :
Step 1: start
Step 2: Opens the named pipe for read and write purposes.Step 3: Accepts string from the user.
Step 4: Checks, if the us er enters ―end‖ or other than ―end‖. Either way, it sends a message to the server.
However, if the string is ―end‖, this closesthe FIFO and also ends the process.
Step 5: If the message is sent as not ―end‖, it w aits for the message (reversed string) from the client and
prints the reversed string.
Step 6: Repeats infinitely until the user enters the string ―end‖. Step 7: stop

Programs:
/* Filename: fifoserver_twoway.c */
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

#define FIFO_FILE "/tmp/fifo_twoway"
void reverse_string(char *);

int main()
{
int fd;

char readbuf[80];

char end[10];

int to_end;
int read_bytes;

AY--2023-2024 Operating System

Department of CI Page 45

/* Create the FIFO if it does not exist */mkfifo(FIFO_FILE, S_IFIFO|0640);
strcpy(end, "end");
fd = open(FIFO_FILE, O_RDWR);

while(1)

{
read_bytes = read(fd, readbuf, sizeof(readbuf));
readbuf[read_bytes] = '\0';

printf("FIFOSERVER: Received string: \"%s\" and length is %d\n", readbuf,(int)strlen(readbuf));
to_end = strcmp(readbuf, end);

if (to_end == 0)
{
close(fd);
break;

}
reverse_string(readbuf);

printf("FIFOSERVER: Sending Reversed String: \"%s\" and length is %d\n", readbuf, (int)strlen(readbuf));
write(fd, readbuf, strlen(readbuf));
/*
sleep - This is to make sure other process reads this, otherwise thisprocess would retrieve the message
*/ sleep(2);
}
return 0;
}

void reverse_string(char *str)

{

int last, limit, first;
char temp;
last = strlen(str) - 1;limit = last/2;

first = 0;

while (first < last)
{
temp = str[first];
str[first] =
str[last str[last] =
temp; first++;

last--;
}
return;
}

OUTPUT:
FIFOSERVER: Received string: "LINUX IPCs" and length is 10
FIFOSERVER: Sending Reversed String: "sCPI XUNIL" and length is 10
FIFOSERVER: Received string: "Inter Process Communication" and length is 27
FIFOSERVER: Sending Reversed String: "noitacinummoC ssecorP retnI" and length is 27
FIFOSERVER: Received string: "end" and length is 3

AY--2023-2024 Operating System

Department of CI Page 46

/* Filename: fifoclient_twoway.c */
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

#define FIFO_FILE "/tmp/fifo_twoway"
int main()

{
int fd;
int end_process;int stringlen;
int read_bytes; char readbuf[80];char end_str[5];
printf("FIFO_CLIENT: Send messages, infinitely, to end enter \"end\"\n");
fd = open(FIFO_FILE, O_CREAT|O_RDWR);
strcpy(end_str, "end");

while (1)
{
printf("Enter string: ");

fgets(readbuf, sizeof(readbuf), stdin);
stringlen = strlen(readbuf);

readbuf[stringlen - 1] = '\0';

end_process = strcmp(readbuf, end_str);

//printf("end_process is %d\n", end_process);

if (end_process != 0)

{
write(fd, readbuf, strlen(readbuf));

printf("FIFOCLIENT: Sent string: \"%s\" and string length is %d\n", readbuf,(int)strlen(readbuf));
read_bytes = read(fd, readbuf, sizeof(readbuf));

 readbuf[read_bytes] = '\0';

printf("FIFOCLIENT: Received string: \"%s\" and length is %d\n", readbuf,(int)strlen(readbuf));
}

else

{
write(fd, readbuf, strlen(readbuf));

printf("FIFOCLIENT: Sent string: \"%s\" and string length is %d\n", readbuf,(int)strlen(readbuf));

close(fd);

break;
}
}
return 0;
}

AY--2023-2024 Operating System

Department of CI Page 47

OUTPUT:
FIFO_CLIENT: Send messages, infinitely, to end enter "end"
Enter string: LINUX IPCs
FIFOCLIENT: Sent string: "LINUX IPCs" and string length is 10
FIFOCLIENT: Received string: "sCPI XUNIL" and length is 10
Enter string: Inter Process Communication
FIFOCLIENT: Sent string: "Inter Process Communication" and string length is 27
FIFOCLIENT: Received string: "noitacinummoC ssecorP retnI" and length is 27
Enter string: end
FIFOCLIENT: Sent string: "end" and string length is 3

