< LVETO LEARN 8 LLATN 10 SHARE

MRCET CAMPUS

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS INSTITUTION - UGC, GOVT. OF INDIA)
Affiliated to JNTUH; Approved by AICTE, NBA-Tier 1 & NAAC with A-GRADE | 1S0 9001:2015
Maisammaguda, Dhulapally, Komaplly, Secunderabad - 500100, Telangana State, India

N BT oo e
= 10) | )\ [o e ——— 2 2 L 1 ——
YO8 v S

‘i’"'"lii }il
mom T
- m i
l

i i ] uiiq i e umii' llffﬁ

=
-




MRCET CAMPUS

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(AUTONOMOUS INSTITUTION - UGC, GOVT. OF INDIA)

Affiliated to JNTUH; Approved by AICTE, NBA-Tier 1 & NAAC with A-GRADE | IS0 9001:2015
Maisammaguda, Dhulapally, Komaplly, Secunderabad - 500100, Telangana State, India

Certificate

Certified that this is the Bonafide Record of the Work Done by

M /MIS e e e e e e ee e Roll.No.................of

B.Tech........... YEar . ....cowvieennn .. S€Mester for Academic year.......................

| i e Laboratory.
Date: Faculty Incharge HOD

Internal Examiner External Examiner

- Q)




INDEX

S.No

Date

Name of the Activity/Experiment

Grade/
Marks

Faculty
Signature




DEEP LEARNING
LAB MANUAL

(IV YEAR — | SEM)
(2024-25)

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE
(CSE - AIML, AIML, AIDS)

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution - UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGCACT 1956
(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC - ‘A’ Grade -1SO 9001:2015 Certified)
Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad - 500100, Telangana State, India




Department of Computer Science & Engineering

(Artificial Intelligence & Machine Learning)

Vision
To be a premier center for academic excellence and research through
innovative interdisciplinary collaborations and making significant contributions to

the community, organizations, and societyas a whole.

Mission
« To impart cutting-edge Artificial Intelligence technology in accordance with
industry norms.
« Toinstill in students a desire to conduct research in order to tackle challenging
technical problems for industry.
« To develop effective graduates who are responsible for their professional

growth, leadership qualities and are committed to lifelong learning.

Quality Policy

e To provide sophisticated technical infrastructure and to inspire students to
reach their full potential.

e To provide students with a solid academic and research environment for a
comprehensive learning experience.

e To provide research development, consulting, testing, and customized training
to satisfy specific industrial demands, thereby encouraging self-employment

and entrepreneurship among students.




Department of Computer Science & Engineering

(Artificial Intelligence & Machine Learning)

Programme Educational Objectives (PEO):

PEO1: To possess knowledge and analytical abilities in areas such as Maths, Science, and
fundamentalengineering.

PEO2: To analyse, design, create products, and provide solutions to problems in Computer
Scienceand Engineering.

PEO3: To leverage the professional expertise to enter the workforce, seek higher education,
andconduct research on Al-based problem resolution.

PEOA4: To be solution providers and business owners in the field of computer science and

engineering with an emphasis on artificial intelligence and machine learning.

Programme Specific Outcomes (PSO):

After successful completion of the program a student is expected to have specificabilities to:
PSOL1: To understand and examine the fundamental issues with Al and ML applications.

PSO2: To apply machine learning, deep learning, and artificial intelligence approaches to address
issues in social computing, healthcare, vision, language processing, speech recognition, and other
domains.

PS03: Use cutting-edge Al and ML tools and technology to further your study and research.




-

Department of Computer Science & Engineering

(Artificial Intelligence & Machine Learning)

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering
problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

w

engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

. Design / development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of
the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

10.

11.

12.

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multi-disciplinary environments.

Life- long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.




Department of Computer Science & Engineering

(Artificial Intelligence & Machine Learning)
Lab Objectives:

To introduce the basic concepts and techniques of Deep Learning and the need of Deep
Learning techniques in real-world problems.

To provide understanding of various Deep Learning algorithms and the way to evaluate
performance of the Deep Learning algorithms.

To apply Deep Learning to learn, predict and classify the real-world problems.

To understand, learn and design Artificial Neural Networks of Supervised Learning for the
selected problems and very the different parameters.

To understand the concept of CNN, RNN, GANs, Auto-encoders.

To inculcate in students professional and ethical attitude, multidisciplinary
approach and an ability to relate real-world issues and provide a cost-effective

solution to it by developing DL applications.

To provide student with an academic environment aware of excellence, written
ethical codes and guidelines and lifelong learning needed for a successful

professional career.

Lab Outcomes:

Upon successful completion of this course, the students will be able to:

Understand the basic concepts and techniques of Deep Learning and the need of Deep
Learning techniques in real-world problems.

Understand CNN algorithms and the way to evaluate performance of the CNN architectures.

Apply RNN and LSTM to learn, predict and classify the real-world problems in the
paradigms of Deep Learning.

Understand, learn and design GANs for the selected problems.

Understand the concept of Auto-encoders and enhancing GANs using auto-encoders.




B. Tech — CSE (Al & ML) R-20

Introduction about lab
System configurations are as follows:

Hardware / Software’s installed: Intel® CORE™ i3-3240 CPU@3.40GHZRAM:
4GB / Anaconda Navigator or Python and Jupyter Notebook or Google Colab.

Packages required to run the programs: Math, Scipy, Numpy, Matplotlib,
Pandas, Sklearn, Tensorflow, Keras etc.

Systems are provided for students in the 1:1 ratio.
Systems are assigned numbers and same system is allotted for students when they
do the lab.

All Systems are configured in LINUX, it is open source and students can use any
different programming environments through package installation.

Guidelines to students

A. Standard operating procedure

a) Explanation on today’s experiment by the concerned faculty using PPT covering
the following aspects:

1) Name of the experiment

2) Aim

3) Software/Hardware requirements

4) Writing the python programs by the students

5) Commands for executing programs

Writing of the experiment in the Observation Book

The students will write the today’s experiment in the Observation book as per the
following format:

a) Name of the experiment

b) Aim

c) Writing the program

d) Viva-Voce Questions and Answers

e) Errors observed (if any) during compilation/execution

Signature of the Faculty



mailto:CPU@3.40GHZ

B. Tech — CSE (Al & ML) R-20

. Guide Lines to Students in Lab

Disciplinary to be maintained by the students in the Lab

e Students are required to carry their lab observation book and record book with
completed experiments while entering the lab.

e Students must use the equipment with care. Any damage is caused student is punishable.
e Students are not allowed to use their cell phones/pen drives/ CDs in labs.

e Students need to maintain proper dress code along with ID Card.

e Students are supposed to occupy the computers allotted to them and are not supposed
totalk or make noise in the lab.

e Students, after completion of each experiment they need to be updated inobservation
notes and same to be updated in the record.

e Lab records need to be submitted after completion of experiment and get it corrected
withthe concerned lab faculty.

e |f a student is absent for any lab, they need to be completed the same experiment in the
free time before attending next lab.

Steps to perform experiments in the lab by the student

Step 1: Students have to write the date, aim and for that experiment in the observation book.
Step 2: Students have to listen and understand the experiment explained by the faculty and
note down the important points in the observation book.

Step 3: Students need to write procedure/algorithm in the observation book.

Step 4: Analyze and Develop/Implement the logic of the program by the student
inrespective platform

Step 5: After approval of logic of the experiment by the faculty then the experiment has to

beexecuted on the system.

Step 6: After successful execution the results are to be shown to the faculty and noted
thesame in the observation book.

Step 7: Students need to attend the Viva-Voce on that experiment and write the same in
theobservation book.

Step 8: Update the completed experiment in the record and submit to the

concernedfaculty in-charge.

10




B. Tech — CSE (Al & ML) R-20

Instructions to maintain the record
e Before start of the first lab, they have to buy the record and bring the record to the lab.

e Regularly (Weekly) update the record after completion of the experiment and get it corrected
with concerned lab in-charge for continuous evaluation. In case the record is lost inform the
same day to the faculty in charge and get the new record within 2 days the record has to be
submitted and get it corrected by the faculty.

e Ifrecord is not submitted in time or record is not written properly, the evaluation marks (5M)
will be deducted.

Awarding the marks for day-to-day evaluation

Total marks for day-to-day evaluation is 15 Marks as per Autonomous (JNTUH). These
15 Marks are distributed as:

Regularity 3 Marks
Program written 3 Marks
Execution & Result 3 Marks
Viva-Voce 3 Marks
Dress Code 3 Marks

Allocation of Marks for Lab Internal
Total marks for lab internal are 30 Marks as per Autonomous (JNTUH)

These 30 Marks are distributed as:

Average of day-to-day evaluation marks: 15
Marks Lab Mid exam: 10 Marks

VIVA & Observation: 5 Marks

Allocation of Marks for Lab External
Total marks for lab Internal and External are 70 Marks as per Autonomous / (JNTUH).

