
COMPUTER NETWORKS

AND

OPERATING SYSTEM
LABORATORY MANUAL

B.TECH (R17)

(III YEAR – I SEM)

(2019‐2020)
DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

MALLA REDDY COLLEGE OF ENGINEERING &
TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12 (B) of UGC ACT 1956

Affiliated to JNTUH, Hyderabad, Approved by AICTE ‐ Accredited by NBA & NAAC – ‘A’ Grade ‐ ISO 9001:2015 Certified)
Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VISION

 To improve the quality of technical education that provides efficient software engineers

with an attitude to adapt challenging IT needs of local, national and international arena,

through teaching and interaction with alumni and industry.

MISSION

 Department intends to meet the contemporary challenges in the field of IT and is playing

a vital role in shaping the education of the 21st century by providing unique educational

and research opportunities.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1 – ANALYTICAL SKILLS

To facilitate the graduates with the ability to visualize, gather information, articulate, analyze,

solve complex problems, and make decisions. These are essential to address the challenges of complex

and computation intensive problems increasing their productivity.

PEO2 – TECHNICAL SKILLS

To facilitate the graduates with the technical skills that prepare them for immediate employment

and pursue certification providing a deeper understanding of the technology in advanced areas of

computer science and related fields, thus encouraging to pursue higher education and research based on

their interest.

PEO3 – SOFT SKILLS

To facilitate the graduates with the soft skills that include fulfilling the mission, setting goals,

showing self-confidence by communicating effectively, having a positive attitude, get involved in team-

work, being a leader, managing their career and their life.

PEO4 – PROFESSIONAL ETHICS

To facilitate the graduates with the knowledge of professional and ethical responsibilities by

paying attention to grooming, being conservative with style, following dress codes, safety codes, and

adapting themselves to technological advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B. Tech Information Technology, the graduates will have the following

Program Specific Outcomes:

1. Fundamentals and critical knowledge of the Computer System:- Able to Understand the working

principles of the computer System and its components , Apply the knowledge to build, asses, and

analyze the software and hardware aspects of it .

2. The comprehensive and Applicative knowledge of Software Development: Comprehensive skills of

Programming Languages, Software process models, methodologies, and able to plan, develop, test,

analyze, and manage the software and hardware intensive systems in heterogeneous platforms

individually or working in teams.

3. Applications of Computing Domain & Research: Able to use the professional, managerial,

interdisciplinary skill set, and domain specific tools in development processes, identify the research gaps,

and provide innovative solutions to them.

PROGRAMOUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,
and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering
problems reaching substantiated conclusions using first principles of mathematics, natural sciences,
and engineering sciences.

3. Design / development of solutions: Design solutions for complex engineering problems and design
system components or processes that meet the specified needs with appropriate consideration for
the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods
including design of experiments, analysis and interpretation of data, and synthesis of the information
to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and mo dern
engineering and IT tools including prediction and modeling to complex engineering activities with an
understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,
health, safety, legal and cultural issues and the consequent responsibilities relevant to the
professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in
societal and environmental contexts, and demo nstrate the knowledge of, and need for sustainable
development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of
the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering
community and with society at large, such as, being able to comprehend and write effective reports
and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering
and management principles and apply these to one’s own work, as a member and leader in a team,
to manage projects and in multi-disciplinary environments.

12. Life- long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(UGC-Autonomous Institution , Govt. of India)

(Permanently Affiliated to JNTUH, Approved by AICTE-Accredited by NBA & NAAC- A-Grade; ISO 9001:2008 Certified)

Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Computer Networks & Operating System Lab Manual (R17A0587)
TABLE OF CONTENTS

S.No List of Experiments in CN Page.no

1.
Implement the data link layer framing methods such as character

count, character stuffing and bit stuffing
1-11

2
Implement on a data set of characters the three CRC polynomials

CRC 12, CRC 16 and CRC CCIP
12-15

3
Implement Dijkstra’s algorithm to compute the shortest path
thru a graph

16-18

4
Take an example subnet graph with weights indicating delay

between nodes
19-20

5
Now obtain Routing table art each node using distance vector routing

algorithm
21-23

6 Take an example subnet of hosts. Obtain broadcast tree for it 24-25

7
Take a 64 bit playing text and encrypt the same using DES

algorithm.
26-33

8 Write a program to break the above DES coding 34-38

9
Using RSA algorithm Encrypt a text data and Decrypt the

same.
39-43

List of Experiments in OS

1
Simulate the following CPU scheduling algorithm

a) FCFS b) SJF c) Round Robin d) Priority
45-55

2
Simulate MVT & MFT

56-61

3
Simulate all page replacement algorithms

a) FIFO b) LRU c)OPTIMAL

62-71

4

Simulate all file organization techniques

a) Single level b)Two level

72-78

5
Simulate all File Allocation Strategies

a) Sequential B)Indexed C)Linked
79-86

6 Simulate Bankers Algorithm for Deadlock Avoidance 87-91

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

--

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GENERAL LABORATORY INSTRUCTIONS

1. Students are advised to come to the laboratory at least 5 minutes before (to starting time), those who come

after 5 minutes will not be allowed into the lab.

2. Plan your task properly much before to the commencement, come prepared to the lab with the synopsis /

program / experiment details.

3. Student should enter into the laboratory with:

a. Laboratory observation notes with all the details (Problem statement, Aim, Algorithm, Procedure,

Program, Expected Output, etc.,) filled in for the lab session.

b. Laboratory Record updated up to the last session experiments and other utensils (if any) needed in

the lab.

c. Proper Dress code and Identity card.

4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer system allotted to you

by the faculty.

5. Execute your task in the laboratory, and record the results / output in the lab observation note book, and

get certified by the concerned faculty.

6. All the students should be polite and cooperative with the laboratory staff, must maintain the discipline

and decency in the laboratory.

7. Computer labs are established with sophisticated and high end branded systems, which should be utilized

properly.

8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the lab sessions.

Misuse of the equipment, misbehaviors with the staff and systems etc., will attract severe punishment.

9. Students must take the permission of the faculty in case of any urgency to go out ; if anybody found

loitering outside the lab / class without permission during working hours will be treated seriously and

punished appropriately.

10. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves the lab after

completing the task (experiment) in all aspects. He/she must ensure the system / seat is kept properly.

Head of the Department Principal

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

OBJECTIVES AND OUTCOMES

OBJECTIVES:

 To understand the functionalities of various layers of OSI model

 To explain the difference between hardware, software; operating systems, programs
and files.

 Identify the purpose of different software applications.

OUTCOMES: By the end of the semester, students will be able

 Understand fundamental underlying principles of computer networking.

 Understand details and functionality of layered network architecture.

 Apply mathematical foundations to solve computational problems in computer

networking.

 Describe and demonstrate the functions and features of current operating systems

 Demonstrate proficiency in common industry software applications (word

processing, spreadsheet, presentation, and database) to effectively communicate in

a professional business setting

 Demonstrate skills that meet industry standards and certification requirements in

the use of system hardware, operating systems technologies, and application

systems.

RECOMMENDED SYSTEM / SOFTWARE REQUIREMENTS:

1. Intel based desktop PC with minimum of 166MHz or faster processor with at least 64 MB
RAM and 100 MB free disk space.

2. C ++ Compiler or Unix/Linux

USEFUL TEXT BOOKS / REFERECES / WEBSITES :

1. An Introduction to Operating Systems, P.C.P Bhatt, 2nd edition, PHI.

2. Modern Operating Systems, Andrew S Tanenbaum, 3rd

Edition, PHI

Computer Networks & Operating Systems Lab Manual

1. a) Implement character stuffing on given data

Algorithm:

Step 1: Initially give the user 2 choices, whether to character stuff or to directly exit, if wrong

choice is entered then prompt an invalid choice message.

Step 2: Intake from the user the number of characters which are to be character

stuffed. Step 3: Then the characters which are to be stuffed are to be taken inside

the for loop.

Step 4: Original data is displayed and the characters to be stuffed at the start and end of the

frame are uploaded in the program.

Step 5: If DLE character is present then stuff DLE character before it.

Step 6: The characters DLESTX are inserted at the start and end of the

data. Step 7: The data along with the stuffed characters are displayed

Step 8: The original data is recovered and displayed on the receiving

side Step 9: Stop

Program :

#include<stdio.h>

#include<conio.h>
#include<stdlib.h>

void charc(void);

void main()
{
int
choice;
while(1
)
{
printf("\n\n\n1.character stuffing");

printf("\n\n2.exit");
printf("\n\n\nenterchoice");
scanf("%d",&choice);

printf("%d",choice);
if(choice>2)
printf("\n\n invalid option ... please renter");

switch(choice)
{

case
1:charc();
break;

case 2:_exit(0);

Page 1

Computer Networks & Operating Systems Lab Manual

}

}
}

void charc(void)
{

clrscr();
char

c[50],d[50],t[50];

int i,m,j;
printf("enter the number of characters\n");
scanf("%d",&m);printf("\n enter the
characters\n"); for(i=0;i<m+1;i++)

{
scanf("%c",&c[i]);
}
printf("\n original data\n");

for(i=0;i<m+1;i++)
printf("%c",c[i]);d[0]='d';
d[1]='l';d[2]='e';
d[3]='s';d[4]='t';
d[5]='x';

for(i=0,j=6;i<m+1;i++,j++)
{
if((c[i]=='d'&&c[i+1]=='l'&& c[i+2]=='e'))

{

d[j]='d'; j++;
d[j]='l'; j++;

d[j]='e'; j++;

m=m+3;
}
d[j]=c[i];
}

m=m+6; m++;

d[m]='d'; m++;
d[m]='l'; m++;

d[m]='e'; m++;

d[m]='s'; m++;
d[m]='t'; m++;
d[m]='x';

m++;
printf("\n\n transmitted data: \n"); for(i=0;i<m;i++)

{
printf("%c",d[i]);

}
for(i=6,j=0;i<m-6;i++,j++)
{

if(d[i]=='d'&&d[i+1]=='l'&&d[i+2]=='e'&&d[i+3]=='d'&&d[i+4]=='l'&&d[i+5]=='e')
i=i+3;
t[j]=d[i];
}

printf("\n\nreceived data:"); for(i=0;i<j;i++)

Page 2

Computer Networks & Operating Systems Lab Manual

{
printf("%c",t[i]);
}

}

o/p:

Page 3

Computer Networks & Operating Systems Lab Manual

1 b) Implement character count on given data

Algorithm for Character count

1. Start

2. Append DLE STX at the beginning of the string

3. Check the data if character is present; if character DLE is present in the string

(example DOODLE) insert another DLE in the string (ex: DOODLEDLE)

4. Transmit DLE ETXat the end of the string

5. Display the string

6. Stop

PROGRAM:

#include<stdio.h> #include<string.h>
main()
{

int i,j,k,l,count=0,n; char s[100],cs[50];

clrscr();
printf("\n ENTER THE BIT STRING:");
gets(s);

n=strlen(s);

printf("\nTHE STRING IS\n");
for(i=0;i<n;)

{
if(s[i]==s[i+1])

{
count=2; i++;
while(s[i]==s[i+1])
{ i++;

count++;
}
if(count>=5)

{

printf("$");
if(count<10)

printf("0");

printf("%d%c",count,s[i]);
i++;
}

else
{

for(j=0;j<count;j++)
printf("%c",s[i]);

i++;
}
}

Page 4

Computer Networks & Operating Systems Lab Manual

else
{

printf("%c",s[i]);
i++;

}
}

getch(); }

INPUT/OUTPUT:

ENTER THE BIT STRING:

123AAAAAAAAAATYKKKPPPP

P THE STRING IS

123$10ATYKKK$05P

Page 5

Computer Networks & Operating Systems Lab Manual

b) Decode the stuffed data

 Algorithm for Character De−stuffing

1. Start

2. Neglect initial DLE STX

3. If DLE is present in the text, ngelect it; if another DLE follows, copy the same to

output. 4. Neglect the trailing DLE ETX

5. Stop

PROGRAM:

#include<stdio.h>

#include<string.h>
main()

{
int i,j,k,l,n,count;

char s[100],cs[50]; clrscr();
printf("\n ENTER THE STUFFED STRING :");

gets(s); n=strlen(s);
printf("\nTHE STRING IS\n");
for(i=0;i<n;)

{
if(s[i]=='$')
{ i++;

count=(s[i]-'0')*10+(s[i+1]-'0');

if(count<5)
{ clrscr();
printf("INVALIDE MESSAGE");

exit(1);
}

while(count>0)
{

printf("%c",s[i+2]);
count--;

}
i=i+3;

}
else
{

printf("%c",s[i]); i++;
}

}
getch(); }

Page 6

Computer Networks & Operating Systems Lab Manual

INPUT/OUTPUT:

ENTER THE STUFFED STRING: 123$10ATY$06K THE STRING IS:

123AAAAAAAAAATYKKKKKK

Page 7

Computer Networks & Operating Systems Lab Manual

c) Bit stuffing on given binary data

 Algorithm for Bit−Stuffing

1. Start

2. Initialize the array for transmitted stream with the special bit pattern 0111 1110 which

indicates the beginning of the frame.