AY--2023-2024 Operating System

Department of CI Page 48

AIM : b) Write a C program that receives a message from message queue and display them.
ALGORITHM:
Step 1:Start
Step 2:Declare a message queue
typedef struct msgbuf
{
long mtype;
char mtext[MSGSZ];
}
message_buf;
Mtype =0Retrieve the next message on the queue, regardless of its mtype.
PositiveGet the next message with an mtype equal to the specifiedmsgtyp.
NegativeRetrieve the first message on the queue whose mtype fieldis less than or equal to the
absolute value of the msgtyp argument.Usually mtype is set to1
mtext is the data this will be added to the queue.
Step 3:Get the message queue id for the "name" 1234, which was created by the serverkey = 1234 Step 4 : if
((msqid = msgget(key, 0666< 0) Then print error The msgget() function shall return the message queue identifier
associated with the argument key.
Step 5: Receive message from message queue by using msgrcv function
int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);
#include < sys/msg.h>
(msgrcv(msqid, &rbuf, MSGSZ, 1, 0)msqid: message queue id &sbuf: pointer to user defined structure MSGSZ:
message sizeMessage type: 1
Message flag:The msgflg argument is a bit mask constructed by ORing together zero or more of the
following flags: IPC_NOWAIT or MSG_EXCEPT or MSG_NOERROR
Step 6:if msgrcv <0 return error
Step 7:otherwise print message sent is sbuf.mextStep 8:stop

Program:
//IPC_msgq_send.c

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define MAXSIZE 128
void die(char *s)
{
perror(s);
exit(1);
}

typedef struct msgbuf
{
long mtype;
char mtext[MAXSIZE];
};

AY--2023-2024 Operating System

Department of CI Page 49

main()
{
int msqid;
int msgflg = IPC_CREAT | 0666;
key_t key;
struct msgbuf sbuf;
size_t buflen;

key = 1234;

if ((msqid = msgget(key, msgflg)) < 0) //Getthe message queue ID for the given key
die("msgget");

//Message Typesbuf.mtype = 1;

printf("Enter a message to add to messagequeue : ");
scanf("%[^\n]",sbuf.mtext);
getchar();

buflen = strlen(sbuf.mtext) + 1 ;

if (msgsnd(msqid, &sbuf, buflen,
IPC_NOWAIT) < 0)
{

printf ("%d, %d, %s, %d\n", msqid,sbuf.mtype, sbuf.mtext, buflen);
die("msgsnd");

}

else
printf("Message Sent\n");

exit(0);
}

 EXPECTED OUTPUT:

AY--2023-2024 Operating System

Department of CI Page 50

2

//IPC_msgq_rcv.c

#include <sys/types.h>
#include <sys/ipc.h>

#include <sys/msg.h>

#include <stdio.h>

#include <stdlib.h>

#define MAXSIZE 128

void die(char *s)
{
perror(s);exit(1);
}

typedef struct msgbuf
{
long mtype;
char mtext[MAXSIZE];
} ;
main()
{
int msqid;key_t key;
struct msgbuf rcvbuffer;key = 1234;

if ((msqid = msgget(key, 0666)) < 0)die("msgget()");

//Receive an answer of message type 1.
if (msgrcv(msqid, &rcvbuffer, MAXSIZE, 1, 0) < 0)die("msgrcv");

printf("%s\n", rcvbuffer.mtext);exit(0);
}

 EXPECTED OUTPUT:

AY--2023-2024 Operating System

Department of CI Page 51

AY--2023-2024 Operating System

Department of CI Page 52

WEEK 8
AIM: To write a C program that illustrates two processes communicating using Shared memory.