These 70 External Lab Marks are distributed as:

Program Written 30 Marks
Program Execution and Result 20 Marks
Viva-Voce 10 Marks

Record 10 Marks

11




B. Tech — CSE (Al & ML) R-20

C. General laboratory instructions

1. Students are advised to come to the laboratory at least 5 minutes before (to the starting
time), those who come after 5 minutes will not be allowed into the lab.

2. Plan your task properly much before to the commencement, come prepared to the lab
withthe synopsis / program / experiment details.

3. Student should enter into the laboratory with:

a. Laboratory observation notes with all the details (Problem statement, Aim, Algorithm,
Procedure, Program, Expected Output, etc.,) filled in for the lab session.

b. Laboratory Record updated up to the last session experiments and other utensils (if any)
needed in the lab.

C. Proper Dress code and Identity card.

4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer system
allotted to you by the faculty.

5. Execute your task in the laboratory, and record the results / output in the lab observation note
book, and get certified by the concerned faculty.

6. All the students should be polite and cooperative with the laboratory staff, must maintain the
discipline and decency in the laboratory.

7. Computer labs are established with sophisticated and high-end branded systems, which
should be utilized properly.

8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the lab
sessions. Misuse of the equipment, misbehaviors with the staff and systems etc., will attract
severe punishment.

9. Students must take the permission of the faculty in case of any urgency to go out; if anybody
found loitering outside the lab / class without permission during working hours will be
treated seriously and punished appropriately.

10. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves the
lab after completing the task (experiment) in all aspects. He/she must ensure the system / seat

is kept properly.

Head of the Department Principal

12




B. Tech — CSE (Al & ML)

INDEX

R-20

Deep Learning Lab Manual
(R20A6683)

S. No.

Name of the Program

Page No.

a. Design a single unit perceptron for classification of a linearly separable
binary dataset without using pre-defined models. Use the Perceptron() from
sklearn.

b. Identify the problem with single unit Perceptron. Classify using Or-, And-
and Xor-ed data and analyze the result.

Build an Artificial Neural Network by implementing the Backpropagation
algorithm and test the same using appropriate data sets. Vary the activation
functions used and compare the results.

Build a Deep Feed Forward ANN by implementing the Backpropagation algorithm
and test the same using appropriate data sets. Use the number of hidden layers >=4.

Design and implement an Image classification model to classify a dataset of images
using Deep Feed Forward NN. Record the accuracy corresponding to the number of
epochs. Use the MNIST, CIFAR-10 datasets.

Design and implement a CNN model (with 2 layers of convolutions) to classify
multi category image datasets. Record the accuracy corresponding to the number of
epochs. Use the MNIST, CIFAR-10 datasets.

Design and implement a CNN model (with 4+ layers of convolutions) to classify
multi category image datasets. Use the MNIST, Fashion MNIST, CIFAR-10
datasets. Set the No. of Epoch as 5, 10 and 20. Make the necessary changes
whenever required. Record the accuracy corresponding to the number of epochs.
Record the time required to run the program, using CPU as well as using GPU in
Colab.

Design and implement a CNN model (with 2+ layers of convolutions) to
classify multi category image datasets. Use the concept of padding and Batch
Normalization while designing the CNN model. Record the accuracy
corresponding to the number of epochs. Use the Fashion
MNIST/MNIST/CIFAR10 datasets.

Design and implement a CNN model (with 4+ layers of convolutions) to classify
multi category image datasets. Use the concept of regularization and dropout while
designing the CNN model. Use the Fashion MNIST datasets. Record the Training
accuracy and Test accuracy corresponding to the following architectures:

Base Model

Model with L1 Regularization

Model with L2 Regularization

Model with Dropout

Model with both L2 (or L1) and Dropout

Po0oTw

Use the concept of Data Augmentation to increase the data size from a single
image.

10

Design and implement a CNN model to classify CIFAR10 image dataset.
Use the concept of Data Augmentation while designing the CNN model.
Record the accuracy corresponding to the number of epochs.

11

Implement the standard LeNet-5 CNN architecture model to classify multi-

category image dataset (MNIST, Fashion MNIST) and check the accuracy.

13




B. Tech — CSE (Al & ML)

R-20

Implement the standard VGG-16 & 19 CNN architecture model to classify

12 multi category image dataset and check the accuracy.
13 Implement RNN for sentiment analysis on movie reviews.
14 Implement Bidirectional LSTM for sentiment analysis on movie reviews.
Implement Generative Adversarial Networks to generate realistic Images. Use
15 |MNIST, Fashion MNIST or any human face datasets.
Implement Auto encoders for image denoising on MNIST, Fashion MNIST or any
16 [suitable dataset.

14




R-20
Week-1

a. Design a single unit perceptron for classification of a linearly separable binary dataset (placement.csv)
without using pre-defined models. Use the Perceptron() from sklearn.

Program

# Single unit perceptron

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.linear model import Perceptron

df=pd.read csv('/content/gdrive/My Drive/ML lab/placement.csv')
X = df.iloc[:,0:2]

y = df.iloc[:,-1]

p = Perceptron ()

p.fit (X,vy)

print (p.coef )

print (p.intercept )

z=p.score (X, V)

print ("accuracy score is", z)

from mlxtend.plotting import plot decision regions

plot decision regions (X.values, y.values, clf=p, legend=2)

OUTPUT:




R-20
Exercise:

Design a single unit perceptron for classification of a linearly separable binary dataset without using pre-defined
models. Use the Perceptron() from sklearn.

[hint-use make_classification() to generate binary dataset from sklearn

Eg:

from sklearn.datasets import make classification

X, y = make classification(n samples=100, n features=2,

n informative=1l,n redundant=0,n classes=2, n clusters per class=1,
random state=41,hypercube=False,class sep=10)

]




R-20
b. Identify the problem with single unit Perceptron. Classify using Or-, And- and Xor-ed data and analysis the
result.

Program

# Perceptron on Or-, And- and Xor-ed data
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

or data = pd.DataFrame ()

and data = pd.DataFrame ()

xor data = pd.DataFrame ()

or data['inputl']=[1,1,0,0]
or data['input2']=[1,0,1,0]
or data['ouput']=[1,1,1,0]
and data['inputl']=[1,1,0,0]
and data['input2']=[1,0,1,0]
and data['ouput']=[1,0,0,0]
1,1,0,0]

xor data['inputl']=[
xor data['input2']=[1,0,1,0]
xor data['ouput']=[0,1,1,0]

from sklearn.linear model import Perceptron

clfl=Perceptron ()

clf2=Perceptron ()

clf3=Perceptron ()

clfl.fit (and data.iloc[:,0:2].values,and data.iloc[:,-1].values)
print (clfl.coef )

print (clfl.intercept )

x=np.linspace(-1,1,5)

y=-x+1

plt.plot(x,vy)

#sns.scatterplot (and datal'inputl'],and data['input2'],hue=and datal'ouput'],s=200)
clf2.fit(or data.iloc[:,0:2].values,or data.iloc[:,-1].values)
print (clf2.coef )

print (clf2.intercept )

x1l=np.linspace(-1,1,5)

yl=-x+0.5

plt.plot(xl,yl)

#sns.scatterplot (or data['inputl'],or data['input2'],hue=or data['ouput'],s=200)
clf3.fit(xor data.iloc[:,0:2].values,xor data.iloc[:,-1].values)

print (clf3.coef )

print (clf3.intercept )

plot decision regions(xor data.iloc[:,0:2].values,xor data.iloc[:,-1].values,
clf=clf3, legend=2)




R-20

OUTPUT:

Exercise
Identify the problem with single unit Perceptron. Classify using Not- and XNOR-ed data and analyze the result.




R-20
Week-2

Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same
using appropriate data sets. Vary the activation functions used and compare the results.

Program:

from keras.models import Sequential

from keras.layers import Dense, Activation
import numpy as np

import pandas as pd

from sklearn import datasets

iris = datasets.load iris()

X, y = datasets.load iris( return X y = True)

from sklearn.model selection import train test split

X train, X test, y train, y test = train test split(X, y, test size=0.40)
# Define the network model and its arguments.