3. Get the bit stream to be transmitted in to the array.

4. Check for five consecutive ones and if they occur, stuff a bit 0

5. Display the data transmitted as it appears on the data line after appending 0111 1110 at the

end

6. For de−stuffing, copy the transmitted data to another array after detecting the stuffed

bits 7. Display the received bit stream

8. Stop

#include<stdio.h>

#include<conio.h>
#include<math.h>
main()

{

int b[100],b1[100],l,k,n=0,i,j,z,i1,s[20],f[8]={0,1,1,1,1,1,1,0},j1;
static int a[100]; char
ch='y',bs[50]; clrscr();
do

{
i1=z=n=0; clrscr();

printf("\n Enter the bit string(space for each byte)");

 gets(bs);
for(i=0;bs[i]!='\0';i++)
if(bs[i]!=' ')

b[n++]=bs[i]-'0';
for(i=0;i<n;i++)
{

if(b[i]==1)

{

 i1++;
if(i1==5){s[z++]=i+1;i1=0;
}
}
else i1=0;

} j1=j=0;
for(i=0;i<z;i++)

{

while(j<s[i])

b1[j1++]=b[j

Page 8

Computer Networks & Operating Systems Lab Manual

++];

b1[j1++]=0;
}
while(j1<n+z)

b1[j1++]=b[j++];

l=n/8;
for(i=0;l>0;i++)

{

a[i]=l%2; l=l/2;
}
printf("\nAfter stuffing :");
for(j=7;j>=0;j--)

printf("%d",a[j]);

printf(" ");
for(k=0;k<8;k++)

 printf("%d",f[k]);

 printf(" ");

for(k=0;k<j1;k++)

printf("%d",b1[k]);

printf(" ");

for(k=0;k<8;k++)

 printf("%d",f[k]);
printf("\n\n Do u want to continue?");

 ch=getch();
}
while(ch=='y' || ch=='Y');
getch();
}

INPUT/OUTPUT:

Enter the bit string (space for each
byte) 11111111 01111110 00111110

After stuffing : 00000011 01111110 111110111011111010001111100 01111110

Page 9

Computer Networks & Operating Systems Lab Manual

d) Destuff the given stuffed data frame

include<stdio.h>
#include<conio.h>

 #include<math.h>
 main()
{

int i,n,n1,k,j,ni,len;
char f[8]={'0','1','1','1','1','1','1','0'},st[100];

static int ds[100];

clrscr();
printf("\n\nEnter the stuffed data");

 gets(st);
n=strlen(st);

ni=k=0;

for(i=8;i<16;i++)

 if(st[i]!=f[k++])
{
printf("\nError in flag");
exit(1);

}
k=0;

for(i=n-8;i<n;i++)

if(f[k++]!=st[i])
{

printf("\nError in flag");

exit(1);
}

for(i=0;i<n;i++)
st[i]=st[i]-'0';

len=0;
j=7;

for(i=0;i<8;i++)
len+=pow(2,i)*st[j--];

 k=ni=j=0;
for(i=16;i<n-8;i++)
{

if(st[i]==1)
{
 ni++;

if(ni==5)
{

ds[j++]=1;
 i++;

k++;
ni=0

;}

else

ds[j++]=1;
}

Page 10

Computer Networks & Operating Systems Lab Manual

else

ds[j++]=0;
}

n1=n-24-k;

 if(len*8!=n1)
{

printf("\n Error in data length");
exit(1);

}
printf("\n After destuffing ");

for(i=0;i<n1;i++)
printf("%d",ds[i]);

getch();

}

INPUT/OUTPUT:

Enter the stuffed data000000110111111011111011101111101000111110001111110
After destuffing 111111110111101000111100

Exercise:
a) Implement K-Bit run length code on given data

b) Decode the K-Bit run length code

Page 11

Computer Networks & Operating Systems Lab Manual

2. a)Generate CRC code for a given data

frame Algorithm

1. A string of n as is appended to the data unit. The length of predetermined divisor is n+ 1.

2. The newly formed data unit 1. A string of n as is appended to the data unit. The length of
predetermined divisor is n+ 1.

i.e. original data + string of n as are divided by the divisor using binary division and remainder

is obtained. This remainder is called CRC.

3. Now, string of n Os appended to data unit is replaced by the CRC remainder (which is also

of n bit).

4. The data unit + CRC is then transmitted to receiver.

5. The receiver on receiving it divides data unit + CRC by the same divisor & checks the
remainder.

6. If the remainder of division is zero, receiver assumes that there is no error in data and it

accepts it.

7. If remainder is non-zero then there is an error in data and receiver rejects it.

PROGRAM:

#include<stdio.h>
#include<math.h>

main()
{

int i,j,k,m,n,cl;
char a[10],b[100],c[100];
clrscr();

printf("\n ENTER POLYNANOMIAL:");
scanf("%s",a);

printf("\n ENTER THE FRAME:");
scanf("%s",b);
m=strlen(a);

n=strlen(b);
for(i=0;i<m;i++) /* To eliminat first zeros in
polynomial */

{
if(a[i]=='1')

{

m=m-i; break;
}

}

for(k=0;k<m;k++) /* To Adjust the polynomial

*/ a[k]=a[k+i];

cl=m+n-1;

Page 12

Computer Networks & Operating Systems Lab Manual

for(i=0;i<n;i++) /* To copy the original frame to c[]*/

c[i]=b[i];
for(i=n;i<cl;i++) /* To add n-1 zeros at the end of frame */

c[i]='0';
c[i]='\0'; /*To make it as a string */
for(i=0;i<n;i++) /* To set polynomial remainder at end of c[]*/

if(c[i]=='1')
{
for(j=i,k=0;k<m;k++,j++)

if(a[k]==c[j])
c[j]='0';

else c[j]='1';
}

for(i=0;i<n;i++) /* To copy original data in c[] */ c[i]=b[i];

printf("\n THE MESSAGE IS: %s",c);
getch();
}

INPUT/OUTPUT:

ENTER POLYNANOMIAL:1011 ENTER THE FRAME:10011101

THE MESSAGE IS: 10011101011

ENTER POLYNANOMIAL:00101 ENTER THE FRAME:10101011

THE MESSAGE IS: 1010101101

Page 13

Computer Networks & Operating Systems Lab Manual

b) Verify the CRC code

#include<stdio.h>
#include<math.h>

main()

{

int i,j,k,m,n,cl;

char a[10],c[100]; clrscr();
printf("\n ENTER POLYNANOMIAL:");
scanf("%s",a);
printf("\n ENTER THE CRC FRAME:");

scanf("%s",c); m=strlen(a);
cl=strlen(c);
for(i=0;i<m;i++) /* To eliminat first zeros in polynomial

*/
{

if(a[i]=='1')

{ m=m-i; break; }

}

for(k=0;k<m;k++) /* To Adjust the polynomial */
a[k]=a[k+i];

n=cl-m+1;

for(i=0;i<n;i++) /* To check polynomial remainder is

zero or not */ if(c[i]=='1')
{
for(j=i,k=0;k<m;k++,j++) if(a[k]==c[j])

c[j]='0';
else c[j]='1';
}
for(i=0;i<cl;i++) /* To copy original data in c[] */
if(c[i]=='1')

{
printf("\n THERE IS SOME ERROR IN MESSAGE :");
break;

}
if(i==cl)
printf("\n MESSAGE IS CORRECT");

getch(); }

Page 14

Computer Networks & Operating Systems Lab Manual

INPUT/OUTPUT :

ENTER POLYNANOMIAL: 1011

ENTER THE CRC FRAME:

10101011101 THERE IS SOME

ERROR IN MESSAGE:

ENTER POLYNANOMIAL: 01011

ENTER THE CRC FRAME:

10011101011 MESSAGE IS

CORRECT

Exercise:

1. a) Implement Hamming code Generation for a given binary code

b) Hamming code verification and checking
2. Implement even and odd parity for given binary code

Page 15

Computer Networks & Operating Systems Lab Manual

3. Implement Dijkstra’s algorithm to compute the shortest path through a graph

Algorithm:

1. Assign to every node a tentative distance value: set it to zero for our initial node and to

infinity for all other nodes.

2. Mark all nodes unvisited. Set the initial node as current. Create a set of the unvisited

nodes called the unvisited set consisting of all the nodes.

3. For the current node, consider all of its unvisited neighbors and calculate their tentative

distances. For example, if the current node A is marked with a distance of 6, and the edge

connecting it with a neighbor B has length 2, then the distance to B (through A) will be 6 + 2 =

8. If this distance is less than the previously recorded tentative distance of B, then overwrite

that distance. Even though a neighbor has been examined, it is not marked as "visited" at this

time, and it remains in the unvisited set.

4. When we are done considering all of the neighbors of the current node, mark the current

node as visited and remove it from the unvisited set. A visited node will never be checked

again.

5. If the destination node has been marked visited (when planning a route between two

specific nodes) or if the smallest tentative distance among the nodes in the unvisited set is

infinity (when planning a complete traversal; occurs when there is no connection between the

initial node and remaining unvisited nodes), then stop. The algorithm has finished.

6. Select the unvisited node that is marked with the smallest tentative distance, and set it as

the new "current node" then go back to step 3.

PROGRAM:

#include<stdio.h>
#include<string.h>
#include<math.h>

main()
{

int u,v,num,i,j,l,k,s[10],min,cost[10][10],dist[10],path[10],n;

clrscr();
printf("\n ENTER VERTECES:");
scanf("%d",&n);

printf("\n ENTER ADJECENCY MATRIX:\n");
for(i=1;i<=n;i++)
{

for(j=1;j<=n;j++)
scanf("%d",&cost[i][j]);

Page 16

Computer Networks & Operating Systems Lab Manual

}

for(i=1;i<=n;i++)
for(j=1;j<=n;j++)

if(i==j) cost[i][j]=0;

else if(cost[i][j]==-1)
cost[i][j]=30000;
printf("\nENTER SOURCE VERTEX:");

scanf("%d",&v); clrscr();
for(i=1;i<=n;i++)

{
s[i]=0;
path[i]=v; dist[i]=cost[v][i];

}

dist[v]=0;

for(num=2;num<=n;num++)
{

min=30000; u=0;
for(i=1;i<=n;i++)
{

if(s[i]!=1) if(min>dist[i])
{
u=i; min=dist[i];

}
}

s[u]=1;
for(i=1;i<=n;i++)

{ if(s[i]!=1)

if(dist[i]>(min+cost[u][i]))
{

dist[i]=min+cost[u][i];
path[i]=u;

}
}

}

printf("\n");

printf("\nPATH MATRIX:\n");
printf("\nDISTANCE NODE PATH\n");

for(i=1;i<=n;i++)

{ printf("\n %d",dist[i]);
printf(" %d ",i);

j=i;
do

{

printf(" --> %d ",path[j]);
u=path[j];
j=u;

}while(u!=v);
}

getch();}

Page 17

Computer Networks & Operating Systems Lab Manual

INPUT/OUTPUT:

ENTER VERTECES:8

ENTER ADJECENCY MATRIX:

0 2 -1 -1 -1 -1 6 -1
2 0 7 -1 2 -1 -1 -1

-1 7 0 3 -1 3 -1 -1

-1 -1 3 0 -1 -1 -1 2
-1 2 -1 -1 0 2 1 -1
-1 -1 3 -1 2 0 -1 2

6 -1 -1 -1 1 -1 0 4
-1 -1 -1 2 -1 2 4 0

ENTER SOURCE VERTEX:1

PATH MATRIX:

DISTANCE NODE PATH

0 1 --> 1
2 2 --> 1
9 3 --> 2 --> 1
10 4 --> 8 --> 6 --> 5 --> 2 --> 1
4 5 --> 2 --> 1

6 6 --> 5 --> 2 --> 1
5 7 --> 5 --> 2 --> 1
8 8 --> 6 --> 5 --> 2 --> 1

Exercise:

1. Write a program for implementing link state routing
using Dijkstra’s algorithm

2. Write a program for Flooding algorithm

Page 18

Computer Networks & Operating Systems Lab Manual

4. Take an example subnet graph with weights indicating delay between nodes

#include<stdio.h>
 #include<conio.h>
struct full

{
char line[10],dest[10];

int hops;
}f[20];

main()

{
int
nv,min,minver,i;

char
sv[2],temp;
clrscr();

printf("\nEnter number of vertices:");
scanf("%d",&nv);
printf("\n Enter source vertex: ");

scanf("%s",sv);
printf("\n Enter full table for source vertex %s :\n",sv);

for(i=0;i<nv;i++)
scanf("%s %s %d",f[i].dest,f[i].line,&f[i].hops);

printf("\n HIERARCHIAL TABLE\n\n");
for(i=0;i<nv;)
{

if(sv[0]==f[i].dest[0])
{

printf("\n %s %s %d",f[i].dest,f[i].line,f[i].hops);
 i++;

}
else

{
min=1000; minver=0;
temp=f[i].dest[0];

while(temp==f[i].dest[0])
{

if(min>f[i].hops)
{
min=f[i].hops; minver=i;

} i++;

}

printf("\n %c %s %d ",temp,f[minver].line,f[minver].hops);

}

}
getch();

}

Page 19

Computer Networks & Operating Systems Lab Manual

INPUT/OUTPUT:

Enter number of vertices: 8

Enter source vertex :1A

Enter full table for source vertex 1A
: 1A - -

1B 1B 1
1C 1C 1
2A 1B 1
2B 1B 2

3A 1C 2
3B 1C 3

4A 1C 3

HIERARCHIAL

TABLE

1A - 0
1B 1B 1

1C 1C 1
2 1B 1

3 1C 2
4 1C 3

Exercise:

1. Implement path vector routing protocol.

2. Routing Information Protocol

Page 20

Computer Networks & Operating Systems Lab Manual

5. Now obtain Routing table for each node using distance vector routing

algorithm Algorithm:

Input: Graph and a given vertex src

Output: Shortest distance to all vertices from src. If there is a negative weight cycle, then

shortest distances are not calculated, negative weight cycle is reported.

1) This step initializes distances from source to all vertices as infinite and distance to source

itself as 0. Create an array dist[] of size |V| with all values as infinite except dist[src] where src

is source vertex.

2) This step calculates shortest distances. Do following |V|-1 times where |V| is the number of

vertices in given graph.

…..a) Do following for each edge v-u

………………If dist[v] > dist[u] + weight of edge uv, then update dist[v]

………………….dist[v] = dist[u] + weight of edge uv

3) This step reports if there is a negative weight cycle in graph. Do following for each edge
u-v

……If dist[v] > dist[u] + weight of edge uv, then “Graph contains negative weight cycle”

The idea of step 3 is, step 2 guarantees shortest distances if graph doesn’t contain negative

weight cycle. If we iterate through all edges one more time and get a shorter path for any

vertex, then there is a negative weight cycle

Program:

#include<stdio.h>

#include<math.h> #include<conio.h> main()
{

int i,j,k,nv,sn,noadj,edel[20],tdel[20][20],min;

char sv,adver[20],ch;
clrscr();
printf("\n ENTER THE NO.OF VERTECES:");

scanf("%d",&nv);
printf("\n ENTER THE SOURCE VERTEX
NUM,BER AND NAME:");

scanf("%d",&sn);

flushall(); sv=getchar();
printf("\n NETER NO.OF ADJ VERTECES TO
VERTEX %c",sv);

scanf("%d",&noadj);

Page 21

Computer Networks & Operating Systems Lab Manual

for(i=0;i<noadj;i++)

{
printf("\n ENTER TIME DELAY and NODE NAME:");
scanf("%d %c",&edel[i],&adver[i]);

}
for(i=0;i<noadj;i++)

{
printf("\n ENTER THE TIME DELAY FROM %c to ALL OTHER

NODES: ",adver[i]);
for(j=0;j<nv;j++)

scanf("%d",&tdel[i][j]);
}

printf("\n DELAY VIA--VERTEX \n ");
for(i=0;i<nv;i++)

{

min=1000; ch=0;
for(j=0;j<noadj;j++)

if(min>(tdel[j][i]+edel[j]))
{
min=tdel[j][i]+edel[j];
ch=adver[j];
}

if(i!=sn-1)
printf("\n%d %c",min,ch);

 else

printf("\n0 -");
}
getch();

}

Page 22

Computer Networks & Operating Systems Lab Manual

INPUT/OUTPUT:

ENTER THE NO.OF VERTECES:12

ENTER THE SOURCE VERTEX NUMBER AND NAME:10 J

ENTER NO.OF ADJ VERTECES TO

VERTEX 4 ENTER TIME DELAY and NODE

NAME:8 A ENTER TIME DELAY and NODE

NAME:10 I ENTER TIME DELAY and NODE

NAME:12 H ENTER TIME DELAY and

NODE NAME:6 K

ENTER THE TIME DELAY FROM A to ALL OTHER

NODES: 0 12 25 40 14 23 18 17 21 9 24 29

ENTER THE TIME DELAY FROM I to ALL OTHER
NODES: 24 36 18 27 7 20 31 20 0 11 22 33

ENTER THE TIME DELAY FROM H to ALL OTHER

NODES: 20 31 19 8 30 19 6 0 14 7 22 9

ENTER THE TIME DELAY FROM K to ALL OTHER
NODES: 21 28 36 24 22 40 31 19 22 10 0 9

DELAY VIA--VERTEX
8 a
20 a

28 i
20 h

17 i
30 i
18 h
12 h

10 i
0 -
6 k

15 k

Exercise:
1. Routing table for each node using hierarchical routing algorithm

2. Open Shortest Path First

Page 23

Computer Networks & Operating Systems Lab Manual

6. Take an example subnet of hosts. Obtain broadcast tree for it.

/*PROGRAM TO IMPLEMENT BROADCAST ROUTING ALGORITHM*/

Algorithm:

 A router creates a data packet and then sends it to each host one by

one. In this case, the router creates multiple copies of single data

packet with different destination addresses. All packets are sent as

unicast but because they are sent to all, it simulates as if router is

broadcasting.

This method consumes lots of bandwidth and router must destination

address of each node.

 Secondly, when router receives a packet that is to be broadcasted, it

simply floods those packets out of all interfaces. All routers are

configured in the same way.

Program:

#include<stdio.h>
int a[10][10],n;
void main()

{
int i,j,root;

clrscr();

printf("Enter no.of nodes:");
scanf("%d",&n);
printf("Enter adjacent matrix\n");

for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{

printf("Enter connecting of %d-->%d::",i,j);

scanf("%d",&a[i][j]);
}
printf("Enter root node:");

scanf("%d",&root);
adj(root);
}

adj(int k)
{
int i,j;

printf("Adjacent node of root node::\n");
printf("%d\n\n",k);
for(j=1;j<=n;j++)

Page 24

Computer Networks & Operating Systems Lab Manual

{
if(a[k][j]==1 || a[j][k]==1)
printf("%d\t",j);

}

printf("\n");
for(i=1;i<=n;i++)
{
if((a[k][j]==0) && (a[i][k]==0) && (i!=k))
printf("%d",i);

}
}
OUTPUT

Enter no.of nodes:5
Enter adjacent matrix
Enter connecting of 1-->1::0

Enter connecting of 1-->2::1
Enter connecting of 1-->3::1
Enter connecting of 1-->4::0

Enter connecting of 1-->5::0
Enter connecting of 2-->1::1
Enter connecting of 2-->2::0

Enter connecting of 2-->3::1
Enter connecting of 2-->4::1
Enter connecting of 2-->5::0

Enter connecting of 3-->1::1
Enter connecting of 3-->2::1
Enter connecting of 3-->3::0

Enter connecting of 3-->4::0
Enter connecting of 3-->5::0
Enter connecting of 4-->1::0

Enter connecting of 4-->2::1
Enter connecting of 4-->3::0
Enter connecting of 4-->4::0

Enter connecting of 4-->5::1
Enter connecting of 5-->1::0
Enter connecting of 5-->2::0

Enter connecting of 5-->3::0
Enter connecting of 5-->4::1
Enter connecting of 5-->5::0

Enter root node:2

Adjacent node of root node::
2
1 3 4
5

Exercise: 1. Implement Core-Based Tree(CBT) protocol obtain broadcast tree for it.

2. Implement an optimal algorithm for Broadcasting multiple messages in
trees.

Page 25

Computer Networks & Operating Systems Lab Manual

7. Take a 64 bit plain text and encrypt the same using DES algorithm.

/* Program to implement DES */

Algorithm:

1.) Firstly, we need to process the key.

1.1 Get a 64-bit key from the user. (Every 8th bit is considered a parity bit. For a key to

have correct parity, each byte should contain an odd number of "1" bits.)

1.2 Calculate the key schedule.

1.2.1 Perform the following permutation on the 64-bit key. (The parity bits are discarded,

reducing the key to 56 bits. Bit 1 of the permuted block is bit 57 of the original key, bit 2 is

bit 49, and so on with bit56 being bit 4 of the original key.)

1.2.2 Split the permuted key into two halves. The first 28 bits are called C[0] and the last

28 bits are called D[0].

1.2.3 Calculate the 16 subkeys. Start with i = 1.

1.2.3.1 Perform one or two circular left shifts on both C[i-1] and D[i-1] to get C[i] and D[i],

respectively.

1.2.3.3 Loop back to 1.2.3.1 until K[16] has been calculated.

2 Process a 64-bit data block.

2.1 Get a 64-bit data block. If the block is shorter than 64 bits, it should be padded as

appropriate for the application.

2.2 Perform the following permutation on the data block.

Initial Permutation (IP)

2.3 Split the block into two halves. The first 32 bits are called L[0], and the last 32 bits are

called R[0].

2.4 Apply the 16 subkeys to the data block. Start with i = 1.

2.4.1 Expand the 32-bit R[i-1] into 48 bits according to the bit-selection

2.4.2 Exclusive-or E(R[i-1]) with K[i].

2.4.3 Break E(R[i-1]) xor K[i] into eight 6-bit blocks. Bits 1-6 are B[1], bits 7-12 are B[2],

and so on with bits 43-48 being B[8].

2.4.4 Substitute the values found in the S-boxes for all B[j]. Start with j = 1. All values

in the S-boxes should be considered 4 bits wide.

Page 26

Computer Networks & Operating Systems Lab Manual

2.4.4.1 Take the 1st and 6th bits of B[j] together as a 2-bit value (call it m) indicating the

row in S[j] to look in for the substitution.

2.4.4.2 Take the 2nd through 5th bits of B[j] together as a 4-bit value (call it n) indicating

the column in S[j] to find the substitution.

2.4.4.3 Replace B[j] with S[j][m][n].

Substitution Box 1 (S[1])

2.4.4.4 Loop back to 2.4.4.1 until all 8 blocks have been replaced.

2.4.5 Permute the concatenation of B[1] through B[8] as indicated below.

Permutation P

2.4.6 Exclusive-or the resulting value with L[i-1]. Thus, all together, your R[i] = L[i-1] xor

P(S[1](B[1])...S[8](B[8])), where B[j] is a 6-bit block of E(R[i-1]) xor K[i]. (The function for

R[i] is written as, R[i] = L[i-1] xor f(R[i-1], K[i]).)