Algorithm:-
the shared memory identifier associated with key Theargument key is equal to IPC_PRIVATE. so that
step1.Start
step 2.Include header files required for the program are#include <sys/types.h>
#include <sys/ipc.h>#include <sys/shm.h>#include <unistd.h> #include <string.h> #include <errno.h>
step 3.Declare the variable which are required aspid_t pid
int *shared /* pointer to the shm */int shmid
step 4.Use shmget function to create shared memory#include <sys/shm.h>
int shmget(key_t key, size_t size, int shmflg)
The shmget() function shall return the operating system selects the next availablekey for a newly created
shared block of memory.Size represents size of shared memory block Shmflg shared memory permissions
which are represented by octalinteger shmid = shmget(IPC_PRIVATE, sizeof(int), IPC_CREAT | 0666);

print the shared memory idstep 5.if fork()==0 Then
begin

end

step 6.else
begin

end

step 7.stop.

shared = shmat(shmid, (void *) 0, 0)
print the shared variable(shared) *shared=2print *shared sleep(2)
print *shared

shared = shmat(shmid, (void *) 0, 0) print the shared variable(shared) print *shared
sleep(1) *shared=30
printf("Parent value=%d\n", *shared);sleep(5)
shmctl(shmid, IPC_RMID, 0)

Sha.c

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <unistd.h>

#include <errno.h>

Operating System AY--2023-2024

Department of CI Page 53

int main(void)

{

pid_t pid;

int *shared; /* pointer to the shm */ int shmid;

shmid = shmget(IPC_PRIVATE, sizeof(int), IPC_CREAT | 0666);

printf("Shared MemoryID=%u",shmid);

if (fork() == 0) { /* Child */

/* Attach to shared memory and print the pointer */

shared = shmat(shmid, (void *) 0,0);

printf("Child pointer %u\n", shared);

*shared=1;

printf("Child value=%d\n", *shared);

sleep(2); printf("Child value=%d\n", *shared);

}

else { /* Parent */

/* Attach to shared memory and print the pointer */

shared = shmat(shmid, (void *) 0,0);

printf("Parent pointer %u\n", shared); printf("Parent value=%d\n", *shared);

sleep(1);

*shared=42;

printf("Parent value=%d\n", *shared);

sleep(5);shmctl(shmid, IPC_RMID, 0);

}

}

OUTPUT:
$cc shared_mem.c
$./a.out

Shared Memory ID=65537

Child pointer 3086680064

Child value=1

Shared Memory ID=65537

Parent pointer 3086680064

Parent value=1

Parent value=42

Child value=42

Operating System AY--2023-2024

Department of CI Page 54

Operating System AY--2023-2024

Department of CI Page 55

Operating System AY--2023-2024

Department of CI Page 56

WEEK 9
AIM: To Simulate all page replacement algorithms a) FIFO b) LRU c) OPTIMAL

DESCRIPTION
Page replacement is basic to demand paging. It completes the separation between logical memory
and physical memory. With this mechanism, an enormous virtual memory can be provided for
programmers on a smaller physical memory. There are many different page-replacement algorithms.
Every operating system probably has its own replacement scheme. A FIFO replacement algorithm
associates with each page the time when that page was brought into memory. When a page must be
replaced, the oldest page is chosen. If the recent past is used as an approximation of the near future,
then the page that has not been used for the longest period of time can be replaced. This approach is
the Least Recently Used (LRU) algorithm. LRU replacement associates with each page the time of that
page's last use. When a page must be replaced, LRU chooses the page that has not been used for the
longest period of time. Least frequently used (LFU) page-replacement algorithm requires that the
page with the smallest count be replaced. The reason for this selection is that an actively used page
should have a large reference count.