# Set the number of neurons/nodes for each layer:

model = Sequential ()

model.add (Dense (2, input shape=(4,)))

model .add (Activation('sigmoid'))

model .add (Dense (1))

model .add (Activation ('sigmoid'))

#sgd = SGD(1lr=0.0001, decay=le-6, momentum=0.9, nesterov=True)
#model.compile (loss="'categorical crossentropy', optimizer=sgd, metrics=['accuracy'])
# Compile the model and calculate its accuracy:

model.compile (loss="mean squared error', optimizer='sgd', metrics=['accuracy'])
#model.fit (X train, y train, batch size=32, epochs=3)

# Print a summary of the Keras model:

model . summary ()

#model.fit (X train, y train)

#model.fit(xitrain, y:train, batch size=32, epochs=300)
model.fit (X train, y train, epochs=5)

score = model.evaluate (X test, y test)

print (score)

OUTPUT:




R-20
Exercise:

Note down the accuracies for the following set of experiments on the given NN and compare the results
Do the required modifications needed. Take training data percentage 30%, test data percentage 70%.

b) NN model with 2 hidden layers
(1) Iris dataset
(a) No. of epochs=100,
(1) check accuracy using activation functions Sigmoid, ReLu, Tanh
(i) check accuracy using optimizer sgd, ADAM
(ii1) check accuracy by varying learning rate in sgd as 0.0001, 0.0005, 5.
(iv) check accuracy using loss mean squared error, categorical cross entropy.
(b) No. of epochs =300
(i) Repeat the same above variations
(2) lonosphere data
(a) Repeat the same settings as Iris




R-20




R-20
Week-3

Build a Deep Feed Forward ANN by implementing the Backpropagation algorithm and test the same
using appropriate data sets. Use the number of hidden layers >=4,

Program:

from keras.models import Sequential

from keras.layers import Dense, Activation
import numpy as np

import pandas as pd

from sklearn import datasets

iris = datasets.load iris()

X, y = datasets.load iris(return X y = True)

from sklearn.model selection import train test split

X train, X test, y train, y test = train test split(X, y, test size=0.40)
# Define the network model and its arguments.

# Set the number of neurons/nodes for each layer:

model = Sequential ()

model.add (Dense (2, input shape=(4,)))

model .add (Activation('sigmoid'))
model .add (Dense (1))

model .add (Activation('sigmoid'))
model.add (Dense (2, input shape=(4,)))
model .add (Activation ('sigmoid'))
model .add (Dense (1))

model.add (Activation ('sigmoid'))
model .add (Dense (2, input shape=(4,)))
model.add (Activation ('sigmoid'))
model .add (Dense (1))

model.add (Activation ('sigmoid'))

#sgd = SGD(1lr=0.0001, decay=le-6, momentum=0.9, nesterov=True)

#model.compile (loss="'categorical crossentropy', optimizer=sgd, metrics=['accuracy'])
# Compile the model and calculate its accuracy:

model.compile (loss="mean squared error', optimizer='sgd',6 metrics=['accuracy'])
#model.fit (X train, y train, batch size=32, epochs=3)

# Print a summary of the Keras model:

model . summary ()

#model.fit (X train, y train)

#model.fit (X train, y train, batch size=32, epochs=300)

model.fit (X train, y train, epochs=5)

score = model.evaluate (X test, y test)

print (score)

OUTPUT:




R-20
Exercise:
Modify the above NN model to run on lonosphere dataset with number of hidden layers >=4. Take training data
percentage 30%o, test data percentage 70%. No. of epochs=100, activation function ReLu, optimizer ADAM.




R-20
Week-4
Design and implement an Image classification model to classify a dataset of images using Deep Feed Forward
NN. Record the accuracy corresponding to the number of epochs. Use the MNIST datasets.

Program

#load required packages

import tensorflow as tf

from tensorflow import keras

from keras.models import Sequential
from keras import Input

from keras.layers import Dense
import pandas as pd

import numpy as np

import sklearn

from sklearn.metrics import classification report
import matplotlib

import matplotlib.pyplot as plt

# Load digits data
(X train, y train), (X test, y test) = keras.datasets.mnist.load data()

# Print shapes

print ("Shape of X train: ", X train.shape)
print ("Shape of y train: ", y train.shape)
print ("Shape of X test: ", X test.shape)
print ("Shape of y test: ", y test.shape)

# Display images of the first 10 digits in the training set and their true lables
fig, axs = plt.subplots (2, 5, sharey=False, tight layout=True, figsize=(12,6),
facecolor='white'")
n=0
for i in range(0,2):
for j in range(0,5):

axs[1i,]J] .matshow (X train[n])

axs[i,J].set(title=y train[n])

n=n+1
plt.show ()

# Reshape and normalize (divide by 255) input data
X train = X train.reshape (60000, 784) .astype("float32") / 255
X test = X test.reshape (10000, 784).astype("float32") / 255

# Print shapes
print ("New shape of X train: ", X train.shape)
print ("New shape of X test: ", X test.shape)

#Design the Deep FF Neural Network architecture

model = Sequential (name="DFF-Model") # Model

model .add (Input (shape=(784,), name='Input-Layer')) # Input Layer - need to specify
the shape of inputs




R-20
model .add (Dense (128, activation='relu', name='Hidden-Layer-1"',
kernel initializer='HeNormal'))
model .add (Dense (64, activation='relu', name='Hidden-Layer-2"',
kernel initializer='HeNormal'))
model .add (Dense (32, activation='relu', name='Hidden-Layer-3',
kernel initializer='HeNormal'))

model .add (Dense (10, activation='softmax', name='Output-Layer'))

#Compile keras model

model.compile (optimizer="adam', loss='SparseCategoricalCrossentropy',
metrics=['Accuracy'], loss weights=None, weighted metrics=None, run eagerly=None,
steps per execution=None)

#Fit keras model on the dataset
model.fit (X train, y train, batch size=10, epochs=5, verbose='auto', callbacks=None,
validation split=0.2, shuffle=True, class weight=None, sample weight=None,
initial epoch=0, # Integer, default=0, Epoch at which to start training (useful for
resuming a previous training run).

steps_per epoch=None, validation steps=None, validation batch size=None,
validation freg=5, max queue size=10, workers=1l, use multiprocessing=False, )

# apply the trained model to make predictions

# Predict class labels on training data

pred labels tr = np.array(tf.math.argmax (model.predict (X train),axis=1))
# Predict class labels on a test data

pred labels te = np.array(tf.math.argmax (model.predict (X test),axis=1))

#Model Performance Summary

print ("")

print ('----mm-mmmiommomm oo Model Summary ---------------=----------oo- ")
model . summary ()

print ("")

# Printing the parameters:Deep Feed Forward Neural Network contains more than 100K

#fprint ('------mmmmmmmmmmm oo Weights and Biases ----------------------------- ")

#for layer in model dl.layers:
#print ("Layer: ", layer.name) # print layer name
#print (" --Kernels (Weights): ", layer.get weights() [0]) # kernels (weights)
#print (" --Biases: ", layer.get weights() [1]) # biases

print ("")

PEINE (! oremeeemem= Evaluation on Training Data---------—-—- ")

print (classification report(y train, pred labels tr))

print ("")

PEINE (! oremeeemem= Evaluation on Test Data-————————- ")

print (classification report(y test, pred labels te))
p]fj_l’lt (n n)




OUTPUT:

R-20




R-20
Exercise:

Design and implement an Image classification model to classify a dataset of images using Deep Feed Forward
NN. Record the accuracy corresponding to the number of epochs 5, 50. Use the CIFAR10/Fashion MNIST
datasets. [You can use CIFAR10 available in keras package]. Make the necessary changes whenever required.
Below note down only the changes made and the accuracies obtained.




R-20
Week-5

Design and implement a CNN model (with 2 layers of convolutions) to classify multi category image datasets.
Record the accuracy corresponding to the number of epochs. Use the MNIST, CIFAR-10 datasets.

Program

import keras

from keras.datasets import mnist

from keras.layers import Dense, Activation, Flatten, Conv2D, MaxPooling2D
from keras.models import Sequential

from keras.utils import to categorical

import numpy as np

import matplotlib.pyplot as plt

(train X, train Y), (test X,test Y) = mnist.load data()
train X = train X.reshape (-1, 28,28, 1)

test X = test X.reshape(-1, 28,28, 1)

train X.shape

train X = train X.astype('float32')

test X = test X.astype('float32')

train X = train X / 255

test X = test X / 255

train Y one hot = to categorical (train Y)

test Y one hot = to categorical (test Y)

model = Sequential ()

model .add (Conv2D (64, (3,3), input shape=(28, 28, 1)))
model .add (Activation('relu'))

model .add (MaxPooling2D (pool size=(2,2)))

model .add (Conv2D (64, (3,3)))

model .add (Activation('relu'))

model .add (MaxPooling2D (pool size=(2,2)))

model .add (Flatten ())

model .add (Dense (64))

model .add (Dense (10))

model.add (Activation('softmax'))

model.compile (loss=keras.losses.categorical crossentropy,
optimizer=keras.optimizers.Adam() ,metrics=["'accuracy'])
model.fit (train X, train Y one hot, batch size=64, epochs=10)
test loss, test acc = model.evaluate(test X, test Y one hot)
print ('Test loss', test loss)

print ('Test accuracy', test acc)

predictions = model.predict (test X)

print (np.argmax (np.round (predictions[0])))
plt.imshow (test X[0].reshape (28, 28), cmap = plt.cm.binary)
plt.show ()

OUTPUT:




R-20
Exercise:

Design and implement a CNN model (with 2 layers of convolutions) to classify multi category image datasets.
Record the accuracy corresponding to the number of epochs 10, 100. Use the CIFAR10/Fashion MNIST datasets.
Make the necessary changes whenever required. Below note down only the changes made and the accuracies
obtained.