2.4.7 L[i] = R[i-1].

2.4.8 Loop back to 2.4.1 until K[16] has been applied.

2.5 Perform the following permutation on the block

R[16]L[16]. Final Permutation (IP**-1)

Program:

#include<stdio.h>
#include<conio.h>

void main()
{

int k[15],k1[15],k2[15],i,j,p[15],p1[15],p2[15];
int p10[10]={3,5,2,7,4,10,1,9,8,6};
int p8[10]={6,3,7,4,8,5,10,9};

int t1,t2,t3,t4,t[4],b[10],s,h,a;
int ip[8]={2,6,3,1,4,8,5,7};
int ep[8]={4,1,2,3,2,3,4,1};

int ip1[8]={4,1,3,5,7,2,8,6};
int p4[4]={2,3,4,1};
int s0[4][4]={{1,0,3,2},{3,2,1,0},{0,2,1,3},{3,1,3,2}};

int s1[4][4]={{0,1,2,3},{2,0,1,3},{3,0,1,0},{2,1,0,3}};
clrscr();
printf("\n\tSimplified-DES\n");

printf("\n");
printf("\nEnter the plain text of 8 bits length::\n");
for(i=0;i<8;i++)

scanf("%d",&p2[i]);

Page 27

Computer Networks & Operating Systems Lab Manual

printf("\n\nEnter the key of 10 bits length::\n");
for(i=0;i<10;i++)
scanf("%d",&k[i]);

printf("\n\nKey Generation::\n");
for(i=0;i<10;i++)
{

j=p10[i];
p[i]=k[j-1];
}

t1=p[0];
t2=p[5];
for(i=0;i<4;i++)

p[i]=p[i+1];
p[i]=t1;
for(i=5;i<9;i++)

p[i]=p[i+1];
p[i]=t2;
for(i=0;i<8;i++)
{

j=p8[i];
k1[i]=p[j-1];
}

t1=p[0];
t2=p[1];
t3=p[5];

t4=p[6];
for(i=0;i<3;i++)
{

p[i]=p[i+2];
}
p[i]=t1;

i++;
p[i]=t2;
for(i=5;i<8;i++)

p[i]=p[i+2];
p[i]=t3;
i++;

p[i]=t4;
for(i=0;i<8;i++)
{

j=p8[i];
k2[i]=p[j-1];
}

printf("\nkey k1::");
for(i=0;i<8;i++)
printf("%d",k1[i]);

printf("\nkey k2::");
for(i=0;i<8;i++)
printf("%d",k2[i]);

for(i=0;i<8;i++)
p[i]=p2[i];

Page 28

Computer Networks & Operating Systems Lab Manual

for(a=0;a<2;a++)
{
if(a==0)

{
for(i=0;i<8;i++)
{

j=ip[i];
p1[i]=p[j-1];
}

}
for(i=0;i<4;i++)
{

if(a==0)
k[i]=p1[i+4];
if(a==1)

{
k[i]=p[i+4];
for(i=0;i<8;i++)
b[i]=p[i];

}
}
for(i=0;i<8;i++)

{
j=ep[i];
p[i]=k[j-1];

}
for(i=0;i<8;i++)
{

if(a==0)
{
if(p[i]==k1[i])

k[i]=0;
else
k[i]=1;

}
if(a==1)
{

if(p[i]==k2[i])
k[i]=0;
else

k[i]=1;
}
}

j=0;
for(i=0;i<8;i=i+4)
{

if(k[i]==0&&k[i+3]==0)
{
t[j]=0;

j++;
}

Page 29

Computer Networks & Operating Systems Lab Manual

if(k[i]==0&&k[i+3]==1)
{

t[j]=1;
j++;
}

if(k[i]==1&&k[i+3]==0)
{
t[j]=2;

j++;
}
if(k[i]==1&&k[i+3]==1)

{
t[j]=3;
j++;

}
if(k[i+1]==0&&k[i+2]==0)
{
t[j]=0;

j++;
}
if(k[i+1]==0&&k[i+2]==1)

{
t[j]=1;
j++;

}
if(k[i+1]==1&&k[i+2]==0)
{

t[j]=2;
j++;
}

if(k[i+1]==1&&k[i+2]==1)
{
t[j]=3;

j++;
}
}

s=s0[t[0]][t[1]];
h=s1[t[2]][t[3]];
if(s==0)

{
k[0]=0;
k[1]=0;

}
if(s==1)
{

k[0]=0;
k[1]=1;
}

Page 30

Computer Networks & Operating Systems Lab Manual

if(s==2)
{
k[0]=1;

k[1]=0;
}
if(s==3)

{
k[0]=1;
k[1]=1;

}
if(h==0)
{

k[2]=0;
k[3]=0;
}

if(h==1)
{
k[2]=0;
k[3]=1;

}
if(h==2)
{

k[2]=1;
k[3]=0;
}

if(h==3)
{
k[2]=1;

k[3]=1;
}
for(i=0;i<4;i++)

{
j=p4[i];
p[i]=k[j-1];

}
for(i=0;i<4;i++)
{

if(a==0)
{
if(p1[i]==p[i])

k[i]=0;
else
k[i]=1;

}
if(a==1)
{

if(b[i]==p[i])
k[i]=0;
else

k[i]=1;
}}

Page 31

Computer Networks & Operating Systems Lab Manual

if(a==0)
{
for(i=0;i<4;i++)

p[i]=p1[i+4];
for(i=0;i<4;i++)
p[i+4]=k[i];

}
if(a==1)
{

for(i=4;i<8;i++)
k[i]=b[i];
for(i=0;i<8;i++)

{
j=ip1[i];
p[i]=k[j-1];

}
}
}
printf("\n\nThe cipher text::");

for(i=0;i<8;i++)
printf("%d",p[i]);
getch(); }

OUTPUT

Simplified-DES

Enter the plain text of 8 bits length::

1

0

1

0

1

0

1

0

Page 32

Computer Networks & Operating Systems Lab Manual

Enter the key of 10 bits length::

1

0

1

0

1

0

1

0

1

0

Key Generation::

key k1::11100100

key k2::01010011

The cipher text::01100110

Exercise:

1. Take a plain text and implement AES algorithm

2. Implement a Blowfish algorithm.

Page 33

Computer Networks & Operating Systems Lab Manual

8. Write a program to break the above DES coding.

#include<stdio.h>

#include<conio.h>

#include<string.h>

int p10[]={3,5,2,7,4,10,1,9,8,6},

p8[]={6,3,7,4,8,5,10,9},

p4[]={2,4,3,1};

int ip[]={2,6,3,1,4,8,5,7},

ipinv[]={4,1,3,5,7,2,8,6},

ep[]={4,1,2,3,2,3,4,1};

int s0[][4]={{1,0,3,2,},{3,2,1,0},{0,2,1,3,},{3,1,3,2}};

int s1[][4]={{0,1,2,3},{2,0,1,3},{3,0,1,0},{2,1,0,3}};

void permute(char op[],char ip[],int p[], int n)
{

int i;

for(i=0;i<n;i++)

op[i]=ip[p[i]-1];

op[i]='\0';

}
void circularls(char pr[],int n)

{

int i;

char ch=pr[0];

for(i=0;i<n-1;i++)

pr[i]=pr[i+1];

Page 34

Computer Networks & Operating Systems Lab Manual

pr[i]=ch;

}

void keygen(char k1[],char k2[],char key[])

{

char keytemp[11];

permute(keytemp,key,p10,10);

circularls(keytemp,5);

circularls(keytemp+5,5);

permute(k1,keytemp,p8,8);

circularls(keytemp,5);

circularls(keytemp,5);

circularls(keytemp+5,5);

circularls(keytemp+5,5);

permute(k2,keytemp,p8,8);

}

void xor(char op[],char ip[])

{

int i;

for(i=0;i<strlen(op)&&i<strlen(ip);i++)

op[i]=(op[i]-'0')^(ip[i]-'0')+'0';

}
void sbox(char op[],char ip[],int s[][4])

{

int value;

value=s[(ip[0]-'0')*2+(ip[3]-'0')][(ip[1]-'0')*2+(ip[2]-'0')];

Page 35

Computer Networks & Operating Systems Lab Manual

op[0]=value/2+'0';

op[1]=value%2+'0';

op[2]='\0';

}

void fk(char op[],char ip[],char k[])

{

char l[5],r[5],tmp[9],tmp1[9],tmp2[9];

strncpy(l,ip,4);

l[4]='\0';

strncpy(r,ip+4,4);

r[4]='\0';

permute(tmp,r,ep,8);

xor(tmp,k);

sbox(tmp1,tmp,s0);

sbox(tmp2,tmp+4,s1);

strcat(tmp1,tmp2);

permute(tmp,tmp1,p4,4);

xor(tmp,l);

strcat(tmp,r);

strcpy(op,tmp);

}

void sw(char pr[])

{

char tmp[9];

strncpy(tmp,pr+4,4);

Page 36

Computer Networks & Operating Systems Lab Manual

strncpy(tmp+4,pr,4);

tmp[8]='\0';

strcpy(pr,tmp);

}

void main()

{

char key[11],k1[9],k2[9],plain[9],cipher[9],tmp[9];

clrscr();

printf("enter 10 bit key:");

gets(key);

if(strlen(key)!=10) printf("invalid key length !!");

else

{

keygen(k1,k2,key);

printf("sub key k1::");

puts(k1);

printf("subkey k2::");

puts(k2);

printf("enter 8 bit plain text:");

gets(plain);

if(strlen(plain)!=8) printf("invalid length plain text !!");

permute(tmp,plain,ip,8);

fk(cipher,tmp,k1);

sw(cipher);

fk(tmp,cipher,k2);

Page 37

Computer Networks & Operating Systems Lab Manual

permute(cipher,tmp,ipinv,8);

printf("cipher teaxt is::");

puts(cipher);

/* decryption process*/

permute(tmp,cipher,ip,8);

fk(plain,tmp,k2);

sw(plain);

fk(tmp,plain,k1);

permute(plain,tmp,ipinv,8);

printf("decrypted text is::");

puts(plain);

}

getch();

}

Exercise:1. Using AES algorithm decrypt the cipher

2. Implement HMAC algorithm

Page 38

Computer Networks & Operating Systems Lab Manual

9. Using RSA algorithm encrypt a text data and Decrypt the same.

a) RSA encryption algorithm

Algorithm:

RSA encrypts messages through the following algorithm, which is divided into 3 steps:

1. Key Generation

I. Choose two distinct prime numbers p and q.

II. Find n such that n = pq.

n will be used as the modulus for both the public and private keys.

III. Find the totient of n, ϕ(n)

ϕ(n)=(p-1)(q-1).

IV. Choose an e such that 1 < e < ϕ(n), and such that e and ϕ(n) share no divisors other

than 1 (e and ϕ(n) are relatively prime).
e is kept as the public key exponent.

V. Determine d (using modular arithmetic) which satisfies the congruence relation

de ≡ 1 (mod ϕ(n)).

In other words, pick d such that de - 1 can be evenly divided by (p-1)(q-1), the totient,
or ϕ(n).

This is often computed using the Extended Euclidean Algorithm, since e and ϕ(n) are
relatively prime and d is to be the modular multiplicative inverse of e.
d is kept as the private key exponent.

The public key has modulus n and the public (or encryption) exponent e. The private key
has modulus n and the private (or decryption) exponent d, which is kept secret.

2. Encryption

I. Person A transmits his/her public key (modulus n and exponent e) to Person B, keeping
his/her private key secret.

II. When Person B wishes to send the message "M" to Person A, he first converts M to an
integer such that 0 < m < n by using agreed upon reversible protocol known as a padding
scheme.

III. Person B computes, with Person A's public key information, the ciphertext c
corresponding to

Page 39

Computer Networks & Operating Systems Lab Manual

c ≡ me (mod n).

IV. Person B now sends message "M" in ciphertext, or c, to Person A.

3. Decryption

I. Person A recovers m from c by using his/her private key exponent, d, by the
computation

m ≡ cd (mod n).

II. Given m, Person A can recover the original message "M" by reversing the padding
scheme.

This procedure works since

c ≡ me (mod n),

cd ≡(me)d (mod n),
cd ≡ mde (mod n).

By the symmetry property of mods we have that

mde ≡ mde (mod n).

Since de = 1 + kϕ(n), we can write

mde ≡ m1 + kϕ(n) (mod n),
mde ≡ m(mk)ϕ(n) (mod n),

mde ≡ m (mod n).

From Euler's Theorem and the Chinese Remainder Theorem, we can show that this is

true for all m and the original message

cd ≡ m (mod n), is obtained.

Page 40

Computer Networks & Operating Systems Lab Manual

Program:

#include<stdio.h>

main()
{
int k,b,bin[20];
int i;

long int c,m,e,d,n;
char ch;

char in_file[20],out_file[20];
FILE *in,*out;
clrscr();
printf("\n Enter any input text file name : ");
gets(in_file);

printf("\n Enter file name to store enc output : ");
gets(out_file);
in = fopen(in_file,"r");
out = fopen(out_file,"w");

printf("\n Enter values of e and n : ");

scanf("%ld%ld",&e,&n);

i=-1;

b=e;
while(b>0)
{

bin[++i] = b%2;
b=b/2;

}

k=i;
do
{

m = fgetc(in);
d = 1;

for(i=k; i>=0; i--)
{

d = (d*d) % n;
if (bin[i] == 1)

d = (d*m) % n;
}

fputc(d,out);

}
while(!feof(in));
printf("\n File is encrfypted successfully. ... ");
getch();

}

Page 41

Computer Networks & Operating Systems Lab Manual

INPUT/OUTPUT:

Enter any input text file name : inp.txt

Enter file name to store enc output : out.txt

Enter values of e and n :

7 187

File is encrfypted successfully....