PROGRAM

FIFO PAGE REPLACEMENT ALGORITHM
#include<stdio.h>
int main()
{
int i, j, k, f, pf=0, count=0, rs[25], m[10], n;
printf("\n Enter the length of reference string -- ");
scanf("%d",&n);
printf("\n Enter the reference string -- ");
for(i=0;i<n;i++)

scanf("%d",&rs[i]);
printf("\n Enter no. of frames -- ");
scanf("%d",&f);

for(i=0;i<f;i++)
m[i]=-1;

printf("\n The Page Replacement Process is -- \n");
for(i=0;i<n;i++)
{
for(k=0;k<f;k++)
{

}
if(k==f)
{

}

if(m[k]==rs[i])
break;

m[count++]=rs[i];
pf++;

Operating System AY--2023-2024

Department of CI Page 57

for(j=0;j<f;j++)
printf("\t%d",m[j]);
if(k==f)
printf("\tPF No. %d",pf);
printf("\n");
if(count==f)
count=0;
}
printf("\n The number of Page Faults using FIFO are %d",pf);
getch();
}

INPUT
Enter the length of reference string – 20
Enter the reference string -- 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
Enter no. of frames -- 3

OUTPUT
The Page Replacement Process is –

-1 -1 PF No. 1
0 -1 PF No. 2
0 1 PF No. 3
0 1 PF No. 4
0 1

3 1 PF No. 5
3 0 PF No. 6
3 0 PF No. 7
2 0 PF No. 8
2 3 PF No. 9
2 3 PF No. 10
2 3

2 3

1 3 PF No. 11
1 2 PF No. 12
1 2

1 2

1 2 PF No. 13
0 2 PF No. 14
0 1 PF No. 15

The number of Page Faults using FIFO are 15

LRU PAGE REPLACEMENT ALGORITHM

#include<stdio.h>
#define high 37
void main()
{
int fframe[10],used[10],index,i;
int count,n1,k,nf,np=0,page[high],tmp;
int flag=0,pf=0;
printf("Enter no. of frames:");
scanf("%d",&nf);
for(i=0;count<nf;count++)

Operating System AY--2023-2024

Department of CI Page 58

fframe[count]=-1;
printf(" lru page replacement algorithm in c ");
printf("Enter pages (press -999 to exit):\n");
for(count=0;count<high;count++)
{
scanf("%d",&tmp);
if(tmp==-999) break;
page[count]=tmp;
np++;
}
for(count=0;count<np;count++)
{
flag=0;
for(n1=0;n1<nf;n1++)
{
if(fframe[n1]==page[count])
{
printf("\n\t");
flag=1;break;
}
}

/* program for lru page replacement algorithm in c */
if(flag==0)
{
for(n1=0;n1<nf;n1++) used[n1]=0;
for(n1=0,tmp=count-1;n1<nf-1;n1++,tmp--)
{
for(k=0;k<nf;k++)
{
if(fframe[k]==page[tmp])
used[k]=1;
}
}
for(n1=0;n1<nf;n1++)
if(used[n1]==0)
index=n1;
fframe[index]=page[count];
printf("\nFault: ");

pf++;
}
for(k=0;k<nf;k++)
printf("%d\t",fframe[k]);
} // lru algorithm in c
printf("\nnumber of total page faults is: %d ",pf);
}

EXPECTED OUTPUT

lru page replacement algorithm in c
Enter no. of frames Enter pages (press -999 to exit):
2 3 2 1
5 2 4 5
3 2 5 -999

Operating System AY--2023-2024

Department of CI Page 59

OPTIMAL PAGE REPLACEMENT ALGORITHM

DESCRIPTION
Optimal page replacement algorithm has the lowest page-fault rate of all algorithms and will
never suffer from Belady's anomaly. The basic idea is to replace the page that will not be used
for the longest period of time. Use of this page-replacement algorithm guarantees the lowest
possible page fault rate for a fixed number of frames. Unfortunately, the optimal page-
replacement algorithm is difficult to implement, because it requires future knowledge of the
reference string.