R-20
Week-6
Design and implement a CNN model (with 4+ layers of convolutions) to classify multi category image datasets.
Record the accuracy corresponding to the number of epochs. Use the Fashion MNIST datasets. Record the time
required to run the program, using CPU as well as using GPU in Colab.

Program-

import keras

from keras.datasets import fashion mnist

from keras.layers import Dense, Activation, Flatten, Conv2D, MaxPooling2D
from keras.models import Sequential

from keras.utils import to categorical

import numpy as np

import matplotlib.pyplot as plt

(train X, train Y), (test X,test Y) = fashion mnist.load data/()

train X = train X.reshape(-1, 28,28, 1)
test X = test X.reshape(-1, 28,28, 1)

train X = train X.astype('float32')
test X = test X.astype('float32')
train X = train X / 255

test X = test X / 255

train Y one hot = to categorical (train Y)
test Y one hot = to categorical (test Y)

model = Sequential ()

model .add (Conv2D (256, (3,3), input shape=(28, 28, 1)))
model .add (Activation('relu'))
model .add (MaxPooling2D (pool size=(2,2)))

model .add (Conv2D (128, (3,3)))
model .add (Activation('relu'))
model .add (MaxPooling2D (pool size=(2,2)))

model .add (Conv2D (64, (3,3), input shape=(28, 28, 1)))
model .add (Activation('relu'))
#model.add (MaxPooling2D (pool size=(2,2)))

model .add (Conv2D (28, (3,3)))
model .add (Activation('relu'))
#model.add (MaxPooling2D (pool size=(2,2)))

model .add (Flatten())
model .add (Dense (64))

model .add (Dense (10))
model.add (Activation ('softmax"'))




R-20

model.compile (loss=keras.losses.categorical crossentropy,

optimizer=keras.optimizers.Adam() ,metrics=["'accuracy'])
model.fit (train X, train Y one hot, batch size=64, epochs=5)

test loss, test acc = model.evaluate(test X, test Y one hot)
print ('Test loss', test loss)

print ('Test accuracy', test acc)

predictions = model.predict (test X)
print (np.argmax (np.round (predictions[0])))

plt.imshow (test X[0].reshape (28, 28), cmap = plt.cm.binary)
plt.show ()

OUTPUT:




R-20
Exercise:

Design and implement a CNN model (with 4+ layers of convolutions) to classify multi category image datasets.
Use the MNIST/ CIFAR-10 datasets. Set the No. of Epoch as 5, 10 and 20. Make the necessary changes whenever
required. Record the accuracy corresponding to the number of epochs. Record the time required to run the
program, using CPU as well as using GPU in Colab. Below note down only the changes made and the accuracies

obtained.




R-20
Week-7

Design and implement a CNN model (with 2+ layers of convolutions) to classify multi category image datasets.
Use the concept of padding and Batch Normalization while designing the CNN model. Record the accuracy
corresponding to the number of epochs. Use the Fashion MNIST datasets.

Program
# Batch-Normalization and padding

import keras

from keras.datasets import fashion mnist

from keras.layers import Dense, Activation, Flatten, Conv2D, MaxPooling2D,
BatchNormalization

from keras.models import Sequential

from keras.utils import to categorical

import numpy as np

import matplotlib.pyplot as plt

(train X, train Y), (test X,test Y) = fashion mnist.load data ()

train X = train X.reshape (-1, 28,28, 1)
test X = test X.reshape(-1, 28,28, 1)

train X = train X.astype('float32')
test X = test X.astype('float32')
train X = train X / 255

test X = test X / 255

train Y one hot = to categorical (train Y)
test Y one hot = to categorical (test Y)

model = Sequential ()

model .add (Conv2D (256, (3,3), input shape=(28, 28, 1),padding='same'))
model .add (Activation('relu'))

BatchNormalization ()

model .add (MaxPooling2D (pool size=(2,2) ,padding='same'))

model.add (Conv2D (128, (3,3),padding="'same'))
model .add (Activation('relu'))
#BatchNormalization ()

model .add (MaxPooling2D (pool size=(2,2) ,padding='same'))

model .add (Conv2D (64, (3,3), input shape=(28, 28, 1,padding='same'))
model.add (Activation('relu'))

#BatchNormalization ()

model .add (MaxPooling2D (pool size=(2,2),padding='same'))

model .add (Conv2D (28, (3,3)))
model.add (Activation ('relu'))




R-20
#BatchNormalization ()
model.add (MaxPooling2D (pool size=(2,2),padding='same'))

model.add (Flatten())
model .add (Dense (64))

model .add (Dense (10))
model.add (Activation ('softmax'))

model.compile (loss=keras.losses.categorical crossentropy,

optimizer=keras.optimizers.Adam() ,metrics=["'accuracy'])
model.fit (train X, train Y one hot, batch size=64, epochs=5)
test loss, test acc = model.evaluate(test X, test Y one hot)
print ('Test loss', test loss)

print ('Test accuracy', test acc)

predictions = model.predict (test X)
print (np.argmax (np.round (predictions[0])))

plt.imshow(test X[0].reshape (28, 28), cmap = plt.cm.binary)
plt.show ()

OUTPUT:




R-20
Exercise:

Design and implement a CNN model (with 2+ layers of convolutions) to classify multi category image datasets.
Use the concept of Batch-Normalization and padding while designing the CNN model. Record the accuracy
corresponding to the number of epochs 5, 25, 225. Make the necessary changes whenever required. Use the
MNIST/CIFAR-10 datasets. Below note down only the changes made and the accuracies obtained.




R-20
Week-8

Design and implement a CNN model (with 4+ layers of convolutions) to classify multi category image datasets. Use
the concept of regularization and dropout while designing the CNN model. Use the Fashion MNIST datasets.

Record the Training accuracy and Test accuracy corresponding to the following architectures:

Base Model

Model with L1 Regularization

Model with L2 Regularization

Model with Dropout

Model with both L2 (or L1) and Dropout

oo oW

Program

a. Base Model: Modify the b. experiment program commenting on kernel_regularizer=11(0.01) function. See the below
program for reference.

b.

# L1 Regularizer

import keras

from keras.datasets import fashion mnist

from keras.layers import Dense, Activation, Flatten, Conv2D, MaxPooling2D
from keras.models import Sequential

from keras.regularizers import 11

from keras.utils import to categorical

import numpy as np

import matplotlib.pyplot as plt

(train X, train Y), (test X,test Y) = fashion mnist.load data/()

train X = train X.reshape (-1, 28,28, 1)
test X = test X.reshape(-1, 28,28, 1)

train X = train X.astype('float32"')
test X = test X.astype('float32')
train X = train X / 255

test X = test X / 255

train Y one hot = to categorical (train Y)
test Y one hot = to categorical (test Y)

model = Sequential ()

model .add (Conv2D (256, (3,3),input shape=(28, 28, 1),kernel regularizer=11(0.01)))
model .add (Activation('relu'))
model .add (MaxPooling2D (pool size=(2,2)))

model .add (Conv2D (128, (3,3),kernel regularizer=11(0.01)))
model .add (Activation('relu'))
model .add (MaxPooling2D (pool size=(2,2)))




R-20

model.add (Conv2D (64, (3,3), input shape=(28, 28, 1),
#kernel regularizer=11(0.01)
))

model .add (Activation('relu'))
#model.add (MaxPooling2D (pool size=(2,2)))

model .add (Conv2D (28, (3,3),
#kernel regularizer=11(0.01)

))
model .add (Activation('relu'))
#model.add (MaxPooling2D (pool size=(2,2)))

model.add (Flatten())
model .add (Dense (64))

model .add (Dense (10))
model.add (Activation ('softmax'))

model.compile (loss=keras.losses.categorical crossentropy,
optimizer=keras.optimizers.Adam() ,metrics=["'accuracy'])

model.fit (train X, train Y one hot, epochs=b5)

test loss, test acc = model.evaluate(test X, test Y one hot)
print ('Test loss', test loss)

print ('Test accuracy', test acc)

predictions = model.predict (test X)
print (np.argmax (np.round (predictions[0])))

plt.imshow (test X[0].reshape (28, 28), cmap = plt.cm.binary)
plt.show ()

C.