C:\TURBOC2>type inp.txt
abcdefghijklmnop123&*()

C:\TURBOC2>type out.txt

\§░ÉTwë│`òp0âB¢I↓v◄/☼t.

b) RSA Decryption algorithm

#include<stdio.h>
main()

{
int k,b,bin[20];

int i;

long int c,m,e,d,n;
char ch;

char in_file[20],out_file[20];

FILE *in,*out;
clrscr();
printf("\n Enter any ciphertext file name : ");

gets(in_file);
printf("\n Enter file name to store dec output : ");
gets(out_file);
in = fopen(in_file,"r");
out = fopen(out_file,"w");
printf("\n Enter values of d and n : ");

scanf("%ld%ld",&e,&n);
i=-1;

b=e;

while(b>0)
{

bin[++i] = b%2;

b=b/2;
}
k=i;

Page 42

Computer Networks & Operating Systems Lab Manual

do

{
m = fgetc(in);

d = 1;
for(i=k; i>=0; i--)
{
d = (d*d) % n;

if (bin[i] == 1)
d = (d*m) % n;

}
fputc(d,out);

}
while(!feof(in));
printf("\n File is decrypted successfully. ... ");
getch();

}

INPUT/OUTPUT:

Enter any ciphertext file name : out.txt

Enter file name to store dec output : inp1.txt

Enter values of d and n : 23 187

File is decrypted successfully....

C:\TURBOC2>type out.txt
\§░ÉTwë│`òp0âB¢I↓v◄/☼t.

C:\TURBOC2>type inp1.txt
abcdefghijklmnop123&*()U

Exercise:

1. Implement Diffie- Hellman cryptosystem using RSA algorithm.
2. Implement SHA-512 algorithm

Page 43

Computer Networks & Operating Systems Lab Manual

OPERATING SYSTEM
LAB MANUAL

Page 44

Computer Networks & Operating Systems Lab Manual

EXPERIMENT NO.1

CPU SCHEDULINGALGORITHMS

A). FIRST COME FIRST SERVE:

AIM: To write a c program to simulate the CPU scheduling algorithm First Come

First Serve (FCFS)

DESCRIPTION:

To calculate the average waiting time using the FCFS algorithm first the

waiting time of the first process is kept zero and the waiting time of the second

process is the burst time of the first process and the waiting time of the third

process is the sum of the burst times of the first and the second process and

so on. After calculating all the waiting times the average waiting time is

calculated as the average of all the waiting times. FCFS mainly says first come

first serve the algorithm which came first will be served first.

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process name and the burst

time Step 4: Set the waiting of the first process as ‗0‘and its burst time as its

turnaround time Step 5: for each process in the Ready Q calculate

a). Waiting time (n) = waiting time (n-1) + Burst time (n-1)

b). Turnaround time (n)= waiting time(n)+Burst time(n)

Step 6: Calculate

a) Average waiting time = Total waiting Time / Number of process

b) Average Turnaround time = Total Turnaround Time / Number of process

Step 7: Stop the process

Page 45

Computer Networks & Operating Systems Lab Manual

SOURCE CODE :

// First Come First Serve (FCFS Program in C

#include<stdio.h>
#include<conio.h>

main()
{

int bt[20], wt[20], tat[20], i, n;
float wtavg, tatavg;

clrscr();

printf("\nEnter the number of
processes -- "); scanf("%d", &n);
for(i=0;i<n;i++)
{

printf("\nEnter Burst Time for Process %d -- ", i);
scanf("%d", &bt[i]);
}

wt[0] = wtavg = 0;
tat[0] = tatavg = bt[0];
for(i=1;i<n;i++)
{

wt[i] = wt[i-1] +bt[i-1];
tat[i] = tat[i-1] +bt[i];
wtavg = wtavg + wt[i];
tatavg = tatavg + tat[i];

}

printf("\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");
for(i=0;i<n;i++)

printf("\n\t P%d \t\t %d \t\t %d \t\t %d", i, bt[i], wt[i], tat[i]);
printf("\nAverage Waiting Time -- %f", wtavg/n);

printf("\nAverage Turnaround Time -- %f", tatavg/n);
getch();

}

INPUT

Enter the number of processes -- 3

Enter Burst Time for Process 0 -- 24

Enter Burst Time for Process 1 -- 3

Enter Burst Time for Process 2 -- 3

OUTPUT

PROCESS BURST TIME WAITING TIME
TURNAROUND
TIME

P0 24 0 24
P1 3 24 27
P2 3 27 30

Average Waiting Time-- 17.000000

Average Turnaround Time -- 27.000000

Page 46

Computer Networks & Operating Systems Lab Manual

B). SHORTEST JOB FIRST:

AIM: To write a program to stimulate the CPU scheduling algorithm Shortest job first (Non-
Preemption)

DESCRIPTION:

To calculate the average waiting time in the shortest job first algorithm the

sorting of the process based on their burst time in ascending order then calculate

the waiting time of each process as the sum of the bursting times of all the

process previous or before to that process.

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process id and accept

the CPU burst time

Step 4: Start the Ready Q according the shortest Burst time by sorting according

to lowest to highest burst time.

Step 5: Set the waiting time of the first process as ‗0‘ and its turnaround time as its

burst time.

Step 6: Sort the processes names based on their Burt time

Step 7: For each process in the ready queue, calculate

a) Waiting time(n)= waiting time (n-1) + Burst time (n-1)

b) Turnaround time (n)= waiting time(n)+Burst time(n)

Step 8: Calculate

c) Average waiting time = Total waiting Time / Number of process

d) Average Turnaround time = Total Turnaround Time / Number of process Step

9: Stop the process

Page 47

Computer Networks & Operating Systems Lab Manual

SOURCE CODE :

#include<stdio.h>

#include<conio.h>
main()
{

int p[20], bt[20], wt[20], tat[20], i, k, n, temp; float wtavg,
tatavg;
clrscr();

printf("\nEnter the number of processes -- "); scanf("%d",
&n);
for(i=0;i<n;i++)
{

p[i]=i;

printf("Enter Burst Time for Process %d -- ", i); scanf("%d",
&bt[i]);

}

for(i=0;i<n;i++)
for(k=i+1;k<n;k++)
if(bt[i]>bt[k])
{

temp=bt[i];

bt[i]=bt[k];
bt[k]=temp;

temp=p[i];
p[i]=p[k];

p[k]=temp;
}

wt[0] = wtavg = 0;
tat[0] = tatavg = bt[0]; for(i=1;i<n;i++)
{

wt[i] = wt[i-1] +bt[i-1];

tat[i] = tat[i-1] +bt[i];
wtavg = wtavg + wt[i];
tatavg = tatavg + tat[i];

}

printf("\n\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");
for(i=0;i<n;i++)

printf("\n\t P%d \t\t %d \t\t %d \t\t %d", p[i], bt[i], wt[i], tat[i]); printf("\nAverage
Waiting Time -- %f", wtavg/n);
printf("\nAverage Turnaround Time -- %f", tatavg/n); getch();

}

Page 48

Computer Networks & Operating Systems Lab Manual

INPUT

Enter the number of processes -- 4

Enter Burst Time for Process 0 -- 6

Enter Burst Time for Process 1 -- 8

Enter Burst Time for Process 2 -- 7

Enter Burst Time for Process 3 -- 3

OUTPUT

PROCESS BURST TIME
WAITING
TIME

TURNARO
UND TIME

P3 3 0 3
P0 6 3 9
P2 7 9 16
P1 8 16 24
Average Waiting Time -- 7.000000

Average Turnaround Time -- 13.000000

Page 49

Computer Networks & Operating Systems Lab Manual

C). ROUND ROBIN:

AIM: To simulate the CPU scheduling algorithm round-robin.

DESCRIPTION:

To aim is to calculate the average waiting time. There will be a time slice,

each process should be executed within that time-slice and if not it will go to

the waiting state so first check whether the burst time is less than the time-slice.

If it is less than it assign the waiting time to the sum of the total times. If it is

greater than the burst-time then subtract the time slot from the actual burst time

and increment it by time-slot and the loop continues until all the processes are

completed.

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue and time quantum

(or) time slice

Step 3: For each process in the ready Q, assign the process id and accept the

CPU burst time

Step 4: Calculate the no. of time slices for each process where No. of time

slice for process (n) = burst time process (n)/time slice

Step 5: If the burst time is less than the time slice then the no. of time slices =1.

Step 6: Consider the ready queue is a circular Q, calculate

a) Waiting time for process (n) = waiting time of process(n-1)+ burst time of

process(n-1) + the time difference in getting the CPU from process(n-1)

b) Turnaround time for process(n) = waiting time of process(n) + burst time of

process(n)+ the time difference in getting CPU from process(n).

Step 7: Calculate

c) Average waiting time = Total waiting Time / Number of process

d) Average Turnaround time = Total Turnaround Time / Number of process

Step 8: Stop the process

Page 50

Computer Networks & Operating Systems Lab Manual

SOURCE CODE

#include<stdio.h>
main()
{

int i,j,n,bu[10],wa[10],tat[10],t,ct[10],max;
float awt=0,att=0,temp=0;

clrscr();

printf("Enter the no of processes -- ");
scanf("%d",&n);
for(i=0;i<n;i++)
{

printf("\nEnter Burst Time for process %d -- ", i+1);

scanf("%d",&bu[i]);
ct[i]=bu[i];
}

printf("\nEnter the size of time slice -- ");

scanf("%d",&t);
max=bu[0];
for(i=1;i<n;i++)

if(max<bu[i])
max=bu[i];
for(j=0;j<(max/t)+1;j++)

for(i=0;i<n;i++)
if(bu[i]!=0)
if(bu[i]<=t)

{
tat[i]=temp+bu[i];
temp=temp+bu[i];
bu[i]=0;

}
else
{

bu[i]=bu[i]-t;
temp=temp+t;
}

for(i=0;i<n;i++)
{

wa[i]=tat[i]-ct[i];
att+=tat[i];

awt+=wa[i];
}

printf("\nThe Average Turnaround time is -- %f",att/n);
printf("\nThe Average Waiting time is -- %f ",awt/n);

printf("\n\tPROCESS\t BURST TIME \t WAITING TIME\tTURNAROUND TIME\n");
for(i=0;i<n;i++)

printf("\t%d \t %d \t\t %d \t\t %d \n",i+1,ct[i],wa[i],tat[i]);
getch();}

Page 51

Computer Networks & Operating Systems Lab Manual

INPUT:

Enter the no of processes – 3

Enter Burst Time for process 1 – 24

Enter Burst Time for process 2 -- 3

Enter Burst Time for process 3 – 3

Enter the size of time slice – 3

OUTPUT:

PROCESS BURST TIME WAITING TIME TURNAROUNDTIME

1 24 6 30

2 3 4 7

3 3 7 10

The Average Turnaround time is – 15.666667

The Average Waiting time is --- 5.666667

Page 52

Computer Networks & Operating Systems Lab Manual

D). PRIORITY:

AIM: To write a c program to simulate the CPU scheduling priority algorithm.

DESCRIPTION:

To calculate the average waiting time in the priority algorithm, sort the

burst times according to their priorities and then calculate the average waiting

time of the processes. The waiting time of each process is obtained by summing

up the burst times of all the previous processes.

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process id and accept the

CPU burst time

Step 4: Sort the ready queue according to the priority number.

Step 5: Set the waiting of the first process as ‗0‘ and its burst time as its

turnaround time

Step 6: Arrange the processes based on process

priority

Step 7: For each process in the Ready Q calculate

Step 8: for each process in the Ready Q calculate

a) Waiting time(n)= waiting time (n-1) + Burst time (n-1)

b) Turnaround time (n)= waiting time(n)+Burst time(n)

Step 9: Calculate

c) Average waiting time = Total waiting Time / Number of process

d) Average Turnaround time = Total Turnaround Time / Number of process Print the

results in an order.

Step10: Stop

Page 53

Computer Networks & Operating Systems Lab Manual

SOURCE CODE:

#include<stdio.h>

main()
{

int p[20],bt[20],pri[20], wt[20],tat[20],i, k, n, temp; float wtavg,
tatavg;
clrscr();

printf("Enter the number of processes --- ");
scanf("%d",&n);
for(i=0;i<n;i++)

{
p[i] = i;

printf("Enter the Burst Time & Priority of Process %d --- ",i); scanf("%d
%d",&bt[i], &pri[i]);
}
for(i=0;i<n;i++) for(k=i+1;k<n;k++)

if(pri[i] > pri[k])
{
temp=p[i];

p[i]=p[k];

p[k]=temp;
temp=bt[i];
bt[i]=bt[k];
bt[k]=temp;

temp=pri[i];
pri[i]=pri[k];
pri[k]=temp;

}

wtavg = wt[0] = 0;
tatavg = tat[0] = bt[0];
for(i=1;i<n;i++)
{

wt[i] = wt[i-1] + bt[i-1];
tat[i] = tat[i-1] + bt[i];
wtavg = wtavg + wt[i];
tatavg = tatavg + tat[i];

}
printf("\nPROCESS\t\tPRIORITY\tBURST TIME\tWAITING TIME\tTURNAROUND
TIME");
for(i=0;i<n;i++)
printf("\n%d \t\t %d \t\t %d \t\t %d \t\t %d ",p[i],pri[i],bt[i],wt[i],tat[i]);
printf("\nAverage Waiting Time is --- %f",wtavg/n);
printf("\nAverage Turnaround Time is --- %f",tatavg/n);
getch();
}

Page 54

Computer Networks & Operating Systems Lab Manual

VIVA QUESTIONS

1) Define the following
a) Turnaround time b) Waiting time c) Burst time d) Arrival time

2) What is meant by process scheduling?
3) What are the various states of process?
4) What is the difference between preemptive and non-preemptive scheduling
5) What is meant by time slice?
6) What is round robin scheduling?

INPUT

Enter the number of processes -- 5

Enter the Burst Time & Priority of Process 0 --- 10 3

Enter the Burst Time & Priority of Process 1 --- 1 1

Enter the Burst Time & Priority of Process 2 --- 2 4

Enter the Burst Time & Priority of Process 3 --- 1 5

Enter the Burst Time & Priority of Process 4 --- 5 2

OUTPUT

PROCESS PRIORITY BURST TIME
WAITING
TIME

TURNARO
UND TIME

1 1 1 0 1
4 2 5 1 6
0 3 10 6 16
2 4 2 16 18
3 5 1 18 19

Average Waiting Time is --- 8.200000

Average Turnaround Time is --- 12.000000

Page 55

Computer Networks & Operating Systems Lab Manual

EXPERIMENT NO.2

MEMORY MANAGEMAENT

A). MEMORY MANAGEMENT WITH FIXED PARTITIONING TECHNIQUE (MFT)

AIM: To implement and simulate the MFT algorithm.

DESCRIPTION:

In this the memory is divided in two parts and process is fit into it. The process which is

best suited in to it is placed in the particular memory where it suits. We have to check

memory partition. If it suits, its status should be changed.

ALGORITHM:

Step1: Start the process.

Step2: Declarevariables.

Step3: Enter total memory size ms.

Step4: Allocate memory for os.

Ms=ms-os

Step5: Read the no partition to be divided n Partition size=ms/n.

Step6: Read the process no and process size.

Step 7: If process size is less than partition size allot alse blocke the process. While

allocating update memory wastage-external fragmentation.

if(pn[i]==pn[j])f=1;

if(f==0){ if(ps[i]<=siz)

{

extft=extft+size-ps[i];avail[i]=1;

count++;

}

}

Step 8: Print the results

Page 56

Computer Networks & Operating Systems Lab Manual

SOURCE CODE :

#include<stdio.h>
#include<conio.h>

main()
{

int ms, bs, nob, ef,n, mp[10],tif=0;
int i,p=0;
clrscr();

printf("Enter the total memory available (in Bytes) -- ");
scanf("%d",&ms);

printf("Enter the block size (in Bytes) -- ");
scanf("%d", &bs);

nob=ms/bs;
ef=ms - nob*bs;

printf("\nEnter the number of processes -- ");
scanf("%d",&n);

for(i=0;i<n;i++)
{

printf("Enter memory required for process %d (in Bytes)-- ",i+1);
scanf("%d",&mp[i]);
}
printf("\nNo. of Blocks available in memory -- %d",nob);
printf("\n\nPROCESS\tMEMORY REQUIRED\t ALLOCATED\tINTERNAL

FRAGMENTATION");
for(i=0;i<n && p<nob;i++)
{

printf("\n %d\t\t%d",i+1,mp[i]);

if(mp[i] > bs)

printf("\t\tNO\t\t---");

else
{

printf("\t\tYES\t%d",bs-mp[i]);
tif = tif + bs-mp[i];
p++;
}

}
if(i<n)
printf("\nMemory is Full, Remaining Processes cannot be accomodated");

printf("\n\nTotal Internal Fragmentation is %d",tif);
printf("\nTotal External Fragmentation is %d",ef);
getch();
}

Page 57

Computer Networks & Operating Systems Lab Manual

INPUT
Enter the total memory available (in Bytes) -- 1000
Enter the block size (in Bytes)-- 300
Enter the number of processes – 5

Enter memory required for process 1 (in Bytes) -- 275

Enter memory required for process 2 (in Bytes) -- 400

Enter memory required for process 3 (in Bytes) -- 290
Enter memory required for process 4 (in Bytes) -- 293

Enter memory required for process 5 (in Bytes) -- 100

No. of Blocks available in memory -- 3

OUTPUT
PROCESS

ALLOCAT

INTERNAL

 MEMORY REQUIRED ED FRAGMENTATION
1 275 YES 25
2 400 NO -----

3 290 YES 10
4 293 YES 7

Memory is Full, Remaining Processes cannot be accommodated
Total Internal Fragmentation
is 42
Total External Fragmentation
is 100

Page 58

Computer Networks & Operating Systems Lab Manual

B) MEMORY VARIABLE PARTIONING TYPE (MVT)

AIM: To write a program to simulate the MVT algorithm

ALGORITHM:

Step1: start the process.

Step2: Declare variables.

Step3: Enter total memory size ms.

Step4: Allocate memory for os.

Ms=ms-os

 Step5: Read the no partition to be divided n Partition size=ms/n.

Step6: Read the process no and process size.

Step 7: If process size is less than partition size allot alse blocke the process. While

allocating update memory wastage-external fragmentation.

if(pn[i]==pn[j]) f=1;

if(f==0){ if(ps[i]<=size)

{

extft=extft+size-ps[i];avail[i]=1;

count++;

}

}

Step 8: Print the results

Step 9: Stop the process.

Page 59

Computer Networks & Operating Systems Lab Manual

SOURCE CODE:

#include<stdio.h>
#include<conio.h>

main()
{
int ms,mp[10],i, temp,n=0;
char ch = 'y';

clrscr();

printf("\nEnter the total memory available (in Bytes)-- ");
scanf("%d",&ms);

temp=ms;

for(i=0;ch=='y';i++,n++)
{
printf("\nEnter memory required for process %d (in Bytes) -- ",i+1);
scanf("%d",&mp[i]);
if(mp[i]<=temp)

{
printf("\nMemory is allocated for Process %d ",i+1);
temp = temp - mp[i];

}
else

{
printf("\nMemory is Full");

break;
}
printf("\nDo you want to continue(y/n) -- ");

scanf(" %c", &ch);
}
printf("\n\nTotal Memory Available -- %d", ms);

printf("\n\n\tPROCESS\t\t MEMORY ALLOCATED ");
for(i=0;i<n;i++)
printf("\n \t%d\t\t%d",i+1,mp[i]);

printf("\n\nTotal Memory Allocated is %d",ms-temp);

printf("\nTotal External Fragmentation is %d",temp);
getch();
}

Page 60

Computer Networks & Operating Systems Lab Manual

OUTPUT:

Enter the total memory available (in Bytes) – 1000
Enter memory required for process 1 (in Bytes) – 400

Memory is allocated for Process 1
Do you want to continue(y/n) -- y

Enter memory required for process 2 (in Bytes) -- 275

Memory is allocated for Process 2
Do you want to continue(y/n) – y
Enter memory required for process 3 (in Bytes) – 550

Memory is Full

Total Memory Available – 1000

PROCESS MEMORY ALLOCATED

1 400
2 275

Total Memory Allocated is 675 Total External Fragmentation is 325

VIVA QUESTIONS

1) What is MFT?
2) What is MVT?
3) What is the difference between MVT and MFT?
4) What is meant by fragmentation?
5) Give the difference between internal and external fragmentation

EXERCISE:

1. Write a program for simulating Best fit and worst fit

Page 61

Computer Networks & Operating Systems Lab Manual

EXPERIMENT NO.3

PAGE REPLACEMENT ALGORITHMS

A) FIRST IN FIRST OUT:

AIM: To implement FIFO page replacement technique.

DESCRIPTION:

 The FIFO page-replacement algorithm is easy to understand and program. However, its

performance is not always good.

 On the one hand, the page replaced may be an initialization module that was used a long

time ago and is no longer needed.

 On the other hand, it could contain a heavily used variable that was initialized early and is

in constant use.

ALGORITHM:

1. Start the process

2. Read number of pages n

3. Read number of pages no

4. Read page numbers into an array a[i]

5. Initialize avail[i]=0 .to check page hit

6. Replace the page with circular queue, while re-placing check page availability in the frame

Place avail[i]=1 if page is placed in the frame Count page faults

7. Print the results.

8. Stop the process.

Page 62

Computer Networks & Operating Systems Lab Manual

SOURCE CODE :

#include<stdio.h>

#include<conio.h>
int fr[3];
void main()

{
void display();
int i,j,page[12]={2,3,2,1,5,2,4,5,3,2,5,2};

int flag1=0,flag2=0,pf=0,frsize=3,top=0;
clrscr();

for(i=0;i<3;i++)
{
fr[i]=-1;
}

for(j=0;j<12;j++)
{

flag1=0;
flag2=0;
for(i=0;i<12;i++)

{
if(fr[i]==page[j])
{

flag1=1;
flag2=1;

break;
}

}
if(flag1==0)
{
for(i=0;i<frsize;i++)

{
if(fr[i]==-1)

{
fr[i]=page[j];
flag2=1;
break;

}
}

}
if(flag2==0)

{
fr[top]=page[j];

top++;
pf++;

Page 63

Computer Networks & Operating Systems Lab Manual

if(top>=frsize)
top=0;
}
display();

}
printf("Number of page faults : %d ",pf+frsize);

 getch();

}
void display()
{
int i;

printf("\n");
for(i=0;i<3;i++)
printf("%d\t",fr[i]);
}

OUTPUT:

2 -1 -1

2 3 -1
2 3 -1
2 3 1

5 3 1
5 2 1
5 2 4

5 2 4

3 2 4
3 2 4

3 5 4
3 5 2
Number of page faults: 9

Page 64

Computer Networks & Operating Systems Lab Manual

B) LEAST RECENTLY USED

AIM: To implement LRU page replacement technique.

ALGORITHM:

1. Start the process

2. Declare the size

3. Get the number of pages to be inserted

4. Get the value

5. Declare counter and stack

6. Select the least recently used page by counter value

7. Stack them according the selection.

8. Display the values

9. Stop the process

SOURCE CODE :

#include<stdio.h>
#include<conio.h>
int fr[3];

void main()
{
void display();

int p[12]={2,3,2,1,5,2,4,5,3,2,5,2},i,j,fs[3];

int index,k,l,flag1=0,flag2=0,pf=0,frsize=3;
clrscr();
for(i=0;i<3;i++)
{
fr[i]=-1;

}
for(j=0;j<12;j++)
{

flag1=0,flag2=0;

for(i=0;i<3;i++)
{
if(fr[i]==p[j])
{

flag1=1;

flag2=1;
break;

}}

Page 65

Computer Networks & Operating Systems Lab Manual

if(flag1==0)

{
for(i=0;i<3;i++)

{
if(fr[i]==-1)

{
fr[i]=p[j];
flag2=1;
break;

}
}

}
if(flag2==0)
{

for(i=0;i<3;i++)
fs[i]=0;
for(k=j-1,l=1;l<=frsize-1;l++,k--)
{

for(i=0;i<3;i++)
{

if(fr[i]==p[k])
fs[i]=1;
}
}

for(i=0;i<3;i++)
{
if(fs[i]==0)

index=i;
}

fr[index]=p[j];

pf++;
}
display();

}
printf("\n no of page faults :%d",pf+frsize);

getch();
}
void display()
{

int i;
printf("\n");

for(i=0;i<3;i++)
printf("\t%d",fr[i]);

}

Page 66

Computer Networks & Operating Systems Lab Manual

OUTPUT:

2 -1 -1

2 3 -1
2 3 -1
2 3 1
2 5 1
2 5 1

2 5 4
2 5 4

3 5 4
3 5 2
3 5 2
3 5 2

no of page faults : 7

Page 67

Computer Networks & Operating Systems Lab Manual

C) OPTIMAL

AIM: To implement optimal page replacement technique.

ALGORTHIM:

1. Start Program

2. Read Number Of Pages And Frames

3.Read Each Page Value

4. Search For Page In The Frames

5. If Not Available Allocate Free Frame

6. If No Frames Is Free Repalce The Page With The Page That Is Leastly Used

7.Print Page Number Of Page Faults

8.Stop process.

SOURCE CODE:

/* Program to simulate optimal page replacement */
#include<stdio.h>

#include<conio.h>
int fr[3], n, m;
void display();
void main()

{
int i,j,page[20],fs[10];

int max,found=0,lg[3],index,k,l,flag1=0,flag2=0,pf=0;
float pr;
clrscr();

printf("Enter length of the reference string: ");

scanf("%d",&n);
printf("Enter the reference string: ");
for(i=0;i<n;i++)
scanf("%d",&page[i]);

printf("Enter no of frames: ");
scanf("%d",&m);
for(i=0;i<m;i++)

fr[i]=-1;

pf=m;

Page 68

Computer Networks & Operating Systems Lab Manual

for(j=0;j<n;j++)

{
flag1=0;

flag2=0;
for(i=0;i<m;i++)
{

if(fr[i]==page[j])
{
flag1=1;

flag2=1;
break;
}

}
if(flag1==0)
{

for(i=0;i<m;i++)
{
if(fr[i]==-1)

{

fr[i]=page[j];
flag2=1;
break;

}
}
}

if(flag2==0)
{

for(i=0;i<m;i++)
lg[i]=0;
for(i=0;i<m;i++)
{
for(k=j+1;k<=n;k++)

{

if(fr[i]==page[k])
{
lg[i]=k-j;
break;

}
}
}

found=0;

for(i=0;i<m;i++)
{
if(lg[i]==0)

{

index=i;
found = 1;

Page 69

Computer Networks & Operating Systems Lab Manual

break;

}
}

if(found==0)
{

max=lg[0];
index=0;
for(i=0;i<m;i++)

{
if(max<lg[i])
{

max=lg[i];

index=i;

}
}
}

fr[index]=page[j];
pf++;
}
display();

}

printf("Number of page faults : %d\n", pf);

pr=(float)pf/n*100;
printf("Page fault rate = %f \n", pr);

getch();
}
void display()
{
int i;
for(i=0;i<m;i++)

printf("%d\t",fr[i]);
printf("\n");
}

Page 70

Computer Networks & Operating Systems Lab Manual

OUTPUT:

Enter length of the reference string: 12

Enter the reference string: 1 2 3 4 1 2 5 1 2 3 4 5

Enter no of frames: 3

1 -1 -1

1 2 -1

1 2 3

1 2 4

1 2 4

1 2 4

1 2 5

1 2 5

1 2 5

3 2 5

4 2 5

4 2 5

Number of page faults : 7 Page fault rate = 58.333332

VIVA QUESTIONS

1) What is meant by page fault?
2) What is meant by paging?
3) What is page hit and page fault rate?
4) List the various page replacement algorithm
5) Which one is the best replacement algorithm?

EXERCISE:

1. Write a C program to simulate LFU page replacement algorithm

Page 71

Computer Networks & Operating Systems Lab Manual

EXPERIMENT NO. 4
FILE ORGANIZATION TECHNIQUES

A) SINGLE LEVEL DIRECTORY:

AIM: Program to simulate Single level directory file organization technique.

DESCRIPTION:

The directory structure is the organization of files into a hierarchy of folders. In a single-level

directory system, all the files are placed in one directory. There is a root directory which has

all files. It has a simple architecture and there are no sub directories. Advantage of single

level directory system is that it is easy to find a file in the directory.

SOURCE CODE :
#include<stdio.h>
struct
{

char dname[10],fname[10][10]; int
fcnt;
}dir;

void main()
{

int i,ch; char f[30];
clrscr();
dir.fcnt = 0;

printf("\nEnter name of directory -- ");
scanf("%s", dir.dname);
while(1)

{
printf("\n\n1. Create File\t2. Delete File\t3. Search File \n
4. Display Files\t5. Exit\nEnter your choice -- ");

scanf("%d",&ch);

switch(ch)
{

case 1: printf("\nEnter the name of the file -- ");
scanf("%s",dir.fname[dir.fcnt]); dir.fcnt++;
break;

case 2: printf("\nEnter the name of the file -- "); scanf("%s",f);
for(i=0;i<dir.fcnt;i++)

{
if(strcmp(f, dir.fname[i])==0)
{

Page 72

Computer Networks & Operating Systems Lab Manual

printf("File %s is deleted ",f); strcpy(dir.fname[i],dir.fname[dir.fcnt-1]); break;
}
}
if(i==dir.fcnt)

printf("File %s not found",f);

else

 dir.fcnt--;

 break;

case 3: printf("\nEnter the name of the file -- ");
 scanf("%s",f);
 for(i=0;i<dir.fcnt;i++)
 {
 if(strcmp(f, dir.fname[i])==0)
 {
 printf("File %s is found ", f);
 break;
 }
 }
 if(i==dir.fcnt)
 printf("File %s not found",f);
 break;

case 4: if(dir.fcnt==0)
 printf("\nDirectory Empty");
 else
 {
 printf("\nThe Files are -- ");
 for(i=0;i<dir.fcnt;i++)
 printf("\t%s",dir.fname[i]);
 }
 break;

default: exit(0);

}

}
getch();}

Page 73

Computer Networks & Operating Systems Lab Manual

OUTPUT:

Enter name of directory -- CSE
1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- A

1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- B
1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- C
1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 4

The Files are -- A B C
1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 3

Enter the name of the file – ABC
File ABC not found

1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 2

24

Enter the name of the file – B
File B is deleted

1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit Enter your choice – 5

Page 74

Computer Networks & Operating Systems Lab Manual

B) TWO LEVEL DIRECTORY

AIM: Program to simulate two level file organization technique

Description:

In the two-level directory system, each user has own user file directory (UFD). The system

maintains a master block that has one entry for each user. This master block contains the

addresses of the directory of the users. When a user job starts or a user logs in, the

system's master file directory (MFD) is searched. When a user refers to a particular file,

only his own UFD is searched.

.

SOURCE CODE :

#include<stdio.h>

struct

{

char dname[10],fname[10][10];

int fcnt;
}dir[10];

void main()
{

int i,ch,dcnt,k; char f[30],
d[30]; clrscr();
dcnt=0;

while(1)
{

printf("\n\n1. Create Directory\t2. Create File\t3. Delete File");

printf("\n4. Search File\t\t5. Display\t6. Exit\t Enter your choice --");
scanf("%d",&ch);

switch(ch)
{

case 1: printf("\nEnter name of directory -- ");
scanf("%s", dir[dcnt].dname);
dir[dcnt].fcnt=0;
dcnt++;

printf("Directory created"); break;

case 2: printf("\nEnter name of the directory -- ");
scanf("%s",d);
for(i=0;i<dcnt;i++)

if(strcmp(d,dir[i].dname)==0)

Page 75

Computer Networks & Operating Systems Lab Manual

{

}

if(i==dcnt)

printf("Enter name of the file -- ");
scanf("%s",dir[i].fname[dir[i].fcnt]);
dir[i].fcnt++;

printf("File created"); break;

printf("Directory %s not found",d);
break;

case 3: printf("\nEnter name of the directory -- ");
scanf("%s",d);
for(i=0;i<dcnt;i++)
for(i=0;i<dcnt;i++)

{

if(strcmp(d,dir[i].dname)==0)

{

printf("Enter name of the file -- ");
scanf("%s",f); for(k=0;k<dir[i].fcnt;k++)
{

if(strcmp(f, dir[i].fname[k])==0)

{

printf("File %s is deleted ",f);

dir[i].fcnt--;

strcpy(dir[i].fname[k],dir[i].fname[dir[i].fcnt]);

goto jmp;
}

}

printf("File %s not found",f); goto jmp;
}
}

printf("Directory %s not found",d); jmp : break;

case 4: printf("\nEnter name of the directory -- ");

scanf("%s",d);
for(i=0;i<dcnt;i++)

{
if(strcmp(d,dir[i].dname)==0)
{

printf("Enter the name of the file -- ");

scanf("%s",f); for(k=0;k<dir[i].fcnt;k++)

{
if(strcmp(f, dir[i].fname[k])==0)

{

printf("File %s is found ",f); goto jmp1;

Page 76

Computer Networks & Operating Systems Lab Manual

}

}

printf("File %s not found",f); goto jmp1;
}

}

printf("Directory %s not found",d); jmp1: break;
case 5: if(dcnt==0)

printf("\nNo Directory's ");

else

{

printf("\nDirectory\tFiles");

for(i=0;i<dcnt;i++)
{

}
}

break;

printf("\n%s\t\t",dir[i].dname);
for(k=0;k<dir[i].fcnt;k++)

printf("\t%s",dir[i].fname[k]);

default:exit(0);
}

}
getch();

}

Page 77

Computer Networks & Operating Systems Lab Manual

OUTPUT

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit

Enter your choice -- 1

Enter name of directory -- DIR1 Directory created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 1

Enter name of directory -- DIR2 Directory created
1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 2

Enter name of the directory – DIR1

Enter name of the file -- A1

File created
1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit

Enter your choice -- 2

Enter name of the directory – DIR1

Enter name of the file -- A2
File created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6.

Exit Enter your choice – 6

VIVA QUESTIONS

1. Define directory?

2. List the different types of directory structures?

3. What is the advantage of hierarchical directory structure?
4. Which of the directory structures is efficient? Why?

5. What is acyclic graph directory?

EXERCISE:

1. Write a C program for hierarchical level directory structure

Page 78

Computer Networks & Operating Systems Lab Manual

EXPERIMENT.NO.5

 FILE ALLOCATION STRATEGIES

A) SEQUENTIAL:

The most common form of file structure is the sequential file in this type

of file, a fixed format is used for records. All records (of the system) have the

same length, consisting of the same number of fixed length fields in a particular

order because the length and position of each field are known, only the values of

fields need to be stored, the field name and length for each field are attributes of

the file structure.

ALGORITHM:

Step 1: Start the program.

Step 2: Get the number of files.

Step 3: Get the memory requirement of each file.

Step 4: Allocate the required locations to each in sequential order a).

Randomly select a location from available location s1= random(100);

a) Check whether the required locations are free from the selected

location.

if(b[s1].flag==0){

for (j=s1;j<s1+p[i];j++){

if((b[j].flag)==0)count++;

}

if(count==p[i]) break;

}

b) Allocate and set flag=1 to the allocated locations. for(s=s1;s<(s1+p[i]);s++)

{

k[i][j]=s; j=j+1; b[s].bno=s;

b[s].flag=1;

}

Step 5: Print the results file no, length, Blocks allocated.

Step 6: Stop the program

Page 79

Computer Networks & Operating Systems Lab Manual

SOURCE CODE :

#include<stdio.h>
main()
{
int f[50],i,st,j,len,c,k;
clrscr();
for(i=0;i<50;i++)
f[i]=0;
X:
printf("\n Enter the starting block & length of file");
scanf("%d%d",&st,&len);

for(j=st;j<(st+len);j++)

if(f[j]==0)
{
f[j]=1;
printf("\n%d->%d",j,f[j]);
}
else
{
printf("Block already allocated");
break;
}
if(j==(st+len))
printf("\n the file is allocated to disk");
printf("\n if u want to enter more files?(y-1/n-0)");

scanf("%d",&c);
if(c==1)
goto X;
else
exit();
getch();

}

OUTPUT:

Enter the starting block & length of file 4 10
4->1
5->1
6->1
7->1

8->1
9->1
10->1
11->1
12->1
13->1
The file is allocated to disk.

Page 80

Computer Networks & Operating Systems Lab Manual

B) INDEXED:

AIM: To implement allocation method using chained method

DESCRIPTION:

In the chained method file allocation table contains a field which points to

starting block of memory. From it for each bloc a pointer is kept to next successive

block. Hence, there is no external fragmentation.

ALGORITHM:

Step 1: Start the program.

Step 2: Get the number of files.

Step 3: Get the memory requirement of each file.

Step 4: Allocate the required locations by selecting a location randomly q= random(100);

a) Check whether the selected location is free .

b) If the location is free allocate and set flag=1 to the allocated locations.

q=random(100);

{

if(b[q].flag==0)

b[q].flag=1;

b[q].fno=j;

r[i][j]=q;

Step 5: Print the results file no, length ,Blocks

allocated.

Step 6: Stop the program

Page 81

Computer Networks & Operating Systems Lab Manual

SOURCE CODE :

#include<stdio.h>

int f[50],i,k,j,inde[50],n,c,count=0,p;
main()

{
clrscr();
for(i=0;i<50;i++)
f[i]=0;

x: printf("enter index block\t");
scanf("%d",&p);

if(f[p]==0)
{

f[p]=1;

printf("enter no of files on index\t");
scanf("%d",&n);
}
else
{
printf("Block already allocated\n");
goto x;

}
for(i=0;i<n;i++)
scanf("%d",&inde[i]);
for(i=0;i<n;i++)

if(f[inde[i]]==1)
{
printf("Block already allocated");

goto x;
}

for(j=0;j<n;j++)

f[inde[j]]=1;
printf("\n allocated");
printf("\n file indexed");
for(k=0;k<n;k++)

printf("\n %d->%d:%d",p,inde[k],f[inde[k]]);
printf(" Enter 1 to enter more files and 0 to exit\t");
scanf("%d",&c);
if(c==1)

goto x;
else
exit();

getch();
}

Page 82

Computer Networks & Operating Systems Lab Manual

OUTPUT: enter index block 9

Enter no of files on index 3

1 2 3

Allocated
File indexed
9->1:1

9->2;1
9->3:1 enter 1 to enter more files and 0 to exit

Page 83

Computer Networks & Operating Systems Lab Manual

C) LINKED:

AIM: To implement linked file allocation technique.

DESCRIPTION:

In the chained method file allocation table contains a field which points to

starting block of memory. From it for each bloc a pointer is kept to next successive

block. Hence, there is no external fragmentation

ALGORTHIM:

Step 1: Start the program.

Step 2: Get the number of

files.

Step 3: Get the memory requirement of each file.

Step 4: Allocate the required locations by selecting a location randomly q=

random(100);

a) Check whether the selected location is free .

b) If the location is free allocate and set flag=1 to the allocated locations.

While allocating next location address to attach it to previous location

for(i=0;i<n;i++)
{

for(j=0;j<s[i];j++)
{
q=random(100); if(b[q].flag==0)
b[q].flag=1;

b[q].fno=j;
r[i][j]=q;

if(j>0)
{

}
}

p=r[i][j-1]; b[p].next=q;}
Step 5: Print the results file no, length ,Blocks

allocated.

Step 6: Stop the program

Page 84

Computer Networks & Operating Systems Lab Manual

SOURCE CODE :

#include<stdio.h>
main()

{
int f[50],p,i,j,k,a,st,len,n,c;

clrscr();
for(i=0;i<50;i++)

f[i]=0;
printf("Enter how many blocks
that are already allocated");

scanf("%d",&p);
printf("\nEnter the blocks no.s
that are already allocated");

for(i=0;i<p;i++)
{
scanf("%d",&a);
f[a]=1;
}
X:

printf("Enter the starting index
block & length");
scanf("%d%d",&st,&len);
k=len;

for(j=st;j<(k+st);j++)
{

if(f[j]==0)
{

f[j]=1;
printf("\n%d->%d",j,f[j]);
}
else

{
printf("\n %d->file is already
allocated",j);
k++;
}

}

printf("\n If u want to enter one
more file? (yes-1/no-0)");

scanf("%d",&c);

if(c==1)
goto X;
else
exit();

getch();}

Page 85

Computer Networks & Operating Systems Lab Manual

OUTPUT:

Enter how many blocks that are already allocated 3 Enter the blocks

no.s that are already allocated 4 7 Enter the starting index block &

length 3 7 9
3->1

4->1 file is already allocated

5->1
6->1

7->1 file is already allocated

8->1
9->1file is already allocated

10->1
11->1

12->1

VIVA QUESTIONS

1) List the various types of files
2) What are the various file allocation strategies?
3) What is linked allocation?
4) What are the advantages of linked allocation?
5) What are the disadvantages of sequential allocation methods?

Page 86

Computer Networks & Operating Systems Lab Manual

EXPERIMENT.NO:6

DEAD LOCK AVOIDANCE

AIM: Simulate bankers algorithm for Dead Lock Avoidance (Banker‘s Algorithm)

DESCRIPTION:

Deadlock is a situation where in two or more competing actions are waiting f or the

other to finish, and thus neither ever does. When a new process enters a system, it

must declare the maximum number of instances of each resource type it needed. This

number may exceed the total number of resources in the system. When the user request

a set of resources, the system must determine whether the allocation of each resources

will leave the system in safe state. If it will the resources are allocation; otherwise the

process must wait until some other process release the resources.

Data structures
n-Number of process, m-number of resource types.

Available: Available[j]=k, k – instance of resource type Rj is available. Max: If

max[i, j]=k, Pi may request at most k instances resource Rj.

Allocation: If Allocation [i, j]=k, Pi allocated to k instances of resource Rj Need: If

Need[I, j]=k, Pi may need k more instances of resource type Rj, Need[I, j]=Max[I, j]-

Allocation[I, j];

Safety Algorithm

1. Work and Finish be the vector of length m and n respectively, Work=Available and

Finish[i] =False.

2. Find an i such that both

Finish[i] =False Need<=Work

If no such I exists go to step 4.

3. work= work + Allocation, Finish[i] =True;

4. if Finish[1]=True for all I, then the system is in safe state.

Resource request algorithm

Let Request i be request vector for the process Pi, If request i=[j]=k, then process

Pi wants k instances of resource type Rj.

1. if Request<=Need I go to step 2. Otherwise raise an error condition.

2. if Request<=Available go to step 3. Otherwise Pi must since the resources are

Page 87

Computer Networks & Operating Systems Lab Manual

available.

3. Have the system pretend to have allocated the requested resources to process Pi

by modifying the state as follows;

Available=Available-Request I; Allocation I

=Allocation +Request I; Need i=Need i-

Request I;

If the resulting resource allocation state is safe, the transaction is completed and process

Pi is allocated its resources. However if the state is unsafe, the Pi must wait for Request i

and the old resource-allocation state is restored.

ALGORITHM:

1. Start the program.

2. Get the values of resources and processes.

3. Get the avail value.

4. After allocation find the need value.

5. Check whether its possible to allocate.

6. If it is possible then the system is in safe state.

7. Else system is not in safety state.

8. If the new request comes then check that the system is in safety.

9. or not if we allow the request.

10. stop the program.

11. end

Page 88

Computer Networks & Operating Systems Lab Manual

SOURCE CODE :

#include<stdio.h>
#include<conio.h>

#include<string.h>
void main()
{

int alloc[10][10],max[10][10];
int avail[10],work[10],total[10];
int i,j,k,n,need[10][10];

int m;
int count=0,c=0;
char finish[10];

clrscr();

printf("Enter the no. of processes and resources:");
scanf("%d%d",&n,&m);

for(i=0;i<=n;i++)

finish[i]='n';
printf("Enter the claim matrix:\n");

for(i=0;i<n;i++)

for(j=0;j<m;j++)
scanf("%d",&max[i][j]);

printf("Enter the allocation matrix:\n");

for(i=0;i<n;i++)
for(j=0;j<m;j++)
scanf("%d",&alloc[i][j]);
printf("Resource vector:");

for(i=0;i<m;i++)
scanf("%d",&total[i]);
for(i=0;i<m;i++)

avail[i]=0;
for(i=0;i<n;i++)
for(j=0;j<m;j++)

avail[j]+=alloc[i][j];
for(i=0;i<m;i++)
work[i]=avail[i];

for(j=0;j<m;j++)
work[j]=total[j]-work[j];
for(i=0;i<n;i++)

for(j=0;j<m;j++)

need[i][j]=max[i][j]-alloc[i][j];
A:for(i=0;i<n;i++)

{

c=0;
for(j=0;j<m;j++)

if((need[i][j]<=work[j])&&(finish[i]=='n'))

Page 89

Computer Networks & Operating Systems Lab Manual

c++;

if(c==m)
{

printf("All the resources can be allocated to Process %d",

i+1);
printf("\n\nAvailable resources are:");

for(k=0;k<m;k++)
{
work[k]+=alloc[i][k];
printf("%4d",work[k]);
}
printf("\n");
finish[i]='y';

printf("\nProcess %d executed?:%c \n",i+1,finish[i]);

count++;
}
}
if(count!=n)
goto A;

else
printf("\n System is in safe mode");
printf("\n The given state is safe state");

getch();
}

Page 90

Computer Networks & Operating Systems Lab Manual

OUTPUT

Enter the no. of processes and resources: 4 3
Enter the claim matrix:
3 2 2

6 1 3
3 1 4
4 2 2

Enter the allocation matrix:
1 0 0

6 1 2
2 1 1
0 0 2

Resource vector:9 3 6
All the resources can be allocated to Process 2

Available resources are: 6 2 3

Process 2 executed?:y
All the resources can be allocated to Process 3

Available resources are: 8 3 4
Process 3 executed?:y
All the resources can be allocated to Process 4
Available resources are: 8 3 6
Process 4 executed?:y

All the resources can be

allocated to Process 1
Available resources are: 9 3 6

Process 1 executed?:y

System is in safe mode
The given state is safe state

VIVA QUESTIONS

1) What is meant by deadlock?
2) What is safe state in banker’s algorithms?
3) What is banker’s algorithm?
4) What are the necessary conditions where deadlock occurs?
5) What are the principles and goals of protection?

EXERCISE:

1. Write a C program to simulate deadlock prevention

Page 91

	COMPUTER NETWORKS
	AND
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	MISSION
	PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)
	PEO1 – ANALYTICAL SKILLS
	PEO2 – TECHNICAL SKILLS
	PEO3 – SOFT SKILLS
	PEO4 – PROFESSIONAL ETHICS

	PROGRAM SPECIFIC OUTCOMES (PSOs)
	PROGRAMOUTCOMES (POs)
	Engineering Graduates should possess the following:

	MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
	(UGC-Autonomous Institution , Govt. of India)

	TABLE OF CONTENTS
	Head of the Department Principal

	1 b) Implement character count on given data
	PROGRAM:
	b) Decode the stuffed data
	PROGRAM: (1)
	PROGRAM: (2)
	Exercise:

	PROGRAM: (3)
	Program:
	2. Open Shortest Path First
	Algorithm:

	Program: (1)
	OUTPUT
	Exercise: 1. Implement Core-Based Tree(CBT) protocol obtain broadcast tree for it.
	Algorithm:

	OUTPUT (1)
	Exercise:1. Using AES algorithm decrypt the cipher
	Algorithm:

	1. Key Generation
	2. Encryption
	3. Decryption
	Program: (2)
	DESCRIPTION:
	ALGORITHM:
	B). SHORTEST JOB FIRST:
	DESCRIPTION: (1)
	ALGORITHM: (1)
	C). ROUND ROBIN:
	DESCRIPTION: (2)
	ALGORITHM: (2)
	OUTPUT:
	DESCRIPTION: (3)
	ALGORITHM: (3)
	Step10: Stop
	EXPERIMENT NO.2 MEMORY MANAGEMAENT
	DESCRIPTION: (4)
	ALGORITHM: (4)
	INPUT

	ALGORITHM: (5)
	SOURCE CODE:
	EXPERIMENT NO.3
	DESCRIPTION: (5)
	ALGORITHM: (6)
	OUTPUT: (1)
	B) LEAST RECENTLY USED
	ALGORITHM: (7)
	SOURCE CODE :
	OUTPUT: (2)
	C) OPTIMAL
	ALGORTHIM:
	OUTPUT: (3)
	EXPERIMENT NO. 4
	DESCRIPTION: (6)
	OUTPUT: (4)
	B) TWO LEVEL DIRECTORY
	Description:
	OUTPUT (2)
	EXPERIMENT.NO.5
	A) SEQUENTIAL:
	ALGORITHM: (8)
	OUTPUT: (5)
	B) INDEXED:
	ALGORITHM: (9)
	C) LINKED:
	DESCRIPTION: (7)
	ALGORTHIM: (1)
	OUTPUT: (6)
	EXPERIMENT.NO:6
	DESCRIPTION:

	ALGORITHM: (10)
	OUTPUT (3)