PROGRAM

#include<stdio.h>
int fr[3], n, m;
void display();
void main()
{
int i,j,page[20],fs[10];
 int max,found=0,lg[3],index,k,l,flag1=0,flag2=0,pf=0;
float pr;
printf("Enter length of the reference string:");
scanf("%d",&n);
printf("Enter the reference string: ");
for(i=0;i<n;i++)
scanf("%d",&page[i]);
printf("Enter no of frames:");
scanf("%d",&m);
for(i=0;i<m;i++)
fr[i]=-1;
pf=m;
for(j=0;j<n;j++)
{
flag1=0; flag2=0;
for(i=0;i<m;i++)
{
if(fr[i]==page[j])
{
flag1=1; flag2=1; break;

-1 -1 2 Fault:
-1 -1 2 Fault:
-1 3 2 Fault:
1 3 2 Fault:
1 3 2
1 5 2 Fault:
4 5 2 Fault:
4 5 2
4 5 3 Fault:
2 5 3 Fault:
2 5 3
2 5 3

Operating System AY--2023-2024

Department of CI Page 60

}
}
if(flag1==0)
{
for(i=0;i<m;i++)
{
if(fr[i]==-1)
{
fr[i]=page[j]; flag2=1;break;
}
}
}
if(flag2==0)
{
for(i=0;i<m;i++) lg[i]=0; for(i=0;i<m;i++)
{
for(k=j+1;k<=n;k++)
{
if(fr[i]==page[k])
{
lg[i]=k-j; break;
}
}
}
found=0;
for(i=0;i<m;i++)
{
if(lg[i]==0)
{
index
=i;
found =1;
break;
}
}
if(found==0)
{
max=lg[0]; index=0; for(i=0;i<m;i++)
{
if(max<lg[i])
{
max=lg[i]; index=i;
}
}
}
fr[index]=page [j];
pf++;
}
display();
}
printf("Number of page faults :%d\n",pf);
pr=(float)pf/n*100;

Operating System AY--2023-2024

Department of CI Page 61

printf("Page fault rate = %f \n", pr);
//getch();
}
void display()
{
int i;
for(i=0;i<m;i++)
printf("%d\t",fr[i]);
printf("\n");
}

INPUT
Enter number of page references -- 10
Enter the reference string -- 1 2 3 4 5 2 5 2 5 1 4 3
Enter the available no. of frames --- 3

OUTPUT
The Page Replacement Process is –

1 -1 -1 PF No. 1
1 2 -1 PF No. 2
1 2 3 PF No. 3
4 2 3 PF No. 4
5 2 3 PF No. 5
5 2 3

5 2 3

5 2 1 PF No. 6
5 2 4 PF No. 7
5 2 3 PF No. 8

Total number of page faults -- 8

AY--2023-2024 Operating System

Department of CSE Page 62

AY--2023-2024 Operating System

Department of CSE Page 63

AY--2023-2024 Operating System

Department of CSE Page 64

AY--2023-2024
Operating System

Department of CI Page 65

WEEK 10

AIM: To write a C program that takes one or more file/directory names as command line input and reports
following information A) File Type B) Number Of Links C) Time of last Access D) Read, write and execute
permissions

Algorithm:

Step 1:start
Step 2:Declare struct stat a

Step 3:read arguments at command line
Step 4: set the status of the argument using stat(argv[i],&a);
Step 5:Check whether the given file is Directory file by using S_ISDIR(a.st_mode)if it is a directory file
print Directory file
Else

print is Regular fileStep6: print number of links
Step 7:print last time access
Step 8:Print Read,write and execute permissionsStep 9:stop

Program File name: 6.c

#include<stdio.h>
#include<sys/stat.h>
#include<time.h>
int main(int argc,char *argv[])
{
int i,j; struct stat a;
for (i=1;i<argc;i++)
{
printf("%s : ",argv[i]);
stat(argv[i],&a);
if(S_ISDIR(a.st_mode))
{