# L2 regularizer

import keras

from keras.datasets import fashion mnist

from keras.layers import Dense, Activation, Flatten, Conv2D, MaxPooling2D
from keras.models import Sequential

from keras.regularizers import 12

from keras.utils import to categorical

import numpy as np

import matplotlib.pyplot as plt

(train X, train Y), (test X,test Y) = fashion mnist.load data/()

train X = train X.reshape (-1, 28,28, 1)




R-20
test X = test X.reshape(-1, 28,28, 1)

train X = train X.astype('float32'")
test X = test X.astype('float32'")
train X = train X / 255

test X = test X / 255

train Y one hot = to categorical(train Y)
test Y one hot = to categorical (test Y)

model = Sequential ()

model.add (Conv2D (256, (3,3),input shape=(28,28,1), kernel regularizer=12(0.01)))
model .add (Activation('relu'))
model.add (MaxPooling2D (pool size=(2,2)))

model .add (Conv2D (128, (3,3),
#kernel regularizer=12(0.01)
))

model .add (Activation('relu'))
model.add (MaxPooling2D (pool size=(2,2)))

model.add (Conv2D (64, (3,3), input shape=(28, 28, 1),
#kernel regularizer=12(0.01)
))

model .add (Activation('relu'))
#model.add (MaxPooling2D (pool size=(2,2)))

model .add (Conv2D (28, (3,3),
#kernel regularizer=12(0.01)
))

model .add (Activation('relu'))
#model.add (MaxPooling2D (pool size=(2,2)))

model .add (Flatten())
model .add (Dense (64))

model .add (Dense (10))
model.add (Activation ('softmax'))

model.compile (loss=keras.losses.categorical crossentropy,optimizer=keras.optimizers.Ada
m() ,metrics=["accuracy'])

model.fit (train X, train Y one hot, epochs=5)
test loss, test acc = model.evaluate(test X, test Y one hot)

print ('Test loss', test loss)
print ('Test accuracy', test acc)




R-20
predictions = model.predict (test X)
print (np.argmax (np.round (predictions[0])))

plt.imshow (test X[0].reshape (28, 28), cmap = plt.cm.binary)
plt.show ()

d.
#Dropout

import keras

from keras.datasets import fashion mnist

from keras.layers import Dense, Activation, Flatten, Conv2D, MaxPooling2D, Dropout
from keras.models import Sequential

from keras.utils import to categorical

import numpy as np

import matplotlib.pyplot as plt
(train X, train Y), (test X,test Y) = fashion mnist.load data ()

train X = train X.reshape (-1, 28,28, 1)
test X = test X.reshape(-1, 28,28, 1)

train X = train X.astype('float32')
test X = test X.astype('float32')
train X = train X / 255

test X = test X / 255

train Y one hot = to categorical (train Y)
test Y one hot = to categorical (test Y)

model = Sequential ()

model .add (Conv2D (256, (3,3), input shape=(28, 28, 1)))
model .add (Activation('relu'))

model .add (MaxPooling2D (pool size=(2,2)))

Dropout (0.20)

model .add (Conv2D (128, (3,3)))

model .add (Activation('relu'))

model .add (MaxPooling2D (pool size=(2,2)))
#Dropout (0.20)

model .add (Conv2D (64, (3,3), input shape=(28, 28, 1)))
model .add (Activation('relu'))

#model.add (MaxPooling2D (pool size=(2,2)))

#Dropout (0.20)

model .add (Conv2D (28, (3,3)))
model.add (Activation ('relu'))




R-20
#model.add (MaxPooling2D (pool size=(2,2)))
#Dropout (0.20)
model.add (Flatten())
model .add (Dense (64))

model .add (Dense (10))
model.add (Activation ('softmax'))

model.compile (loss=keras.losses.categorical crossentropy,
optimizer=keras.optimizers.Adam() ,metrics=["'accuracy'])

model.fit (train X, train Y one hot, batch size=64, epochs=5)

test loss, test acc = model.evaluate(test X, test Y one hot)
print ('Test loss', test loss)

print ('Test accuracy', test acc)

predictions = model.predict (test X)
print (np.argmax (np.round (predictions[0])))

plt.imshow(test X[0].reshape (28, 28), cmap = plt.cm.binary)
plt.show ()

# L2 regularizer and Dropout

import keras

from keras.datasets import fashion mnist

from keras.layers import Dense, Activation, Flatten, Conv2D, MaxPooling2D
from keras.models import Sequential

from keras.regularizers import 12

from keras.utils import to categorical

import numpy as np

import matplotlib.pyplot as plt

(train X, train Y), (test X,test Y) = fashion mnist.load data/()

train X = train X.reshape (-1, 28,28, 1)
test X = test X.reshape(-1, 28,28, 1)

train X = train X.astype('float32"')
test X = test X.astype('float32')
train X = train X / 255

test X = test X / 255

train Y one hot = to categorical (train Y)
test Y one hot = to categorical (test Y)




model = Sequential ()

R-20

model.add (Conv2D (256, (3,3), input shape=(28, 28, 1), kernel regularizer=12(0.01)

))

model .add (Activation('relu'))

model .add (MaxPooling2D (pool size=(2,2)))
Dropout (0.20)

model .add (Conv2D (128, (3,3),
#kernel regularizer=12(0.01)

model .add (Activation('relu'))
model.add (MaxPooling2D (pool size=(2,2)))

model.add (Conv2D (64, (3,3), input shape=(28, 28, 1),
#kernel regularizer=12(0.01)
))

model .add (Activation('relu'))
#model .add (MaxPooling2D (pool size=(2,2)))

model .add (Conv2D (28, (3,3),
#kernel regularizer=12(0.01)
))

model .add (Activation('relu'))
#model.add (MaxPooling2D (pool size=(2,2)))

model.add (Flatten())
model .add (Dense (64))

model .add (Dense (10))
model.add (Activation ('softmax'))

model.compile (loss=keras.losses.categorical crossentropy,
optimizer=keras.optimizers.Adam() ,metrics=["'accuracy'])

model.fit (train X, train Y one hot, epochs=5)

test loss, test acc = model.evaluate(test X, test Y one hot)

print ('Test loss', test loss)

print ('Test accuracy', test acc)

predictions = model.predict (test X)
print (np.argmax (np.round (predictions[0])))

plt.imshow (test X[0].reshape (28, 28), cmap = plt.cm.binary)

plt.show ()




OUTPUT:
a. Base Model:

b. Model with L1 Regularization:

c. Model with L2 Regularization:

d. Model with Dropout:

e. Model with both L2 (or L1) and Dropout:

R-20




R-20
Exercise:

Design and implement a CNN model (with 4+ layers of convolutions) to classify multi category image datasets. Use
the concept of regularization and dropout while designing the CNN model. Use the MNIST dataset. Modify the
program as and when needed. Record the Training accuracy and Test accuracy corresponding to the following
architectures:

a. Base Model

b. Model with both L2 (or L1) and Dropout




R-20
Week-9

Use the concept of data augmentation to increase the data size from a single image.

Program-
#data augmentation on a single image

from numpy import expand dims

from tensorflow.keras.preprocessing import image

#from keras.preprocessing.image import img to array

from keras.preprocessing.image import ImageDataGenerator
from matplotlib import pyplot

# load the image

img = image.load img('/content/gdrive/My Drive/data/train/cat.png')
# convert to numpy array

data = image.img to array(img)

# expand dimension to one sample

samples = expand dims (data, O0)

# create image data augmentation generator

datagen = ImageDataGenerator (width shift range=[-100,100])
# prepare iterator

it = datagen.flow(samples, batch size=1)

# generate samples and plot

for 1 in range(9):

# define subplot

pyplot.subplot (330 + 1 + 1)

# generate batch of images

batch = it.next ()

# convert to unsigned integers for viewing

image = batch[0].astype ('uint8")

# plot raw pixel data

pyplot.imshow (image)

# show the figure
pyplot.show ()

OUTPUT:




R-20
Exercise:

Use the concept of data augmentation to increase the data size from a single image. Use any random image of your
choice. Apply variations of ImageDataGenerator () function on arguments height_shift_range=0.5,
horizontal_flip=True, rotation_range=90, brightness_range=[0.2,1.0], zoom_range=[0.5,1.0] etc. and analyze the
output images.




R-20
Week-10

Design and implement a CNN model to classify CIFAR10 image dataset. Use the concept of Data Augmentation
while designing the CNN model. Record the accuracy corresponding to the number of epochs.

# data augmentation with flow function
from future import print function

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.datasets import cifarl0

from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D

import matplotlib.pyplot as plt
$matplotlib inline

# The data, shuffled and split between train and test sets:
(x_train, y train), (x_test, y test) = cifarl0.load data()
print ('x train shape:', x train.shape)

print (x train.shape[0], 'train samples')

print (x_test.shape[0], 'test samples')

num classes = 10

y train = tf.keras.utils.to categorical (y train, num classes)
y test = tf.keras.utils.to categorical(y test, num classes)

x train = x train.astype('float32'")
x test = x test.astype('float32')

x train /= 255

x test /= 255

# Let's build a CNN using Keras' Sequential capabilities

model 1 = Sequential ()

## 5x5 convolution with 2x2 stride and 32 filters

model 1.add(Conv2D(32, (5, 5), strides = (2,2), padding='same',
input shape=x train.shape[l:]))

model 1.add(Activation('relu'))

## Another 5x5 convolution with 2x2 stride and 32 filters
model 1.add(Conv2D(32, (5, 5), strides = (2,2)))
model 1.add(Activation('relu'))




R-20
## 2x2 max pooling reduces to 3 x 3 x 32
model 1.add(MaxPooling2D (pool size=(2, 2)))
model 1.add(Dropout (0.25))

## Flatten turns 3x3x32 into 288x1
model 1.add(Flatten())

model 1.add(Dense(512))

model 1.add(Activation('relu'))
model 1.add(Dropout (0.5))

model 1.add(Dense (num classes))
model 1.add(Activation('softmax'))

model 1.summary ()
batch size = 32

# initiate RMSprop optimizer
opt = tf.keras.optimizers.legacy.RMSprop (lr=0.0005, decay=le-6)

# Let's train the model using RMSprop
model 1l.compile(loss='categorical crossentropy',
optimizer=opt,

metrics=["'accuracy'])

datagen = ImageDataGenerator (
featurewise center=False, # set input mean to 0 over the dataset
samplewise center=False, # set each sample mean to 0
featurewise std normalization=False, # divide inputs by std of the dataset
samplewise std normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation range=0, # randomly rotate images in the range (degrees, 0 to 180)
width shift range=0.1, # randomly shift images horizontally (fraction of total
width)
height shift range=0.1, # randomly shift images vertically (fraction of total
height)
horizontal flip=True, # randomly flip images
vertical flip=False) # randomly flip images

datagen.fit(x train) # This computes any statistics that may be needed (e.g.

for centering) from the training set.

# Fit the model on the batches generated by datagen.flow() .
model 1.fit(datagen.flow(x train, y train,
batch size=batch size),
steps per epoch=x train.shape[0] // batch size,
epochs=5,
validation data=(x _test, y test))

test loss, test acc = model l.evaluate(x test, y test)




R-20
print ('Test loss', test loss)
print ('Test accuracy', test acc)

OUTPUT:

Exercise:

Can you make the above model do better on the same dataset? Can you make it do worse? Experiment with
different settings of the data augmentation while designing the CNN model. Record the accuracy mentioning the
modified settings of data augmentation.




R-20
Week-11

Implement the standard LeNet CNN architecture model to classify multi category image dataset (MNIST) and
check the accuracy.

Program-
# LeNet

import tensorflow as tf

from tensorflow import keras

import numpy as np

(train x, train y), (test x, test y) = keras.datasets.mnist.load data()
train x = train x / 255.0

test x = test x / 255.0

train x = tf.expand dims(train x, 3)

test x = tf.expand dims(test x, 3)

val x = train x[:5000]
val y = train y[:5000]

lenet 5 model = keras.models.Sequential ([

keras.layers.Conv2D (6, kernel size=5, strides=1, activation='tanh',
input shape=train x[0].shape, padding='same'), #C1

keras.layers.AveragePooling2D (), #S2

keras.layers.Conv2D (16, kernel size=5, strides=1, activation='tanh',
padding='valid'), #C3

keras.layers.AveragePooling2D (), #S4

keras.layers.Conv2D (120, kernel size=5, strides=1, activation='tanh',
padding='valid'), #C5

keras.layers.Flatten (), #Flatten

keras.layers.Dense (84, activation='tanh'), #F6

keras.layers.Dense (10, activation='softmax') #Output layer

1)

lenet 5 model.compile (optimizer="'adam',
loss=keras.losses.sparse categorical crossentropy, metrics=['accuracy'])
lenet 5 model.fit(train x, train y, epochs=5, validation data=(val x, val y))
lenet 5 model.evaluate (test x, test vy)

OUTPUT:




R-20
Exercise:

Implement the standard LeNet CNN architecture model to classify multi category image dataset (Fashion
MNIST) and check the accuracy. Below note down only the changes made and the accuracies obtained for epochs

5, 50, 250.




R-20
Week-12
Implement the standard VGG 16 CNN architecture model to classify cat and dog image dataset and check the
accuracy.

Program-
# VGG16

import keras,os

from keras.models import Sequential

from keras.layers import Dense, Conv2D, MaxPool2D, Flatten

from keras.preprocessing.image import ImageDataGenerator

import numpy as np

trdata = ImageDataGenerator ()

traindata = trdata.flow from directory(directory="/content/gdrive/My
Drive/training set",target size=(224,224))

tsdata = ImageDataGenerator ()

testdata = tsdata.flow from directory(directory="/content/gdrive/My Drive/test set",
target size=(224,224))

model = Sequential ()

model.add (Conv2D (input shape=(224,224,3),filters=64,kernel size=(3,3),padding="same"
,activation="relu"))

model.add (Conv2D (filters=64, kernel size=(3,3),padding="same", activation="relu"))
model.add (MaxPool2D (pool size=(2,2),strides=(2,2)))

model .add (Conv2D (filters=128, kernel size=(3,3), padding="same", activation="relu"))
model.add (Conv2D (filters=128, kernel size=(3,3), padding="same", activation="relu"))
model .add (MaxPool2D (pool size=(2,2),strides=(2,2)))

model .add (Conv2D (filters=256, kernel size=(3,3), padding="same", activation="relu"))
model .add (Conv2D (filters=256, kernel size=(3,3), padding="same", activation="relu"))
model .add (Conv2D (filters=256, kernel size=(3,3), padding="same", activation="relu"))
model .add (MaxPool2D (pool size=(2,2),strides=(2,2)))

model .add (Conv2D (filters=512, kernel size=(3,3), padding="same", activation="relu"))
model.add (Conv2D (filters=512, kernel size=(3,3), padding="same", activation="relu"))
model .add (Conv2D (filters=512, kernel size=(3,3), padding="same", activation="relu"))
model .add (MaxPool2D (pool size=(2,2),strides=(2,2)))

model.add (Conv2D (filters=512, kernel size=(3,3), padding="same", activation="relu"))
model .add (Conv2D (filters=512, kernel size=(3,3), padding="same", activation="relu"))
model .add (Conv2D (filters=512, kernel size=(3,3), padding="same", activation="relu"))
model .add (MaxPool2D (pool size=(2,2),strides=(2,2)))

model .add (Flatten())
model . add
model .add
model.add (Dense (units=2, activation="softmax"))

(
(Dense (units=4096,activation="relu"))
(Dense (units=4096,activation="relu"))
(

from keras.optimizers import Adam

opt = Adam(lr=0.001)

model.compile (optimizer=opt, loss=keras.losses.categorical crossentropy,
metrics=["'accuracy'])




R-20
model . summary ()

from keras.callbacks import ModelCheckpoint, EarlyStopping checkpoint =
ModelCheckpoint ("vggl6 1.h5", monitor='val acc', verbose=l,save best only=True,

save weights only=False, mode='auto',6 period=l)

early = EarlyStopping (monitor='val acc', min delta=0, patience=20, verbose=l,
mode="auto"')

hist = model.fit generator (steps per epoch=100,generator=traindata, validation data=

testdata, validation steps=10,epochs=5,callbacks=[checkpoint,early])

import matplotlib.pyplot as plt

plt.plot (hist.history["accuracy"])

plt.plot (hist.history['val accuracy'])

plt.plot (hist.history['loss'])

plt.plot (hist.history['val loss'])

plt.title ("model accuracy")

plt.ylabel ("Accuracy")

plt.xlabel ("Epoch™)

plt.legend(["Accuracy","Validation Accuracy","loss","Validation Loss"])
plt.show ()

OUTPUT:




R-20
Exercise:

Implement the standard VGG 19 CNN architecture model to classify cat and dog image dataset and check the
accuracy. Make the necessary changes whenever required.




R-20
Week-13

Implement RNN for sentiment analysis on movie reviews.
Program-
# RNN sentiment analysis on movie reviews

from keras.datasets import imdb

from keras.preprocessing.text import Tokenizer

from keras.utils import pad sequences

from keras import Sequential

from keras.layers import

Dense, SimpleRNN, Embedding, Flatten (X train,y train), (X test
,y _test) = imdb.load data() X train =

pad sequences (X train,padding='post',maxlen=50) X test =
pad sequences (X test,padding='post',maxlen=50)

X train.shape

model = Sequential ()

#model.add (Embedding (10000, 2))

model.add (SimpleRNN (32, input shape=(50,1), return sequences=False))
model .add (Dense (1, activation='sigmoid'))

model . summary ()

model.compile (optimizer="'adam', loss='binary crossentropy', metrics=['acc'])
model.fit (X train, y train,epochs=5,validation data=(X test,y test))

test loss, test acc = model.evaluate (X test, y test)

print ('Test loss', test loss)

print ('Test accuracy', test acc)

OUTPUT:

Exercise:
Implement RNN for sentiment analysis on movie reviews. Use the concept of Embedding layer.




R-20




R-20
Week-14
Implement Bi-directional LSTM for sentiment analysis on movie reviews.

Program-
# Bi directional LSTM

import numpy as np

from keras.preprocessing import sequence

from keras.utils import pad sequences

from keras.models import Sequential

from keras.layers import Dense, Dropout, Embedding, LSTM, Bidirectional
from keras.datasets import imdb

n_unique words = 10000 # cut texts after this number of words

maxlen = 200

batch size = 128

(x_train, y train), (x test, y test) = imdb.load data (num words=n unique words)
X _train = pad sequences (x_ train, maxlen=maxlen)

x test = pad sequences(x test, maxlen=maxlen)

y train = np.array(y train)

y test = np.array(y test)

model = Sequential ()

model.add (Embedding (n_unique words, 128, input length=maxlen))

model .add (Bidirectional (LSTM(64)))

model .add (Dropout (0.5))

model .add (Dense (1, activation='sigmoid'))

model.compile (loss='binary crossentropy', optimizer='adam', metrics=['accuracy'])
history=model.fit (x train, y train, batch size=batch size, epochs=10,
validation data=[x test, y test])

test loss, test acc = model.evaluate(x test, y test)

print ('Test loss', test loss)

print ('Test accuracy', test acc)

print (history.history['loss'])

print (history.history(['accuracy'])

from matplotlib import pyplot

pyplot.plot (history.history['loss'])

pyplot.plot (history.history(['accuracy'])

pyplot.title('model loss vs accuracy')

pyplot.xlabel ('epoch')

pyplot.legend(['loss', 'accuracy'], loc='upper right')

pyplot.show ()

OUTPUT:




R-20
Exercise:
Implement Bi-directional LSTM on a suitable dataset of your choice. Modify the program as needed.




R-20
Week-15
Implement Generative Adversarial Networks to generate realistic Images. Use MNIST dataset.

Program-
# loading the mnist dataset
from tensorflow.keras.datasets.mnist import load data

# load the images into memory
(trainX, trainy), (testX, testy) = load data()

# summarize the shape of the dataset
print ('Train', trainX.shape, trainy.shape)
print ('Test', testX.shape, testy.shape)

#plot of 25 images from the MNIST training dataset, arranged in a 5x5 square.

from tensorflow.keras.datasets.mnist import load data
from matplotlib import pyplot
# load the images into memory
(trainX, trainy), (testX, testy) = load data()
# plot images from the training dataset
for i in range (25):

# define subplot

pyplot.subplot (5, 5, 1 + 1)

# turn off axis

pyplot.axis ('off")

# plot raw pixel data

pyplot.imshow (trainX[i], cmap='gray r')
pyplot.show ()

import glob

import imageio

import matplotlib.pyplot as plt
import numpy as np

import os

import PIL

from tensorflow.keras import layers
import time

import tensorflow as tf

from IPython import display

(train images, train labels), (_, ) = tf.keras.datasets.mnist.load data ()
train images = train images.reshape(train images.shape[0], 28, 28,

1) .astype('float32")

train images = (train images - 127.5) / 127.5 # Normalize the images to [-1, 1]
BUFFER SIZE = 60000

BATCH SIZE = 256

# Batch and shuffle the data




R-20
train dataset =
tf.data.Dataset.from tensor slices(train images) .shuffle (BUFFER SIZE) .batch (BATCH SIZ
E)
# input 7*7*256 (low resolution version of the output image)
# outputs a single 28x28 grayscale image
# this generator takes a vector of size 100 and first reshape that into (7, 7, 128)
vector then applied transpose

# convolution in combination with batch normalization.

def make generator model () :
model = tf.keras.Sequential ()
model.add (layers.Dense (7*7*256, use bias=False, input shape=(100,)))
model .add (layers.BatchNormalization () )
model .add (layers.LeakyReLU())

model .add (layers.Reshape ((7, 7, 256)))

assert model.output shape == (None, 7, 7, 256) # Note: None is the batch size

model .add (layers.Conv2DTranspose (128, (5, 5), strides=(1, 1), padding='same',
use bias=False))

assert model.output shape == (None, 7, 7, 128)

model .add (layers.BatchNormalization ())

model .add (layers.LeakyReLU())

# upsample to 14x14

model .add (layers.Conv2DTranspose (64, (5, 5), strides=(2, 2), padding='same',
use bias=False))

assert model.output shape == (None, 14, 14, 64)

model .add (layers.BatchNormalization())

model .add (layers.LeakyReLU())

# upsample to 28x28
model.add (layers.Conv2DTranspose (1, (5, 5), strides=(2, 2), padding='same',
use bias=False, activation='tanh'))

assert model.output shape == (None, 28, 28, 1)

return model
# sample image generated by the the generator
generator = make generator model ()

noise = tf.random.normal ([1, 100]) #latent space
generated image = generator (noise, training=False)

plt.imshow (generated image[O, :, :, 0], cmap='gray')

# Input to discriminator = 28%*28*1 grayscale image

# Output Dbinary prediction (image is real (class=1) or fake (class=0))

# no pooling layers

# single node in the output layer with the sigmoid activation function to predict
whether the input sample is real or fake.




R-20
# Downsampling from 28x28 to 14x14, then to 7x7, before the model makes an output
prediction
def make discriminator model () :
model = tf.keras.Sequential ()

model .add (layers.Conv2D (64, (5, 5), strides=(2, 2),
padding="'same', input shape=[28, 28, 1])) #2x2 stride to downsample

model .add (layers.LeakyReLU())

model .add (layers.Dropout (0.3))

model.add (layers.Conv2D (128, (5, 5), strides=(2, 2), padding='same'))
#downsampling 2x2 stride to downsample

model .add (layers.LeakyReLU())

model.add (layers.Dropout (0.3))

model .add (layers.Flatten()) # classifier real (class=1) or fake (class=0))
model.add (layers.Dense (1, activation='sigmoid'))

return model

discriminator = make discriminator model ()

decision = discriminator (generated image)

print (decision)

# This method returns a helper function to compute cross entropy loss
cross_entropy = tf.keras.losses.BinaryCrossentropy (from logits=True)
def discriminator loss(real output, fake output):

real loss = cross _entropy(tf.ones like(real output), real output)
fake loss = cross entropy(tf.zeros like(fake output), fake output)
total loss = real loss + fake loss

return total loss
def generator loss (fake output):
return cross _entropy(tf.ones like (fake output), fake output)
generator optimizer = tf.keras.optimizers.Adam(le-4)
discriminator optimizer = tf.keras.optimizers.Adam(le-4)
checkpoint dir = './training checkpoints'
checkpoint prefix = os.path.join(checkpoint dir, "ckpt")
checkpoint = tf.train.Checkpoint (generator optimizer=generator optimizer,
discriminator optimizer=discriminator optimizer,
generator=generator,
discriminator=discriminator)
EPOCHS = 5
noise dim = 100
num examples to generate = 16

# You will reuse this seed overtime (so it's easier)

# to visualize progress in the animated GIF)

seed = tf.random.normal ([num examples to generate, noise dim])
# Notice the use of “tf.function’

# This annotation causes the function to be "compiled".
@tf.function




R-20

def train step(images) :
noise = tf.random.normal ([BATCH SIZE, noise dim])

with tf.GradientTape() as gen tape, tf.GradientTape () as disc_ tape:
generated images = generator(noise, training=True)

real output = discriminator (images, training=True)
fake output = discriminator (generated images, training=True)

gen loss = generator loss(fake output)
disc_loss = discriminator loss(real output, fake output)

gradients of generator = gen tape.gradient(gen loss,
generator.trainable variables)
gradients of discriminator = disc_ tape.gradient (disc_ loss,

discriminator.trainable variables)

generator optimizer.apply gradients(zip(gradients of generator,
generator.trainable variables))
discriminator optimizer.apply gradients (zip(gradients of discriminator,

discriminator.trainable variables))

def train (dataset, epochs):
for epoch in range (epochs) :

start = time.time ()

for image batch in dataset:
train step(image batch)

# Produce images for the GIF as you go

display.clear output (wait=True)

generate and save images (generator,
epoch + 1,
seed)

# Save the model every 15 epochs
if (epoch + 1) % 15 ==
checkpoint.save (file prefix = checkpoint prefix)

print ('Time for epoch {} is {} sec'.format (epoch + 1, time.time()-start))

# Generate after the final epoch
display.clear output (wait=True)
generate and save images (generator,
epochs,
seed)
def generate and save images (model, epoch, test input):
# Notice “training ™ is set to False.
# This is so all layers run in inference mode (batchnorm).
predictions = model (test input, training=False)




R-20
fig = plt.figure(figsize=(4, 4))

for 1 in range (predictions.shape[0]) :
plt.subplot (4, 4, i+1)
plt.imshow (predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
plt.axis('off")

plt.savefig('image at epoch {:04d}.png'.format (epoch))
plt.show ()
train(train dataset, EPOCHS)
checkpoint.restore(tf.train.latest checkpoint (checkpoint dir))
# Display a single image using the epoch number
def display image (epoch no):
return PIL.Image.open('image at epoch {:04d}.png'.format (epoch no))
display image (EPOCHS)
import tensorflow docs.vis.embed as embed
embed.embed file (anim file)

OUTPUT:




R-20
Exercise:

Implement Generative Adversarial Networks to generate realistic Images. Use Fashion MNIST or any
human face datasets.




R-20
Week-16
Implement Auto encoders for image denoising on MNIST dataset.

Program-
#Implement Auto encoders for image denoising on MNIST dataset.

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
import keras
from keras.models import Sequential
from keras.layers import Conv2D,MaxPool2D, UpSampling2D,Dropout
from keras.datasets import mnist
(x_train,y train), (x _test,y test) = mnist.load data()
# to get the shape of the data
print ("x train shape:",x train.shape)
print ("x test shape", x test.shape)
plt.figure (figsize = (8,8))
for i in range (25):
plt.subplot (5,5,1i+1)

plt.title(str(y train[i]), fontsize = 16, color = 'black', pad = 2)
plt.imshow(x train[i], cmap = plt.cm.binary )
plt.xticks ([])
plt.yticks([])
plt.show ()
val images = x test[:9000]

test images = x test[9000:]
val images = val images.astype('float32') / 255.0
val images = np.reshape(val images, (val images.shape[0],28,28,1))

test images = test images.astype('float32') / 255.0
test images = np.reshape (test images, (test images.shape[0],28,28,1))

train images = x train.astype("float32") / 255.0

train images = np.reshape(train images, (train_ images.shape[0],28,28,1))
factor = 0.39
train noisy images = train images + factor * np.random.normal (loc = 0.0,scale =

1.0,size = train images.shape)

val noisy images = val images + factor * np.random.normal (loc = 0.0,scale = 1.0,size
= val images.shape)

test noisy images = test images + factor * np.random.normal (loc = 0.0,scale =
1.0,size = test images.shape)

# here maximum pixel value for our images may exceed 1 so we have to clip the images
train noisy images = np.clip(train noisy images,0.,1.)




val noisy images np.clip(val noisy images,0.,1.)

test noisy images

np.clip(test noisy images,0.,1.)

plt.figure(figsize = (8,8))

for i in range(25):

R-20

plt.subplot(5,5,1i+1)
plt.title(str(y train[i]), fontsize = 16, color = 'black',6 pad = 2)
plt.imshow(train noisy images[i].reshape(1l,28,28)[0], cmap = plt.cm.binary )
plt.xticks ([1])
plt.yticks ([1)
plt.show ()
model = Sequential ()
# encoder network
model.add (Conv2D(filters = 128, kernel size = (2,2), activation = 'relu', padding
'same', input shape = (28,28,1)))
model.add (tf.keras.layers.BatchNormalization())
model.add (Conv2D(filters = 128, kernel size = (2,2), activation = 'relu', padding
'same'))
model .add (tf.keras.layers.BatchNormalization())
model.add (Conv2D (filters = 256, kernel size = (2,2),strides = (2,2), activation =
'relu', padding = 'same'))
model.add (tf.keras.layers.BatchNormalization())
model.add (Conv2D(filters = 256, kernel size = (2,2), activation = 'relu', padding
'same'))
model.add (tf.keras.layers.BatchNormalization())
model.add (Conv2D(filters = 512, kernel size = (3,3), activation = 'relu', padding
'same'))
model.add (tf.keras.layers.BatchNormalization())
model.add (Conv2D(filters = 512, kernel size = (2,2),strides = (2,2), activation =
'relu', padding = 'same'))
# decoder network
model.add (Conv2D(filters = 512, kernel size = (2,2), activation = 'relu', padding

'same'))

model.add (tf.keras.layers.Conv2DTranspose (filters

(2,2),activation

'relu', padding = 'same'))

model.add (tf.keras.layers.BatchNormalization())

model.add (Conv2D(filters = 256, kernel size = (2,2), activation
'same'))

model.add (tf.keras.layers.BatchNormalization())

model.add (Conv2D(filters = 256, kernel size = (2,2), activation
'same'))

model.add (tf.keras.layers.BatchNormalization ())

model.add (Conv2D(filters = 128, kernel size = (2,2), activation

'same'))

512, kernel size =

(2,2),
'relu', padding
'relu',

padding

'relu', padding

strides




R-20

model.add (tf.keras.layers.Conv2DTranspose (filters = 128, kernel size = (2,2),strides
= (2,2), activation = 'relu', padding = 'same'))

model.add (Conv2D(filters = 64, kernel size = (2,2), activation = 'relu', padding =
'same'))

model.add (tf.keras.layers.BatchNormalization ())

model.add (Conv2D(filters = 1, kernel size = (2,2), activation = 'relu', padding =
'same'))

# to get the summary of the model
model . summary ()

OPTIMIZER = tf.keras.optimizers.Adam(learning rate = 0.001)

LOSS = 'mean squared error'

model.compile (optimizer =0OPTIMIZER, loss = LOSS, metrics = ['accuracy'])
EPOCHS = 5

BATCH SIZE = 256

VALIDATION = (val noisy images, val images)

history = model.fit(train noisy images, train images,batch size = BATCH SIZE,epochs =
EPOCHS, validation data = VALIDATION)

plt.subplot(2,1,1)

plt.plot (history.history['loss'], label = 'loss')

plt.plot (history.history['val loss'], label = 'val loss')
plt.legend(loc = 'best')

plt.subplot(2,1,2)

plt.plot (history.history['accuracy'], label = 'accuracy')
plt.plot (history.history['val accuracy'], label = 'val accuracy')
plt.legend(loc = 'best')

plt.show ()

plt.figure(figsize = (18,18))
for i in range(10,19):
plt.subplot(9,9,1)
if(i == 14):
plt.title('Real Images', fontsize = 25, color = 'Green')
plt.imshow (test images[i] .reshape(1,28,28)[0], cmap = plt.cm.binary)

plt.show ()
plt.figure(figsize = (18,18))
for 1 in range(10,19):
if (i == 15):
plt.title('Noised Images', fontsize = 25, color = 'red')

plt.subplot(9,9,1)
plt.imshow (test noisy images[i].reshape(l,28,28)[0], cmap = plt.cm.binary)
plt.show ()




R-20

plt.figure(figsize = (18,18))
for 1 in range(10,19):
if(i == 15):
plt.title('Denoised Images', fontsize = 25, color = 'Blue')

plt.subplot(9,9,1)

plt.imshow (model.predict (test noisy images[i].reshape(l,28,28,1)) .reshape(l,28,28) [0]
, Cmap = plt.cm.binary)
plt.show ()

OUTPUT:




R-20
Exercise:

Implement Auto encoders for image denoising on Fashion MNIST dataset or on any suitable dataset of
your choice.




	Vision
	Mission
	Programme Educational Objectives (PEO):
	Programme Specific Outcomes (PSO):
	PROGRAM OUTCOMES (POs)
	Engineering Graduates will be able to:

	Lab Objectives:
	Lab Outcomes:
	Introduction about lab
	Guidelines to students
	A. Standard operating procedure
	Writing of the experiment in the Observation Book
	Instructions to maintain the record
	Awarding the marks for day-to-day evaluation
	Allocation of Marks for Lab Internal
	Allocation of Marks for Lab External
	C. General laboratory instructions
	12
	13
	OUTPUT:
	Program
	OUTPUT: (1)
	Program:
	OUTPUT: (2)
	Note down the accuracies for the following set of experiments on the given NN and compare the results Do the required modifications needed. Take training data percentage 30%, test data percentage 70%.
	(1) Iris dataset
	(i) check accuracy using activation functions Sigmoid, ReLu, Tanh
	(iii) check accuracy by varying learning rate in sgd as 0.0001, 0.0005, 5.
	(b) No. of epochs =300
	(2) Ionosphere data
	Program: (1)
	OUTPUT: (3)
	Program (1)
	OUTPUT: (4)
	Program (2)
	OUTPUT: (5)
	Program-

	OUTPUT: (6)
	Program (3)
	OUTPUT: (7)
	a. Base Model: Modify the b. experiment program commenting on kernel_regularizer=l1(0.01) function. See the below program for reference.
	c.
	d.

	e.
	OUTPUT: (8)
	Exercise:
	Program-
	Exercise: (1)
	OUTPUT: (9)
	Program- (1)
	OUTPUT: (10)
	Program- (2)
	OUTPUT: (11)
	OUTPUT: (12)
	Implement RNN for sentiment analysis on movie reviews. Use the concept of Embedding layer.
	Implement Bi-directional LSTM for sentiment analysis on movie reviews.
	OUTPUT: (13)
	Implement Bi-directional LSTM on a suitable dataset of your choice. Modify the program as needed.
	Implement Generative Adversarial Networks to generate realistic Images. Use MNIST dataset.
	OUTPUT: (14)
	Implement Generative Adversarial Networks to generate realistic Images. Use Fashion MNIST or any human face datasets.
	Implement Auto encoders for image denoising on MNIST dataset.
	OUTPUT: (15)
	Implement Auto encoders for image denoising on Fashion MNIST dataset or on any suitable dataset of your choice.