}
else
{

}

printf("is a Directory file\n");

printf("is Regular file\n");

printf("******File Properties********\n");
printf("Inode Number:%ld\n",a.st_ino);
printf("UID:%o\n",a.st_uid);
printf("GID:%o\n",a.st_gid);
printf("No of Links:%d\n",a.st_nlink);
printf("Last Access time:%s",asctime(localtime(&a.st_atime)));

AY--2023-2024
Operating System

Department of CI Page 66

printf("Permission flag:%o\n",a.st_mode%512);

printf("size in bytes:%ld\n",a.st_size);

printf("Blocks Allocated:%d\n",a.st_blocks);

printf("Last modification time %s\n",ctime(&a.st_atime));
}
}

 EXPECTED OUTPUT

AY--2023-2024
Operating System

Department of CI Page 67

AY--2023-2024
Operating System

Department of CI Page 68

AY--2023-2024
Operating System

Department of CI Page 69

AY--2023-2024
Operating System

Department of CI Page 70

AY--2023-2024
Operating System

Department of CI Page 71

WEEK 11

AIM: a)To Implement in c language the following UNIX commands using system calls i) cat ii) ls iii) Scanning
Directories (Ex: opendir(),readdir(),etc.)

DESCRIPTION:

(i) cat COMMAND:cat linux command concatenates files and print it on the standard output. SYNTAX:
cat [OPTIONS] [FILE]...

OPTIONS:
-A Show all.
-b Omits line numbers for blank space in the output.
-e A $ character will be printed at the end of each line prior to a new line.
-E Displays a $ (dollar sign) at the end of each line.
-n Line numbers for all the output lines.
-s If the output has multiple empty lines it replaces it with one empty line.
-T Displays the tab characters in the output.
-v Non-printing characters (with the exception of tabs, new-lines & form-feeds) are printed visibly.

Operations With cat Command:

1. To Create a new file:

$cat > file1.txt
This command creates a new file file1.txt. After typing into the file press control+d (^d) simultaneously toend
the file.

2. To Append data into the file:
$cat >> file1.txt
To append data into the same file use append operator >> to write into the file, else the file will be
overwritten (i.e., all of its contents will be erased).

3. To display a file:

$cat file1.txt
This command displays the data in the file.

4. To concatenate several files and display:

$cat file1.txt file2.txt
The above cat command will concatenate the two files (file1.txt and file2.txt) and it will display the output in
the screen. Some times the output may not fit the monitor screen. In such situation you can print those files
in a new file or display the file using less command.
cat file1.txt file2.txt | less

5. To concatenate several files and to transfer the output to another file.
$cat file1.txt file2.txt > file3.txt

AY--2023-2024
Operating System

Department of CI Page 72

In the above example the output is redirected to new file file3.txt. The cat command will create new file
file3.txt and store the concatenated output into file3.txt.

Algorithm:
Step 1:Start
Step 2:read arguments from keyboard at command line
Step 3:if no of arguments are less than two print ENTER CORRECT ARGUMENTSElse goto step 4
Step4:read the date from specified file and write it to destination fileStep 5 :stop

Program file name: 5a.c

#include<stdio.h>
#include<sys/types.h>
#include<stdlib.h>
#include<fcntl.h>
#include<sys/stat.h>
int main(int argc,char *argv[])
{
int fd,n;
char buff[512];
if(argc!=2)
printf("ENTER CORRECT ARGUMENTS :");
if((fd=open(argv[1],4))<0)
{
printf("ERROR");
return 0;
}
while(n=read(fd,buff,sizeof(buff))>0)write(1,buff,n);
}

(ii) ls
Description:

ls command is used to list the files present in a directory

Algorithm:

Step 1. Start.

Step 2. open directory using opendir() system call. Step 3. read the directory using readdir() system call.Step 4.

print dp.name and dp.inode .

Step 5. repeat above step until end of directory.Step 6: Stop.

Program name: 5b.c
#include<stdio.h> #include<dirent.h> void quit(char*,int);

int main(int argc,char **argv)

{

DIR *dirop;
struct dirent *dired;if(argc!=2)
{
printf("Invalid number of arguments\n");

AY--2023-2024
Operating System

Department of CI Page 73

}
if((dirop=opendir(argv[1]))==NULL) printf("Cannot open directory\n");
while((dired=readdir(dirop))!=NULL)

printf("%10d %s\n",dired>d_ino,dired>d_name);closedir(dirop);
}

iii)Scanning directories (using system calls)

DESCRIPTION:
Scanning directories is used to opendir(), readdir(), rewinddir(), closedir(), etc

Program File name: 5c.c

#include <stdio.h>
#include <dirent.h>

int main(void)
{

struct dirent *de; // Pointer for directory entry

// opendir() returns a pointer of DIR type.
DIR *dr = opendir(".");

if (dr == NULL) // opendir returns NULL if couldn't open directory
{

printf("Could not open current directory");
return 0;

}

while ((de = readdir(dr)) != NULL)
printf("%s\n", de->d_name);

closedir(dr);
return 0;

}

OUTPUT

All files and subdirectories of current directory

b) To write a C program to create child process and allow parent process to display “parent” and the child to
display “child” on the screen

AY--2023-2024
Operating System

Department of CI Page 74

ALGORITHM:
Step 1: start
Step2: call the fork() function to create a childprocess fork function returns 2 values
step 3: which returns 0 to child process
step 4:which returns process id to the parentprocess step 5:stop

Program :

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

int main()

{

int pid,pid1,pid2;

pid=fork();

if(pid==-1)

{

printf("ERROR IN

PROCESS

CREATION \n");

exit(0);

}

if(pid!=0)

{

pid1=getpid();

printf("\n the parent

process ID is %d",

pid1);

}

else

{

pid2=getpid();

printf("\n the child

process ID is %d\n",

pid2);

}

}
Output:

[root@dba ~]# cc -
o 8 8a.c[root@dba
~]# ./8 the child
process ID is 4485
the parent process
ID is 4484

AY--2023-2024 Operating System

Department of CI Page 75

AY--2023-2024 Operating System

Department of CI Page 76

AY--2023-2024 Operating System

Department of CI Page 77

WEEK 12

AIM: Write a C program to simulate disk scheduling algorithms. a) FCFS b) SCAN c) C-SCAN
DESCRIPTION

One of the responsibilities of the operating system is to use the hardware efficiently. For the disk
drives, meeting this responsibility entails having fast access time and large disk bandwidth. Both the
access time and the bandwidth can be improved by managing the order in which disk I/O requests are
serviced which is called as diskscheduling. The simplest form of disk scheduling is, of course, the first-
come, first-served (FCFS) algorithm. This algorithm is intrinsically fair, but it generally does not provide
the fastest service. In the SCAN algorithm, the diskarm starts at one end, and moves towards the other
end, servicing requests as it reaches each cylinder, until it gets to the other end of the disk. At the
other end, the direction of head movement is reversed, and servicing continues. The head
continuously scans back and forth across the disk. C-SCAN is a variant of SCAN designed to provide a
more uniform wait time. Like SCAN, C-SCAN moves the head from one end of the disk to the other,
servicing requests along the way. When the head reaches the other end, however, it immediately
returns to the beginning of the disk without servicing any requests on the return trip

PROGRAM

FCFS DISK SCHEDULING ALGORITHM
#include<stdio.h>
#include<stdlib.h>
int main()
{
int RQ[100],i,n,TotalHeadMoment=0,initial;
printf("Enter the number of Requests\n");
scanf("%d",&n);
printf("Enter the Requests sequence\n");

for(i=0;i<n;i++)
scanf("%d",&RQ[i]);
printf("Enter initial head position\n");
scanf("%d",&initial);
for(i=0;i<n;i++)
{
TotalHeadMoment=TotalHeadMoment+abs(RQ[i]-initial);
initial=RQ[i];
}
printf("Total head moment is %d",TotalHeadMoment);
return 0;

}
 INPUT
Enter the number of Request 8
Enter the Requests Sequence 95 180 34 119 11 123 62 64
Enter initial head position 50
Expected Output:

 Total head moment is 644

AY--2023-2024 Operating System

Department of CI Page 78

OUTPUT:

SCAN DISK SCHEDULING ALGORITHM
 #include<stdio.h>

int main()
{
int t[20], d[20], h, i, j, n, temp, k, atr[20], tot, p, sum=0;
clrscr();
printf("enter the no of tracks to be traversed ");
scanf("%d'",&n);
printf("enter the position of head ");
scanf("%d",&h);
t[0]=0;
t[1]=h;
printf("enter the tracks ");
for(i=2;i<n+2;i++)
scanf("%d",&t[i]);
for(i=0;i<n+2;i++)
{
for(j=0;j<(n+2)-i-1;j++)
{
if(t[j]>t[j+1])
{
temp=t[j];
t[j]=t[j+1];
t[j+1]=temp;
} } }
for(i=0;i<n+2;i++)
if(t[i]==h)
j=i;k=i;
p=0;

AY--2023-2024 Operating System

Department of CI Page 79

while(t[j]!=0)
{

atr[p]=t[j];
j--;
p++;
}
atr[p]=t[j];
for(p=k+1;p<n+2;p++,k++)
atr[p]=t[k+1];
for(j=0;j<n+1;j++)
{
if(atr[j]>atr[j+1])
d[j]=atr[j]-atr[j+1];
else
d[j]=atr[j+1]-atr[j];
sum+=d[j];
}
printf("\nAverage header movements:%f",(float)sum/n);
}

.

INPUT

enter the no of tracks to be traversed 9

enter the position of head 50

enter the tracks

65

78

23

44

65

76

78

89

75

Expected Output:

Average header movements:-116849760.000000

AY--2023-2024 Operating System

Department of CI Page 80

AY-2023-2024 Operating System

Department of CI Page 81

AY-2023-2024 Operating System

Department of CI Page 82

C-SCAN DISK SCHEDULING ALGORITHM

#include<stdio.h>
int main()
{
int t[20], d[20], h, i, j, n, temp, k, atr[20], tot, p, sum=0;
printf("enter the no of tracks to be traversed ");
scanf("%d",&n);
printf("enter the position of head");
scanf("%d",&h);
t[0]=0;
t[1]=h;

printf("enter total tracks ");
scanf("%d",&tot);

t[2]=tot-1;
printf("enter the tracks ");
for(i=3;i<=n+2;i++)
scanf("%d",&t[i]);
for(i=0;i<=n+2;i++)
for(j=0;j<=(n+2)-i-1;j++)
if(t[j]>t[j+1])
{
temp=t[j];

t[j]=t[j+1];
t[j+1]=temp;
}
for(i=0;i<=n+2;i++)
{
if(t[i]==h)
j=i;
break;
}
p=0;
while(t[j]!=tot-1)

{
atr[p]=t[j];
j++;
p++;
}
atr[p]=t[j];
p++;
i=0;
while(p!=(n+3) && t[i]!=t[h])
{
atr[p]=t[i];

i++;

AY-2023-2024 Operating System

Department of CI Page 83

p++;

}
for(j=0;j<n+2;j++)
{
if(atr[j]>atr[j+1])
d[j]=atr[j]-atr[j+1];
else
d[j]=atr[j+1]-atr[j];
sum+=d[j];
}
printf("total header movements%d\n",sum);
printf("avg is %f",(float)sum/n);

}

INPUT:

enter the no of tracks to be traveresed10

enter the position of head100

enter total tracks10

enter the tracks55 58 60 70 18 90 15 01 84 164

Expected Output:

total header movements12590526avg is 1259052.625000

OUTPUT:

