
OPERATING SYSTEMS

LABORATORY MANUAL

B.TECH (R18)

(II YEAR – I SEM)

(2019‐2020)

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

MALLA REDDY COLLEGE OF ENGINEERING &

TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956

Affiliated to JNTUH, Hyderabad, Approved by AICTE ‐ Accredited by NBA & NAAC – ‘A’ Grade ‐ ISO 9001:2015
Certified) Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VISION

 To improve the quality of technical education that provides efficient software

engineers with an attitude to adapt challenging IT needs of local, national and

international arena, through teaching and interaction with alumni and industry.

MISSION

 Department intends to meet the contemporary challenges in the field of IT and is

playing a vital role in shaping the education of the 21st century by providing unique

educational and research opportunities.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1 – ANALYTICAL SKILLS

To facilitate the graduates with the ability to visualize, gather information,

articulate, analyze, solve complex problems, and make decisions. These are

essential to address the challenges of complex and computation intensive problems

increasing their productivity.

PEO2 – TECHNICAL SKILLS

To facilitate the graduates with the technical skills that prepare them for

immediate employment and pursue certification providing a deeper understanding

of the technology in advanced areas of computer science and related fields, thus

encouraging to pursue higher education and research based on their interest.

PEO3 – SOFT SKILLS

To facilitate the graduates with the soft skills that include fulfilling the

mission, setting goals, showing self-confidence by communicating effectively,

having a positive attitude, get involved in team- work, being a leader, managing

their career and their life.

PEO4 – PROFESSIONAL ETHICS

To facilitate the graduates with the knowledge of professional and ethical

responsibilities by paying attention to grooming, being conservative with style,

following dress codes, safety codes, and adapting themselves to technological

advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B. Tech Information Technology, the graduates will

have the following Program Specific Outcomes:

1. Fundamentals and critical knowledge of the Computer System:- Able to

Understand the working principles of the computer System and its components ,

Apply the knowledge to build, asses, and analyze the software and hardware

aspects of it .

2. The comprehensive and Applicative knowledge of Software Development:

Comprehensive skills of Programming Languages, Software process models,

methodologies, and able to plan, develop, test, analyze, and manage the software

and hardware intensive systems in heterogeneous platforms individually or

working in teams.

3. Applications of Computing Domain & Research: Able to use the professional,

managerial, interdisciplinary skill set, and domain specific tools in development

processes, identify the research gaps, and provide innovative solutions to them.

PROGRAMOUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex
engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural,
societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data,
and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend
and write effective reports and design documentation, make effective presentations,
and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a
member and leader in a team, to manage projects and in multi-disciplinary
environments.

12. Life- long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological
change.

II Year B. Tech CSE ‐ I Sem L T/P/D C

 - -/3/- 1.5

(R18A0583) OPERATING SYSTEMS LAB

OBJECTIVES:

 To understand the functionalities of various layers of OSI model

 To explain the difference between hardware, software; operating systems, programs

and files.

 Identify the purpose of different software applications.

Week 1: Simulate the following CPU scheduling algorithms.
a) FCFS b) SJF c) Round Robin d) Priority.

Week 2: Write a C program to simulate producer-consumer problem using
 Semaphores

Week 3: Write a C program to simulate the concept of Dining-philosophers problem.

Week 4: Simulate MVT and MFT.

Week 5: Write a C program to simulate the following contiguous memory allocation
 Techniques

 a) Worst fit b) Best fit c) First fit.

Week 6: Simulate all page replacement algorithms
 a)FIFO b) LRU c) OPTIMAL

Week 7: Simulate all File Organization Techniques
a) Single level directory b) Two level directory

 Week 8: Simulate all file allocation strategies
a) Sequential b) Indexed c) Linked.

Week 9: Simulate Bankers Algorithm for Dead Lock Avoidance.

Week 10: Simulate Bankers Algorithm for Dead Lock Prevention.

Week 11: Write a C program to simulate disk scheduling algorithms.
 a) FCFS b) SCAN c) C-SCAN

REFERENCE BOOKS:

1. An Introduction to Operating Systems, P.C.P Bhatt, 2nd edition, PHI.

2. Modern Operating Systems, Andrew S Tanenbaum, 3rd Edition, PHI

 OUTCOMES:

 At the end of the course the students are able to:

 Ability to implement inter process communication between two processes.

 Ability to design and solve synchronization problems.

 Ability to simulate and implement operating system concepts such as scheduling,

Deadlock management, file management, and memory management.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(UGC-Autonomous Institution , Govt. of India)

(Permanently Affiliated to JNTUH, Approved by AICTE-Accredited by NBA & NAAC- A-Grade; ISO 9001:2008 Certified)
Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 Operating Systems Lab Manual (R18A0583)
TABLE OF CONTENTS

EXP.NO NAMEOF THE EXPERIMENT PAGE.NO

1

CPU SCHEDULING ALGORITHMS

A) FIRST COME FIRST SERVE(FCFS) 1-3

B) SHORTEST JOB FIRST(SJF) 4-6

C) ROUND ROBIN 7-9

D) PRIORITY 10-12

2
PRODUCER-CONSUMER PROBLEM USING

SEMAPHORES
13-14

3 DINING-PHILOSOPHERS PROBLEM 15-18

4

MEMORYMANAGEMENT TECHNIQUES

A) MULTI PROGRAMMING WITH FIXED

NUMBER OF TASKS(MFT)
19-21

B) MULTI PROGRAMMING WITH

VARIABLE NUMBER OF TASKS(MVT)
22-24

5

CONTIGUOUS MEMORY ALLOCATION

A) WORST FIT 25-26

B) BEST FIT 27-28

C) FIRST FIT 28-29

6

PAGE REPLACEMENT ALGORITHMS

A) FIRST IN FIRST OUT(FIFO) 30-32

B) LEAST RECENTLY USED(LRU) 33-35

C) OPTIMAL 36-39

7

FILE ORGANIZATION TECHNIQUES

A) SINGLE LEVEL DIRECTORY 40-42

B) TWO LEVEL DIRECTORY 43-46

8

FILE ALLOCATION STRATEGIES

A) SEQUENTIAL 47-49

B) INDEXED 50-52

C) LINKED 53-55

9 DEAD LOCK AVOIDANCE 56-59

10 DEAD LOCK PREVENTION 60-62

11

DISK SCHEDULING ALGORITHMS

A) FCFS 63-64

B) SCAN 65-66

C) C-SCAN 67-69

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GENERAL LABORATORY INSTRUCTIONS

1. Students are advised to come to the laboratory at least 5 minutes before (to starting time), those

who come after 5 minutes will not be allowed into the lab.

2. Plan your task properly much before to the commencement, come prepared to the lab with

the synopsis / program / experiment details.

3. Student should enter into the laboratory with:

a. Laboratory observation notes with all the details (Problem statement, Aim, Algorithm,

Procedure, Program, Expected Output, etc.,) filled in for the lab session.

b. Laboratory Record updated up to the last session experiments and other utensils (if any)

needed in the lab.

c. Proper Dress code and Identity card.

4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer system

allotted to you by the faculty.

5. Execute your task in the laboratory, and record the results / output in the lab observation

note book, and get certified by the concerned faculty.

6. All the students should be polite and cooperative with the laboratory staff, must maintain the

discipline and decency in the laboratory.

7. Computer labs are established with sophisticated and high end branded systems, which should

be utilized properly.

8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the lab

sessions. Misuse of the equipment, misbehaviors with the staff and systems etc., will attract

severe punishment.

9. Students must take the permission of the faculty in case of any urgency to go out ; if

anybody found loitering outside the lab / class without permission during working hours will

be treated seriously and punished appropriately.

10. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves the lab

after completing the task (experiment) in all aspects. He/she must ensure the system / seat

is kept properly.

Head of the Department Principal

EXPERIMENT NO.1

CPU SCHEDULINGALGORITHMS

A). FIRST COME FIRST SERVE:

AIM: To write a c program to simulate the CPU scheduling algorithm First Come First

Serve (FCFS)

DESCRIPTION:

To calculate the average waiting time using the FCFS algorithm first the waiting

time of the first process is kept zero and the waiting time of the second process is the

burst time of the first process and the waiting time of the third process is the sum of the

burst times of the first and the second process and so on. After calculating all the waiting

times the average waiting time is calculated as the average of all the waiting times. FCFS

mainly says first come first serve the algorithm which came first will be served first.

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process name and the burst time Step

4: Set the waiting of the first process as ‗0‘and its burst time as its turnaround time Step

5: for each process in the Ready Q calculate

a). Waiting time (n) = waiting time (n-1) + Burst time (n-1) b).

Turnaround time (n)= waiting time(n)+Burst time(n)

Step 6: Calculate

a) Average waiting time = Total waiting Time / Number of process

b) Average Turnaround time = Total Turnaround Time / Number of process

Step 7: Stop the process

Page 1

SOURCE CODE:

#include<stdio.h>

#include<conio.h>

main()

{

int bt[20], wt[20], tat[20], i, n;

float wtavg, tatavg;

clrscr();

printf("\nEnter the number of processes -- ");

scanf("%d", &n);

for(i=0;i<n;i++)

{

printf("\nEnter Burst Time for Process %d -- ", i);

scanf("%d", &bt[i]);

}

wt[0] = wtavg = 0;

tat[0] = tatavg = bt[0];

for(i=1;i<n;i++)

{

wt[i] = wt[i-1] +bt[i-1];

tat[i] = tat[i-1] +bt[i];

wtavg = wtavg + wt[i];

tatavg = tatavg + tat[i];

}

printf("\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");

for(i=0;i<n;i++)

printf("\n\t P%d \t\t %d \t\t %d \t\t %d", i, bt[i], wt[i], tat[i]);

printf("\nAverage Waiting Time -- %f", wtavg/n);

printf("\nAverage Turnaround Time -- %f", tatavg/n);

getch();

}

Page 2

 INPUT

Enter the number of processes -- 3

Enter Burst Time for Process 0 -- 24

Enter Burst Time for Process 1 -- 3

Enter Burst Time for Process 2 -- 3

OUTPUT

PROCESS BURST TIME WAITING TIME TURNAROUND

TIME

P0 24 0 24

P1 3 24 27

P2 3 27 30

Average Waiting Time-- 17.000000

Average Turnaround Time -- 27.000000

Page 3

B). SHORTEST JOB FIRST:

AIM: To write a program to stimulate the CPU scheduling algorithm Shortest job first

 (Non- Preemption)

DESCRIPTION:

To calculate the average waiting time in the shortest job first algorithm the sorting of

the process based on their burst time in ascending order then calculate the waiting time of

each process as the sum of the bursting times of all the process previous or before to that

process.

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process id and accept the CPU

burst time

Step 4: Start the Ready Q according the shortest Burst time by sorting according to

lowest to highest burst time.

Step 5: Set the waiting time of the first process as ‗0‘ and its turnaround time as its burst

time.

Step 6: Sort the processes names based on their Burt time

Step 7: For each process in the ready queue,

calculate

a) Waiting time(n)= waiting time (n-1) + Burst time (n-1)

b) Turnaround time (n)= waiting time(n)+Burst time(n)

Step 8: Calculate

c) Average waiting time = Total waiting Time / Number of process

d) Average Turnaround time = Total Turnaround Time / Number of process

Step 9: Stop the process

Page 4

SOURCE CODE :

#include<stdio.h>

#include<conio.h>

main()

{

int p[20], bt[20], wt[20], tat[20], i, k, n, temp; float wtavg,

tatavg;

clrscr();

printf("\nEnter the number of processes -- ");

scanf("%d", &n);

for(i=0;i<n;i++)

{

p[i]=i;

printf("Enter Burst Time for Process %d -- ", i);

scanf("%d", &bt[i]);

}

for(i=0;i<n;i++)

for(k=i+1;k<n;k++)

if(bt[i]>bt[k])

{

temp=bt[i];

bt[i]=bt[k];

bt[k]=temp;

temp=p[i];

p[i]=p[k];

p[k]=temp;

}

wt[0] = wtavg = 0;

tat[0] = tatavg = bt[0]; for(i=1;i<n;i++)

{

wt[i] = wt[i-1] +bt[i-1];

tat[i] = tat[i-1] +bt[i];

wtavg = wtavg + wt[i];

tatavg = tatavg + tat[i];

}

printf("\n\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");

for(i=0;i<n;i++)

printf("\n\t P%d \t\t %d \t\t %d \t\t %d", p[i], bt[i], wt[i], tat[i]);

printf("\nAverage Waiting Time -- %f", wtavg/n);

printf("\nAverage Turnaround Time -- %f", tatavg/n); getch();}

Page 5

INPUT

Enter the number of processes -- 4

Enter Burst Time for Process 0 -- 6

Enter Burst Time for Process 1 -- 8

Enter Burst Time for Process 2 -- 7

Enter Burst Time for Process 3 -- 3

OUTPUT

PROCESS BURST

TIME

WAITING

TIME

TURNARO

UND TIME

P3 3 0 3

P0 6 3 9

P2 7 9 16

P1 8 16 24

Average Waiting Time -- 7.000000

Average Turnaround Time -- 13.000000

Page 6

C). ROUND ROBIN:

AIM: To simulate the CPU scheduling algorithm round-robin.

DESCRIPTION:

To aim is to calculate the average waiting time. There will be a time slice, each

process should be executed within that time-slice and if not it will go to the waiting

state so first check whether the burst time is less than the time-slice. If it is less than it

assign the waiting time to the sum of the total times. If it is greater than the burst-time

then subtract the time slot from the actual burst time and increment it by time-slot and

the loop continues until all the processes are completed.

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue and time quantum (or) time

slice

Step 3: For each process in the ready Q, assign the process id and accept the CPU burst

time

Step 4: Calculate the no. of time slices for each process where No. of time

slice for process (n) = burst time process (n)/time slice

Step 5: If the burst time is less than the time slice then the no. of time slices =1.

Step 6: Consider the ready queue is a circular Q, calculate

a) Waiting time for process (n) = waiting time of process(n-1)+ burst time of

process(n-1) + the time difference in getting the CPU from process(n-1)

b) Turnaround time for process(n) = waiting time of process(n) + burst time of

process(n)+ the time difference in getting CPU from process(n).

Step 7: Calculate

c) Average waiting time = Total waiting Time / Number of process

d) Average Turnaround time = Total Turnaround Time / Number of process Step

8: Stop the process

Page 7

SOURCE CODE

#include<stdio.h>

main()

{

int i,j,n,bu[10],wa[10],tat[10],t,ct[10],max;

float awt=0,att=0,temp=0;

clrscr();

printf("Enter the no of processes -- ");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("\nEnter Burst Time for process %d -- ", i+1);

scanf("%d",&bu[i]);

ct[i]=bu[i];

}

printf("\nEnter the size of time slice -- ");

scanf("%d",&t);

max=bu[0];

for(i=1;i<n;i++)

if(max<bu[i])

max=bu[i];

for(j=0;j<(max/t)+1;j++)

for(i=0;i<n;i++)

if(bu[i]!=0)

if(bu[i]<=t) {

tat[i]=temp+bu[i];

temp=temp+bu[i];

bu[i]=0;

}

else {

bu[i]=bu[i]-t;

temp=temp+t;

}

for(i=0;i<n;i++){

wa[i]=tat[i]-

ct[i]; att+=tat[i];

awt+=wa[i];}

printf("\nThe Average Turnaround time is -- %f",att/n);

printf("\nThe Average Waiting time is -- %f ",awt/n);

printf("\n\tPROCESS\t BURST TIME \t WAITING TIME\tTURNAROUND TIME\n");

for(i=0;i<n;i++)

printf("\t%d \t %d \t\t %d \t\t %d \n",i+1,ct[i],wa[i],tat[i]);

getch();}

Page 8

INPUT:

Enter the no of processes – 3

Enter Burst Time for process 1 – 24

Enter Burst Time for process 2 -- 3

Enter Burst Time for process 3 – 3

Enter the size of time slice – 3

OUTPUT:

PROCESS BURST TIME WAITING TIME TURNAROUNDTIME

1 24 6 30

2 3 4 7

3 3 7 10

The Average Turnaround time is – 15.666667 The

Average Waiting time is ------------ 5.666667

Page 9

D). PRIORITY:

AIM: To write a c program to simulate the CPU scheduling priority algorithm.

DESCRIPTION:

To calculate the average waiting time in the priority algorithm, sort the burst

times according to their priorities and then calculate the average waiting time of the

processes. The waiting time of each process is obtained by summing up the burst times

of all the previous processes.

ALGORITHM:

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process id and accept the CPU burst

time

Step 4: Sort the ready queue according to the priority number.

Step 5: Set the waiting of the first process as ‗0‘ and its burst time as its turnaround time

Step 6: Arrange the processes based on process priority

Step 7: For each process in the Ready Q calculate Step 8:

for each process in the Ready Q calculate

a) Waiting time(n)= waiting time (n-1) + Burst time (n-1)

b) Turnaround time (n)= waiting time(n)+Burst time(n)

Step 9: Calculate

c) Average waiting time = Total waiting Time / Number of process

d) Average Turnaround time = Total Turnaround Time / Number of process Print the results

in an order.

Step10: Stop

Page 10

SOURCE CODE:

#include<stdio.h>

main()

{

int p[20],bt[20],pri[20], wt[20],tat[20],i, k, n, temp; float wtavg,

tatavg;

clrscr();

printf("Enter the number of processes --- ");

scanf("%d",&n);

for(i=0;i<n;i++){

p[i] = i;

printf("Enter the Burst Time & Priority of Process %d --- ",i); scanf("%d

%d",&bt[i], &pri[i]);

}

for(i=0;i<n;i++)

for(k=i+1;k<n;k++)

if(pri[i] > pri[k]){

temp=p[i];

p[i]=p[k];

p[k]=temp;

temp=bt[i];

bt[i]=bt[k];

bt[k]=temp;

temp=pri[i];

pri[i]=pri[k];

pri[k]=temp;

}

wtavg = wt[0] = 0;

tatavg = tat[0] = bt[0];

for(i=1;i<n;i++)

{

wt[i] = wt[i-1] + bt[i-1];

tat[i] = tat[i-1] + bt[i];

wtavg = wtavg + wt[i];

tatavg = tatavg + tat[i];

}

printf("\nPROCESS\t\tPRIORITY\tBURST TIME\tWAITING TIME\tTURNAROUND

TIME");

for(i=0;i<n;i++)

printf("\n%d \t\t %d \t\t %d \t\t %d \t\t %d ",p[i],pri[i],bt[i],wt[i],tat[i]);

printf("\nAverage Waiting Time is --- %f",wtavg/n); printf("\nAverage

Turnaround Time is --- %f",tatavg/n);

getch();}

Page 11

VIVA QUESTIONS

1) Define the following

a) Turnaround time b) Waiting time c) Burst time d) Arrival time

2) What is meant by process scheduling?

3) What are the various states of process?

4) What is the difference between preemptive and non-preemptive scheduling

5) What is meant by time slice?

6) What is round robin scheduling?

INPUT

Enter the number of processes -- 5

Enter the Burst Time & Priority of Process 0 --- 10 3

Enter the Burst Time & Priority of Process 1 --- 1 1

Enter the Burst Time & Priority of Process 2 --- 2 4

Enter the Burst Time & Priority of Process 3 --- 1 5

Enter the Burst Time & Priority of Process 4 --- 5 2

OUTPUT

PROCESS PRIORITY BURST TIME WAITIN

G TIME

TURNARO

UND TIME

1 1 1 0 1

4 2 5 1 6

0 3 10 6 16

2 4 2 16 18

3 5 1 18 19

Average Waiting Time is --- 8.200000

Average Turnaround Time is --- 12.000000

Page 12

EXPERIMENT.NO 2

AIM: To Write a C program to simulate producer-consumer problem using semaphores.

 DESCRIPTION

Producer consumer problem is a synchronization problem. There is a fixed size buffer where the

producer produces items and that is consumed by a consumer process. One solution to the producer-

consumer problem uses shared memory. To allow producer and consumer processes to run

concurrently, there must be available a buffer of items that can be filled by the producer and emptied

by the consumer. This buffer will reside in a region of memory that is shared by the producer and

consumer processes. The producer and consumer must be synchronized, so that the consumer does

not try to consume an item that has not yet been produced.

 PROGRAM

#include<stdio.>

void main()

{

int buffer[10], bufsize, in, out, produce, consume,

choice=0; in = 0;

out = 0;

bufsize = 10;

while(choice !=3)

{

printf(“\n1. Produce \t 2. Consume \t3. Exit”);

printf(“\nEnter your choice: ”);

scanf(“%d”,&choice);

switch(choice) {

case 1: if((in+1)%bufsize==out)
printf(“\nBuffer is Full”);

else

{

}

break;;;

printf(“\nEnter the value: “);

 scanf(“%d”, &produce);

buffer[in] = produce;

in = (in+1)%bufsize;

case 2: if(in == out)
printf(“\nBuffer is Empty”);

else

{

consume = buffer[out];

printf(“\nThe consumed value is %d”, consume);

out = (out+1)%bufsize;
}
break;

} } }

Page 13

OUTPUT

1. Produce 2. Consume 3. Exit

Enter your choice: 2

Buffer is Empty

1. Produce 2. Consume 3. Exit

Enter your choice: 1

Enter the value: 100

1. Produce 2. Consume 3. Exit

Enter your choice: 2

The consumed value is 100

1. Produce 2. Consume 3. Exit

Enter your choice: 3

Page 14

EXPERIMENT.NO 3

AIM: To Write a C program to simulate the concept of Dining-Philosophers problem.

 DESCRIPTION

The dining-philosophers problem is considered a classic synchronization problem because it is an example

of a large class of concurrency-control problems. It is a simple representation of the need to allocate several

resources among several processes in a deadlock-free and starvation-free manner. Consider five philosophers

who spend their lives thinking and eating. The philosophers share a circular table surrounded by five chairs,

each belonging to one philosopher. In the center of the table is a bowl of rice, and the table is laid with five

single chopsticks. When a philosopher thinks, she does not interact with her colleagues. From time to time, a

philosopher gets hungry and tries to pick up the two chopsticks that are closest to her (the chopsticks that are

between her and her left and right neighbors). A philosopher may pick up only one chopstick at a time.

Obviously, she cam1ot pick up a chopstick that is already in the hand of a neighbor. When a hungry

philosopher has both her chopsticks at the same time, she eats without releasing her chopsticks. When she is

finished eating, she puts down both of her chopsticks and starts thinking again. The dining-philosophers

problem may lead to a deadlock situation and hence some rules have to be framed to avoid the occurrence of

deadlock.

 PROGRAM

int tph, philname[20], status[20], howhung, hu[20], cho; main()

{

int i; clrscr();

printf("\n\nDINING PHILOSOPHER PROBLEM");

printf("\nEnter the total no. of philosophers: ");

scanf("%d",&tph);

for(i=0;i<tph;i++)

{

philname[i]=(i+1); status[i]=1;

}

printf("How many are hungry : ");

 scanf("%d", &howhung);

 if(howhung==tph)

{

printf(“\n All are hungry..\nDead lock stage will occur”);

printf(\n”Exiting\n”);

else{

for(i=0;i<howhung;i++){

printf(“Enterphilosopher%dposition:”,(i+1));

scanf(“%d”,&hu[i]);

status[hu[i]]=2;

}

Page 15

do

{

printf("1.One can eat at a time\t2.Two can eat at a time

\t3.Exit\nEnter your choice:");

scanf("%d", &cho);

switch(cho)

{

case 1: one();

break;

case 2: two();

break;

case 3: exit(0);

default: printf("\nInvalid option..");

}

}while(1);

}

}

one()

{

int pos=0, x, i;

printf("\nAllow one philosopher to eat at any time\n");

for(i=0;i<howhung; i++, pos++)

{

printf("\nP %d is granted to eat", philname[hu[pos]]);

for(x=pos;x<howhung;x++)

printf("\nP %d is waiting", philname[hu[x]]);

}

}

two()

{

int i, j, s=0, t, r, x;

printf("\n Allow two philosophers to eat at same

time\n"); for(i=0;i<howhung;i++)

{

for(j=i+1;j<howhung;j++)

{

if(abs(hu[i]-hu[j])>=1&& abs(hu[i]-hu[j])!=4)

{

printf("\n\ncombination %d \n", (s+1));

t=hu[i];

r=hu[j]; s++;

printf("\nP %d and P %d are granted to eat", philname[hu[i]],

philname[hu[j]]);

Page 16

for(x=0;x<howhung;x++)

{

if((hu[x]!=t)&&(hu[x]!=r))

printf("\nP %d is waiting", philname[hu[x]]);

}

}

}

}

}

INPUT

DINING PHILOSOPHER PROBLEM

Enter the total no. of philosophers: 5

How many are hungry : 3

Enter philosopher 1 position: 2

Enter philosopher 2 position: 4

Enter philosopher 3 position: 5

OUTPUT

1. One can eat at a time 2.Two can

eat at a time 3.Exit Enter your choice: 1

Allow one philosopher to eat at any time

 P 3 is granted to eat

P 3 is waiting

P 5 is waiting

 P 0 is waiting

P 5 is granted to eat

P 5 is waiting

P 0 is waiting

P 0 is granted to eat

P 0 is waiting

Page 17

1.One can eat at a time 2.Two can eat at a time 3.Exit

 Enter your choice: 2

Allow two philosophers to eat at same time

combination 1

P 3 and P 5 are granted to eat

P 0 is waiting

combination 2

P 3 and P 0 are granted to eat

P 5 is waiting

combination 3

P 5 and P 0 are granted to eat

P 3 is waiting

1.One can eat at a time 2.Two can

eat at a time 3.Exit Enter your choice: 3

Page 18

EXPERIMENT.NO 4

MEMORY MANAGEMENT

A). MEMORY MANAGEMENT WITH FIXED PARTITIONING TECHNIQUE (MFT)

AIM: To implement and simulate the MFT algorithm.

DESCRIPTION:

In this the memory is divided in two parts and process is fit into it. The process which is best

suited will be placed in the particular memory where it suits. In MFT, the memory is partitioned

into fixed size partitions and each job is assigned to a partition. The memory assigned to a

partition does not change. In MVT, each job gets just the amount of memory it needs. That is, the

partitioning of memory is dynamic and changes as jobs enter and leave the system. MVT is a

more ``efficient'' user of resources. MFT suffers with the problem of internal fragmentation and

MVT suffers with external fragmentation.

ALGORITHM:

Step1: Start the process.

Step2: Declarevariables.

Step3: Enter total memory size ms.

Step4: Allocate memory for os.

Ms=ms-os

Step5: Read the no partition to be divided n Partition size=ms/n.

Step6: Read the process no and process size.

Step 7: If process size is less than partition size allot alse blocke the process. While allocating

update memory wastage-external fragmentation.

if(pn[i]==pn[j])f=1;

if(f==0){ if(ps[i]<=siz)

{

extft=extft+size-

ps[i];avail[i]=1; count++;

}

}

Step 8: Print the results

Page 19

SOURCE CODE :

#include<stdio.h>

#include<conio.h>

main()

{

int ms, bs, nob, ef,n,

mp[10],tif=0; int i,p=0;

clrscr();

printf("Enter the total memory available (in Bytes) -- ");

scanf("%d",&ms);

printf("Enter the block size (in Bytes) -- ");

scanf("%d", &bs);

nob=ms/bs;

ef=ms - nob*bs;

printf("\nEnter the number of processes -- ");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("Enter memory required for process %d (in Bytes)-- ",i+1);

scanf("%d",&mp[i]);

}

printf("\nNo. of Blocks available in memory--%d",nob);

printf("\n\nPROCESS\tMEMORYREQUIRED\tALLOCATED\tINTERNAL

FRAGMENTATION");

for(i=0;i<n && p<nob;i++)

{

printf("\n %d\t\t%d",i+1,mp[i]);

if(mp[i] > bs)

printf("\t\tNO\t\t---");

else

{

printf("\t\tYES\t%d",bs-mp[i]);

 tif = tif + bs-mp[i];

p++;

}

}

if(i<n)

printf("\nMemory is Full, Remaining Processes cannot be accomodated");

printf("\n\nTotal Internal Fragmentation is %d",tif);

 printf("\nTotal External Fragmentation is %d",ef);

getch();

}

Page 20

INPUT

Enter the total memory available (in Bytes) -- 1000

Enter the block size (in Bytes)-- 300

Enter the number of processes – 5

Enter memory required for process 1 (in Bytes) -- 275

Enter memory required for process 2 (in Bytes) -- 400

Enter memory required for process 3 (in Bytes) -- 290

Enter memory required for process 4 (in Bytes) -- 293

Enter memory required for process 5 (in Bytes) -- 100

No. of Blocks available in memory -- 3

OUTPUT

PROCESS

ALLOCAT

INTERNAL

 MEMORY REQUIRED ED FRAGMENTATION

1 275 YES 25

2 400 NO -----

3 290 YES 10

4 293 YES 7

Memory is Full, Remaining Processes cannot be accommodated Total

Internal Fragmentation is 42

Total External Fragmentation is 100

Page 21

B) MEMORY VARIABLE PARTIONING TYPE (MVT)

AIM: To write a program to simulate the MVT algorithm

ALGORITHM:

Step1: start the process.

Step2: Declare variables.

Step3: Enter total memory size ms.

Step4: Allocate memory for os.

Ms=ms-os

 Step5: Read the no partition to be divided n Partition size=ms/n.

Step6: Read the process no and process size.

Step 7: If process size is less than partition size allot alse blocke the process. While allocating

update memory wastage-external fragmentation.

if(pn[i]==pn[j]) f=1;

if(f==0){ if(ps[i]<=size)

{

extft=extft+size-

ps[i];avail[i]=1; count++;

}

}

Step 8: Print the results

Step 9: Stop the process.

Page 22

SOURCE CODE:

#include<stdio.h>

#include<conio.h>

main()

{

int ms,mp[10],i,

temp,n=0; char ch = 'y';

clrscr();

printf("\nEnter the total memory available (in Bytes)-- ");

scanf("%d",&ms);

temp=ms;

for(i=0;ch=='y';i++,n++)

{

printf("\nEnter memory required for process %d (in Bytes) -- ",i+1);

scanf("%d",&mp[i]);

if(mp[i]<=temp)

{

printf("\nMemory is allocated for Process %d ",i+1);

temp = temp - mp[i];

}

else

{

printf("\nMemory is Full"); break;

}

printf("\nDo you want to continue(y/n) -- ");

 scanf(" %c", &ch);

}

printf("\n\nTotal Memory Available -- %d", ms);

printf("\n\n\tPROCESS\t\t MEMORY ALLOCATED ");

for(i=0;i<n;i++)

printf("\n \t%d\t\t%d",i+1,mp[i]);

printf("\n\nTotal Memory Allocated is %d",ms-temp);

printf("\nTotal External Fragmentation is %d",temp);

getch();

}

Page 23

OUTPUT:

Enter the total memory available (in Bytes) – 1000

Enter memory required for process 1 (in Bytes) – 400

Memory is allocated for Process 1

Do you want to continue(y/n) -- y

Enter memory required for process 2 (in Bytes) -- 275

Memory is allocated for Process 2

Do you want to continue(y/n) – y

Enter memory required for process 3 (in Bytes) – 550

Memory is Full

Total Memory Available – 1000

PROCESS MEMORY ALLOCATED

1 400

2 275

Total Memory Allocated is 675

Total External Fragmentation is 325

VIVA QUESTIONS

1) What is MFT?

2) What is MVT?

3) What is the difference between MVT and MFT?

4) What is meant by fragmentation?

5) Give the difference between internal and external fragmentation

Page 24

EXPERIMENT.NO 5

MEMORY ALLOCATION TECHNIQUES

AIM: To Write a C program to simulate the following contiguous memory allocation techniques

a) Worst-fit b) Best-fit c) First-fit

DESCRIPTION

One of the simplest methods for memory allocation is to divide memory into several fixed-sized

partitions. Each partition may contain exactly one process. In this multiple-partition method, when a

partition is free, a process is selected from the input queue and is loaded into the free partition. When the

process terminates, the partition becomes available for another process. The operating system keeps a

table indicating which parts of memory are available and which are occupied. Finally, when a process

arrives and needs memory, a memory section large enough for this process is provided. When it is time to

load or swap a process into main memory, and if there is more than one free block of memory of

sufficient size, then the operating system must decide which free block to allocate. Best-fit strategy

chooses the block that is closest in size to the request. First-fit chooses the first available block that is

large enough. Worst-fit chooses the largest available block.

PROGRAM

WORST-FIT

#include<stdio.h>

#include<conio.h>

#define max 25

void main()

{

int

frag[max],b[max],f[max],i,j,nb,nf,t

emp; static int bf[max],ff[max];

clrscr();

printf("\n\tMemory Management Scheme - First Fit");

printf("\nEnter the number of blocks:");

scanf("%d",&nb);

printf("Enter the number of files:");

scanf("%d",&nf);

printf("\nEnter the size of the blocks:-\n");

for(i=1;i<=nb;i++)

{

printf("Block %d:",i);

scanf("%d",&b[i]);

}

printf("Enter the size of the files :-\n");

for(i=1;i<=nf;i++)

{

printf("File %d:",i);

scanf("%d",&f[i]);

Page 25

}

for(i=1;i<=nf;i++)

{

for(j=1;j<=nb;j++)

{

if(bf[j]!=1)

{

temp=b[j]-f[i];

if(temp>=0)

{

ff[i]=j;

 break;

}

}

}

frag[i]=temp;

bf[ff[i]]=1;

}

printf("\nFile_no:\tFile_size :\tBlock_no:\tBlock_size:\tFragement");

for(i=1;i<=nf;i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,f[i],ff[i],b[ff[i]],frag[i]);

getch();

}

INPUT

Enter the number of blocks: 3

Enter the number of files: 2

Enter the size of the blocks:-

Block 1: 5

Block 2: 2

Block 3: 7

Enter the size of the files:-

File 1: 1

File 2: 4

OUTPUT

File No File Size Block No Block Size Fragment

1 1 1 5 4

2 4 3 7 3

Page 26

BEST-FIT

 #include<stdio.h>

#include<conio.h>

#define max 25

void main()

{

int frag[max],b[max],f[max],i,j,nb,nf,temp,lowest=10000;

static int bf[max],ff[max];

clrscr();

printf("\nEnter the number of blocks:");

scanf("%d",&nb);

printf("Enter the number of files:");

scanf("%d",&nf);

printf("\nEnter the size of the blocks:-\n");

for(i=1;i<=nb;i++)

printf("Block %d:",i);

scanf("%d",&b[i]);

printf("Enter the size of the files :-\n");

for(i=1;i<=nf;i++)

{

printf("File %d:",i);

scanf("%d",&f[i]);

}

for(i=1;i<=nf;i++)

{

for(j=1;j<=nb;j++)

{

if(bf[j]!=1)

{

temp=b[j]-f[i];

if(temp>=0)

if(lowest>temp)

{

ff[i]=j;

lowest=temp;

}

}}

frag[i]=lowest; bf[ff[i]]=1; lowest=10000;

}

printf("\nFile No\tFile Size \tBlock No\tBlock

Size\tFragment"); for(i=1;i<=nf && ff[i]!=0;i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,f[i],ff[i],b[ff[i]],frag[i]);

getch();

}

Page 27

INPUT

Enter the number of blocks: 3

Enter the number of files: 2

Enter the size of the blocks:-

Block 1: 5

Block 2: 2

Block 3: 7

Enter the size of the files:-

File 1: 1

File 2: 4

OUTPUT

File No File Size

Block No

Block Size

Fragment

1 1 2 2 1

2 4 1 5 1

FIRST-FIT

#include<stdio.h>

#include<conio.h>

#define max 25

void main()

{

int

frag[max],b[max],f[max],i,j,nb,nf,temp,highes

t=0; static int bf[max],ff[max];

clrscr();

printf("\n\tMemory Management Scheme - Worst Fit");

printf("\nEnter the number of blocks:");

 scanf("%d",&nb);

printf("Enter the number of files:");

scanf("%d",&nf);

printf("\nEnter the size of the blocks:-\n");

 for(i=1;i<=nb;i++)

{

printf("Block %d:",i);

scanf("%d",&b[i]);

}

printf("Enter the size of the files :-\n");

for(i=1;i<=nf;i++)

{

printf("File %d:",i);

scanf("%d",&f[i]);

}

Page 28

for(i=1;i<=nf;i++)

{

for(j=1;j<=nb;j++)

{

if(bf[j]!=1) //if bf[j] is not allocated

{

temp=b[j]-f[i];

if(temp>=0)

if(highest<temp)

{

}

}

frag[i]=highest; bf[ff[i]]=1; highest=0;

}

ff[i]=j; highest=temp;

}

printf("\nFile_no:\tFile_size:\tBlock_no:\tBlock_size:\tFragement");

for(i=1;i<=nf;i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,f[i],ff[i],b[ff[i]],frag[i]);

getch();

}

INPUT

Enter the number of blocks: 3

Enter the number of files: 2

Enter the size of the blocks:-

Block 1: 5

Block 2: 2

Block 3: 7

Enter the size of the files:-

File 1: 1

File 2: 4

OUTPUT

File No File Size Block No Block Size Fragment

1 1 3 7 6

2 4 1 5 1

Page 29

EXPERIMENT NO.6

PAGE REPLACEMENT ALGORITHMS

AIM: To implement FIFO page replacement technique.

a) FIFO b) LRU c) OPTIMAL

DESCRIPTION:

Page replacement algorithms are an important part of virtual memory management and it helps the OS to

decide which memory page can be moved out making space for the currently needed page. However, the

ultimate objective of all page replacement algorithms is to reduce the number of page faults.

FIFO-This is the simplest page replacement algorithm. In this algorithm, the operating system keeps track

of all pages in the memory in a queue, the oldest page is in the front of the queue. When a page needs to be

replaced page in the front of the queue is selected for removal.

LRU-In this algorithm page will be replaced which is least recently used

OPTIMAL- In this algorithm, pages are replaced which would not be used for the longest duration of time

in the future. This algorithm will give us less page fault when compared to other page replacement

algorithms.

ALGORITHM:

1. Start the process

2. Read number of pages n

3. Read number of pages no

4. Read page numbers into an array a[i]

5. Initialize avail[i]=0 .to check page hit

6. Replace the page with circular queue, while re-placing check page availability in the frame

Place avail[i]=1 if page is placed in the frame Count page faults

7. Print the results.

8. Stop the process.

Page 30

A) FIRST IN FIRST OUT

SOURCE CODE :

#include<stdio.h>

#include<conio.h> int fr[3];

void main()

{

void display();

int i,j,page[12]={2,3,2,1,5,2,4,5,3,2,5,2};

int

flag1=0,flag2=0,pf=0,frsize=3,top=0;

clrscr();

for(i=0;i<3;i++)

{

fr[i]=-1;

}

for(j=0;j<12;j++)

{

flag1=0; flag2=0; for(i=0;i<12;i++)

{

if(fr[i]==page[j])

{

flag1=1; flag2=1; break;

}

}

if(flag1==0)

{

for(i=0;i<frsize;i++)

{

if(fr[i]==-1)

{

fr[i]=page[j]; flag2=1; break;

}

}

}

if(flag2==0)

{

fr[top]=page[j];

top++;

pf++;

if(top>=frsize)

top=0;

}

display();

}

Page 31

printf("Number of page faults : %d ",pf+frsize);

 getch();

}

void display()

{

int i; printf("\n");

for(i=0;i<3;i++)

printf("%d\t",fr[i]);

}

OUTPUT:

2 -1 -1

2 3 -1

2 3 -1

2 3 1

5 3 1

5 2 1

5 2 4

5 2 4

3 2 4

3 2 4

3 5 4

3 5 2

Number of page faults: 9

Page 32

B) LEAST RECENTLY USED

AIM: To implement LRU page replacement technique.

ALGORITHM:

1. Start the process

2. Declare the size

3. Get the number of pages to be inserted

4. Get the value

5. Declare counter and stack

6. Select the least recently used page by counter value

7. Stack them according the selection.

8. Display the values

9. Stop the process

SOURCE CODE :

#include<stdio.h>

#include<conio.h>

int fr[3];

void main()

{

void display();

int p[12]={2,3,2,1,5,2,4,5,3,2,5,2},i,j,fs[3];

int index,k,l,flag1=0,flag2=0,pf=0,frsize=3;

 clrscr();

for(i=0;i<3;i++)

{

fr[i]=-1;

}

for(j=0;j<12;j++)

{

flag1=0,flag2=0;

for(i=0;i<3;i++)

{

if(fr[i]==p[j])

{

flag1=1;

flag2=1; break;

}

}

if(flag1==0)

Page 33

{

for(i=0;i<3;i++)

{

if(fr[i]==-1)

{

fr[i]=p[j]; flag2=1;

break;

}

}

}

if(flag2==0)

{

for(i=0;i<3;i++)

fs[i]=0;

for(k=j-1,l=1;l<=frsize-1;l++,k--)

{

for(i=0;i<3;i++)

{

if(fr[i]==p[k]) fs[i]=1;

}}

for(i=0;i<3;i++)

{

if(fs[i]==0)

index=i;

}

fr[index]=p[j];

pf++;

}

display();

}

printf("\n no of page faults :%d",pf+frsize);

getch();

}

void display()

{

int i; printf("\n");

for(i=0;i<3;i++)

printf("\t%d",fr[i]);

}

Page 34

OUTPUT:

2 -1 -1

2 3 -1

2 3 -1

2 3 1

2 5 1

2 5 1

2 5 4

2 5 4

3 5 4

3 5 2

3 5 2

3 5 2

No of page faults: 7

Page 35

C) OPTIMAL

AIM: To implement optimal page replacement technique.

ALGORTHIM:

1. Start Program

2. Read Number Of Pages And Frames

3.Read Each Page Value

4. Search For Page In The Frames

5.If Not Available Allocate Free Frame

6. If No Frames Is Free Repalce The Page With The Page That Is Leastly Used

7.Print Page Number Of Page Faults

8.Stop process.

SOURCE CODE:

/* Program to simulate optimal page replacement */

#include<stdio.h>

#include<conio.h>

int fr[3], n, m;

void

display();

void main()

{

int i,j,page[20],fs[10];

int

max,found=0,lg[3],index,k,l,flag1=0,flag2=0,pf=0;

float pr;

clrscr();

printf("Enter length of the reference string: ");

scanf("%d",&n);

printf("Enter the reference string: ");

for(i=0;i<n;i++)

scanf("%d",&page[i]);

printf("Enter no of frames: ");

scanf("%d",&m);

for(i=0;i<m;i++)

fr[i]=-1; pf=m;

Page 36

for(j=0;j<n;j++)

{

flag1=0; flag2=0;

for(i=0;i<m;i++)

{

if(fr[i]==page[j])

{

flag1=1; flag2=1;

break;

}

}

if(flag1==0)

{

for(i=0;i<m;i++)

{

if(fr[i]==-1)

{

fr[i]=page[j]; flag2=1;

break;

}

}

}

if(flag2==0)

{

for(i=0;i<m;i++)

lg[i]=0;

for(i=0;i<m;i++)

{

for(k=j+1;k<=n;k++)

{

if(fr[i]==page[k])

{

lg[i]=k-j;

break;

}

}

}

found=0;

for(i=0;i<m;i++)

{

if(lg[i]==0)

{

index=i;

found = 1;

Page 37

break;

}

}

if(found==0)

{

max=lg[0]; index=0;

for(i=0;i<m;i++)

{

if(max<lg[i])

{

max=lg[i];

index=i;

}

}

}

fr[index]=page[j];

pf++;

}

display();

}

printf("Number of page faults : %d\n", pf);

pr=(float)pf/n*100;

printf("Page fault rate = %f \n", pr); getch();

}

void display()

{

int i; for(i=0;i<m;i++)

printf("%d\t",fr[i]);

printf("\n");

}

Page 38

OUTPUT:

Enter length of the reference string: 12

Enter the reference string: 1 2 3 4 1 2 5 1 2 3 4 5

Enter no of frames: 3

1 -1 -1

1 2 -1

1 2 3

1 2 4

1 2 4

1 2 4

1 2 5

1 2 5

1 2 5

3 2 5

4 2 5

4 2 5

Number of page faults : 7 Page fault rate = 58.333332

VIVA QUESTIONS

1) What is meant by page fault?

2) What is meant by paging?

3) What is page hit and page fault rate?

4) List the various page replacement algorithm

5) Which one is the best replacement algorithm?

Page 39

EXPERIMENT NO. 7

FILE ORGANIZATION TECHNIQUES

A) SINGLE LEVEL DIRECTORY:

AIM: Program to simulate Single level directory file organization technique.

DESCRIPTION:

The directory structure is the organization of files into a hierarchy of folders. In a single-level

directory system, all the files are placed in one directory. There is a root directory which has all

files. It has a simple architecture and there are no sub directories. Advantage of single level

directory system is that it is easy to find a file in the directory.

SOURCE CODE :

#include<stdio.h>

struct

{

char dname[10],fname[10][10];

int fcnt;

}dir;

void main()

{

int i,ch; char

f[30]; clrscr();

dir.fcnt = 0;

printf("\nEnter name of directory -- ");

scanf("%s", dir.dname);

while(1)

{

printf("\n\n1. Create File\t2. Delete File\t3. Search File \n

4. Display Files\t5. Exit\nEnter your choice -- ");

scanf("%d",&ch);

switch(ch)

{

case 1: printf("\nEnter the name of the file -- ");

scanf("%s",dir.fname[dir.fcnt]);

dir.fcnt++; break;

case 2: printf("\nEnter the name of the file -- ");

scanf("%s",f);

for(i=0;i<dir.fcnt;i++)

{

if(strcmp(f, dir.fname[i])==0)

{

printf("File %s is deleted ",f); strcpy(dir.fname[i],dir.fname[dir.fcnt-1]); break;

}

Page 40

}

if(i==dir.fcnt)

printf("File %s not found",f);

 else

 dir.fcnt--;

 break;

case 3: printf("\nEnter the name of the file -- ");

 scanf("%s",f);

 for(i=0;i<dir.fcnt;i++)

 {

 if(strcmp(f, dir.fname[i])==0)

 {

 printf("File %s is found ", f);

 break;

 }

 }

 if(i==dir.fcnt)

 printf("File %s not found",f);

 break;

case 4: if(dir.fcnt==0)

 printf("\nDirectory Empty");

 else

 {

 printf("\nThe Files are -- ");

 for(i=0;i<dir.fcnt;i++)

 printf("\t%s",dir.fname[i]);

 }

 break;

default: exit(0);

}

}

getch();}

Page 41

OUTPUT:

Enter name of directory -- CSE

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- A

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- B

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- C

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 4

The Files are -- A B C

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 3

Enter the name of the file – ABC File

ABC not found

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 2

Enter the name of the file – B

File B is deleted

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 5

Page 42

B) TWO LEVEL DIRECTORY

AIM: Program to simulate two level file organization technique

Description:

In the two-level directory system, each user has own user file directory (UFD). The system

maintains a master block that has one entry for each user. This master block contains the

addresses of the directory of the users. When a user job starts or a user logs in, the system's

master file directory (MFD) is searched. When a user refers to a particular file, only his own UFD

is searched.

SOURCE CODE :

#include<stdio.h>

struct

{

char dname[10],fname[10][10];

int fcnt;

}dir[10];

void main()

{

int i,ch,dcnt,k; char

f[30], d[30]; clrscr();

dcnt=0;

while(1)

{

printf("\n\n1. Create Directory\t2. Create File\t3. Delete File");

printf("\n4. Search File\t\t5. Display\t6. Exit\t Enter your choice --");

scanf("%d",&ch);

switch(ch)

{

case 1: printf("\nEnter name of directory -- ");

scanf("%s", dir[dcnt].dname);

dir[dcnt].fcnt=0;

dcnt++;

printf("Directory created"); break;

case 2: printf("\nEnter name of the directory -- ");

scanf("%s",d);

for(i=0;i<dcnt;i++)

if(strcmp(d,dir[i].dname)==0)

{

 printf("Enter name of the file -- ");

scanf("%s",dir[i].fname[dir[i].fcnt]);

Page 43

 dir[i].fcnt++;

printf("File created");

}

if(i==dcnt)

 printf("Directory %s not found",d);

break;

case 3: printf("\nEnter name of the directory -- ");

scanf("%s",d);

for(i=0;i<dcnt;i++)

for(i=0;i<dcnt;i++)

{

if(strcmp(d,dir[i].dname)==0)

{

printf("Enter name of the file -- ");

scanf("%s",f);

for(k=0;k<dir[i].fcnt;k++)

{

if(strcmp(f, dir[i].fname[k])==0)

{

printf("File %s is deleted ",f);

dir[i].fcnt--;

strcpy(dir[i].fname[k],dir[i].fname[dir[i].fcnt]);

goto jmp;

}

}

printf("File %s not found",f); goto jmp;

}

}

printf("Directory %s not found",d);

jmp : break;

case 4: printf("\nEnter name of the directory -- ");

scanf("%s",d);

for(i=0;i<dcnt;i++)

{

if(strcmp(d,dir[i].dname)==0)

{

printf("Enter the name of the file -- ");

scanf("%s",f);

for(k=0;k<dir[i].fcnt;k++)

{

if(strcmp(f, dir[i].fname[k])==0)

{

printf("File %s is found ",f); goto jmp1;

}

}

printf("File %s not found",f); goto jmp1;

}

}

Page 44

printf("Directory %s not found",d); jmp1: break;

case 5: if(dcnt==0)

printf("\nNo Directory's ");

else

{

printf("\nDirectory\tFiles");

for(i=0;i<dcnt;i++)

{

printf("\n%s\t\t",dir[i].dname);

for(k=0;k<dir[i].fcnt;k++)

printf("\t%s",dir[i].fname[k]);

}

}

break;

default:exit(0);

}

}

getch();

}

Page 45

OUTPUT

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit

Enter your choice -- 1

Enter name of directory -- DIR1 Directory created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 1

Enter name of directory -- DIR2 Directory created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 2

Enter name of the directory – DIR1

Enter name of the file -- A1

File created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit

Enter your choice -- 2

Enter name of the directory – DIR1

Enter name of the file -- A2

File created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6.

Exit Enter your choice – 6

VIVA QUESTIONS

1. Define directory?

2. List the different types of directory structures?

3. What is the advantage of hierarchical directory structure?

4. Which of the directory structures is efficient? Why?

5. What is acyclic graph directory?

Page 46

EXPERIMENT.NO.8

 FILE ALLOCATION STRATEGIES

A) SEQUENTIAL:

AIM: To write a C program for implementing sequential file allocation method

 DESCRIPTION:

The most common form of file structure is the sequential file in this type of file,

a fixed format is used for records. All records (of the system) have the same length,

consisting of the same number of fixed length fields in a particular order because the

length and position of each field are known, only the values of fields need to be stored, the

field name and length for each field are attributes of the file structure.

ALGORITHM:

Step 1: Start the program.

Step 2: Get the number of files.

Step 3: Get the memory requirement of each file.

Step 4: Allocate the required locations to each in sequential order a).

Randomly select a location from available location s1= random(100);

a) Check whether the required locations are free from the selected

location.

if(b[s1].flag==0){

for (j=s1;j<s1+p[i];j++){

if((b[j].flag)==0)count++;

}

if(count==p[i]) break;

}

b) Allocate and set flag=1 to the allocated locations. for(s=s1;s<(s1+p[i]);s++)

{

k[i][j]=s; j=j+1; b[s].bno=s;

b[s].flag=1;

}

Step 5: Print the results file no, length, Blocks allocated. Step

6: Stop the program

Page 47

SOURCE CODE :

#include<stdio.h>

main()

{

int f[50],i,st,j,len,c,k;

clrscr();

for(i=0;i<50;i++)

f[i]=0;

X:

printf("\n Enter the starting block & length of file");

scanf("%d%d",&st,&len);

for(j=st;j<(st+len);j++)

if(f[j]==0)

{

f[j]=1

;

printf("\n%d->%d",j,f[j]);

}

else

{

printf("Block already allocated");

break;

}

if(j==(st+len))

printf("\n the file is allocated to disk");

printf("\n if u want to enter more files?(y-1/n-0)");

scanf("%d",&c);

if(c==1)

goto X;

else

exit();

getch();

}

Page 48

OUTPUT:

Enter the starting block & length of file 4 10

4->1

5->1

6->1

7->1

8->1

9->1

10->1

11->1

12->1

13->1

The file is allocated to disk.

Page 49

B) INDEXED:

AIM: To implement allocation method using chained method

DESCRIPTION:

In the chained method file allocation table contains a field which points to starting

block of memory. From it for each bloc a pointer is kept to next successive block. Hence,

there is no external fragmentation.

ALGORITHM:

Step 1: Start the program.

Step 2: Get the number of files.

Step 3: Get the memory requirement of each file.

Step 4: Allocate the required locations by selecting a location randomly q= random(100);

a) Check whether the selected location is free .

b) If the location is free allocate and set flag=1 to the allocated locations.

q=random(100);

{

if(b[q].flag==0)

b[q].flag=1;

b[q].fno=j;

r[i][j]=q;

Step 5: Print the results file no, length ,Blocks

allocated.

Step 6: Stop the program

Page 50

SOURCE CODE :

#include<stdio.h>

int f[50],i,k,j,inde[50],n,c,count=0,p;

main()

{

clrscr();

for(i=0;i<50;i++)

f[i]=0;

x: printf("enter index block\t");

scanf("%d",&p);

if(f[p]==0)

{

f[p]=1;

printf("enter no of files on index\t");

scanf("%d",&n);

}

else

{

printf("Block already allocated\n");

goto x;

}

for(i=0;i<n;i++)

scanf("%d",&inde[i]);

for(i=0;i<n;i++)

if(f[inde[i]]==1)

{

printf("Block already allocated");

goto x;

}

for(j=0;j<n;j++)

f[inde[j]]=1;

printf("\n allocated");

printf("\n file indexed");

for(k=0;k<n;k++)

printf("\n %d->%d:%d",p,inde[k],f[inde[k]]);

printf(" Enter 1 to enter more files and 0 to exit\t");

scanf("%d",&c);

if(c==1)

goto x;

else

exit();

getch();

}

Page 51

OUTPUT: enter index block 9

Enter no of files on index 3 1

2 3

Allocated

File indexed

9->1:1

9->2;1

9->3:1 enter 1 to enter more files and 0 to exit

Page 52

C) LINKED:

AIM: To implement linked file allocation technique.

DESCRIPTION:

In the chained method file allocation table contains a field which points to starting

block of memory. From it for each bloc a pointer is kept to next successive block. Hence,

there is no external fragmentation

ALGORTHIM:

Step 1: Start the program.

Step 2: Get the number of

files.

Step 3: Get the memory requirement of each file.

Step 4: Allocate the required locations by selecting a location randomly q=

random(100);

a) Check whether the selected location is free .

b) If the location is free allocate and set flag=1 to the allocated locations.

While allocating next location address to attach it to previous location

for(i=0;i<n;i++)

{

for(j=0;j<s[i];j++)

{

q=random(100); if(b[q].flag==0)

b[q].flag=1;

b[q].fno=j;

r[i][j]=q;

if(j>0)

{

}

}

p=r[i][j-1]; b[p].next=q;}

Step 5: Print the results file no, length ,Blocks

allocated.

Step 6: Stop the program

Page 53

SOURCE CODE :

#include<stdio.h>

main()

{

int f[50],p,i,j,k,a,st,len,n,c;

clrscr();

for(i=0;i<50;i++) f[i]=0;

printf("Enter how many blocks that are already

allocated"); scanf("%d",&p);

printf("\nEnter the blocks no.s that are already allocated");

for(i=0;i<p;i++)

{

scanf("%d",&a);

f[a]=1;

}

X:

printf("Enter the starting index block &

length"); scanf("%d%d",&st,&len); k=len;

for(j=st;j<(k+st);j++)

{

if(f[j]==0)

{ f[j]=1;

printf("\n%d->%d",j,f[j]);

}

else

{

printf("\n %d->file is already

allocated",j);

k++;

}

}

printf("\n If u want to enter one

more file? (yes-1/no-0)");

scanf("%d",&c);

if(c==1)

goto

X;

else

exit();

getch();}

Page 54

OUTPUT:

Enter how many blocks that are already allocated 3 Enter the blocks no.s

that are already allocated 4 7 Enter the starting index block & length 3 7 9

3->1

4->1 file is already allocated

5->1

6->1

7->1 file is already allocated

8->1

9->1file is already allocated

10->1

11->1

12->1

VIVA QUESTIONS

1) List the various types of files

2) What are the various file allocation strategies?

3) What is linked allocation?

4) What are the advantages of linked allocation?

5) What are the disadvantages of sequential allocation methods?

Page 55

EXPERIMENT.NO 9

DEAD LOCK AVOIDANCE

AIM: To Simulate bankers algorithm for Dead Lock Avoidance (Banker‘s Algorithm)

DESCRIPTION:

Deadlock is a situation where in two or more competing actions are waiting f or the other

to finish, and thus neither ever does. When a new process enters a system, it must declare the

maximum number of instances of each resource type it needed. This number may exceed the

total number of resources in the system. When the user request a set of resources, the system

must determine whether the allocation of each resources will leave the system in safe state. If

it will the resources are allocation; otherwise the process must wait until some other process

release the resources.

Data structures

n-Number of process, m-number of resource types.

Available: Available[j]=k, k – instance of resource type Rj is available. Max: If

max[i, j]=k, Pi may request at most k instances resource Rj.

Allocation: If Allocation [i, j]=k, Pi allocated to k instances of resource Rj Need: If

Need[I, j]=k, Pi may need k more instances of resource type Rj, Need[I, j]=Max[I, j]-

Allocation[I, j];

Safety Algorithm

1. Work and Finish be the vector of length m and n respectively, Work=Available and

Finish[i] =False.

2. Find an i such that both

Finish[i] =False

Need<=Work If no such I

exists go to step 4.

3. work= work + Allocation, Finish[i] =True;

4. if Finish[1]=True for all I, then the system is in safe state.

Resource request algorithm

Let Request i be request vector for the process Pi, If request i=[j]=k, then process Pi

wants k instances of resource type Rj.

1. if Request<=Need I go to step 2. Otherwise raise an error condition.

2. if Request<=Available go to step 3. Otherwise Pi must since the resources are

available.

3. Have the system pretend to have allocated the requested resources to process Pi by

modifying the state as follows;

Available=Available-Request I;

Allocation I=Allocation +Request I;

Need i=Need i- Request I;

If the resulting resource allocation state is safe, the transaction is completed and process Pi is

allocated its resources. However if the state is unsafe, the Pi must wait for Request i and the

old resource-allocation state is restored.

Page 56

ALGORITHM:

1. Start the program.

2. Get the values of resources and processes.

3. Get the avail value.

4. After allocation find the need value.

5. Check whether its possible to allocate.

6. If it is possible then the system is in safe state.

7. Else system is not in safety state.

8. If the new request comes then check that the system is in safety.

9. or not if we allow the request.

10. stop the program.

11. end

SOURCE CODE :

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

int alloc[10][10],max[10][10];

int avail[10],work[10],total[10];

int i,j,k,n,need[10][10];

int m;

int count=0,c=0;

char finish[10];

clrscr();

printf("Enter the no. of processes and resources:");

scanf("%d%d",&n,&m);

for(i=0;i<=n;i++)

finish[i]='n';

printf("Enter the claim matrix:\n");

for(i=0;i<n;i++)

for(j=0;j<m;j++)

scanf("%d",&max[i][j]);

printf("Enter the allocation matrix:\n");

for(i=0;i<n;i++)

for(j=0;j<m;j++)

scanf("%d",&alloc[i][j]);

printf("Resource vector:");

for(i=0;i<m;i++)

scanf("%d",&total[i]);

for(i=0;i<m;i++)

avail[i]=0; for(i=0;i<n;i++)

Page 57

for(j=0;j<m;j++)

avail[j]+=alloc[i][j];

for(i=0;i<m;i++)

 work[i]=avail[i];

for(j=0;j<m;j++)

work[j]=total[j]-work[j];

for(i=0;i<n;i++)

for(j=0;j<m;j++)

need[i][j]=max[i][j]-alloc[i][j];

A:

for(i=0;i<n;i++)

{

 c=0;

for(j=0;j<m;j++)

if((need[i][j]<=work[j])&&(finish[i]=='n'))

c++;

if(c==m)

{

printf("All the resources can be allocated to Process %d", i+1);

printf("\n\nAvailable resources are:");

for(k=0;k<m;k++)

{

work[k]+=alloc[i][k];

printf("%4d",work[k]);

}

printf("\n");

finish[i]='y';

printf("\nProcess %d executed?:%c \n",i+1,finish[i]);

count++;

}

}

if(count!=n)

goto A;

 else

printf("\n System is in safe mode");

printf("\n The given state is safe state");

getch();

}

Page 58

OUTPUT

Enter the no. of processes and resources: 4 3

Enter the claim matrix:

3 2 2

6 1 3

3 1 4

4 2 2

Enter the allocation matrix:

1 0 0

6 1 2

2 1 1

0 0 2

Resource vector:9 3 6

All the resources can be allocated to Process 2

Available resources are: 6 2 3

Process 2 executed?:y

All the resources can be allocated to Process 3 Available resources

are: 8 3 4

Process 3 executed?:y

All the resources can be allocated to Process 4 Available resources

are: 8 3 6

Process 4 executed?:y

All the resources can be allocated to Process 1

Available resources are: 9 3 6

Process 1 executed?:y

System is in safe mode

The given state is safe state

VIVA QUESTIONS

1) What is meant by deadlock?

2) What is safe state in banker’s algorithms?

3) What is banker’s algorithm?

4) What are the necessary conditions where deadlock occurs?

5) What are the principles and goals of protection?

Page 59

EXPERIMENT.NO 10

DEAD LOCK PREVENTION

AIM: To implement deadlock prevention technique

Banker‘s Algorithm:

When a new process enters a system, it must declare the maximum number of

instances of each resource type it needed. This number may exceed the total number of

resources in the system. When the user request a set of resources, the system must

determine whether the allocation of each resources will leave the system in safe state. If

it will the resources are allocation; otherwise the process must wait until some other

process release the resources.

DESCRIPTION:

Data structures

n-Number of process, m-number of resource types.

Available: Available[j]=k, k – instance of resource type Rj is available.

Max: If max[i, j]=k, Pi may request at most k instances resource Rj.

Allocation: If Allocation [i, j]=k, Pi allocated to k instances of resource Rj Need:

If Need[I, j]=k, Pi may need k more instances of resource type Rj,

Need[I, j]=Max[I, j]-Allocation[I, j];

Safety Algorithm

 Work and Finish be the vector of length m and n respectively, Work=Available

and Finish[i] =False.

 Find an i such

that both Finish[i] =False

Need<=Work

If no such I exists go to step 4.

5. work=work+Allocation, Finish[i] =True;

if Finish[1]=True for all I, then the system is in safe state

Page 60

ALGORITHM:

1. Start the program.

2. Get the values of resources and processes.

3. Get the avail value.

4. After allocation find the need value.

5. Check whether its possible to allocate.

6. If it is possible then the system is in safe state.

7. Else system is not in safety state

8. Stop the process.

SOURCE CODE :

#include<stdio.h>

#include<conio.h>

void main()

{

char job[10][10];

int time[10],avail,tem[10],temp[10]; int safe[10];

int ind=1,i,j,q,n,t;

clrscr();

printf("Enter no of jobs: ");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("Enter name and time: ");

scanf("%s%d",&job[i],&time[i]);

}

printf("Enter the available resources:");

scanf("%d",&avail);

for(i=0;i<n;i++)

{

temp[i]=time[i];

tem[i]=i;

}

for(i=0;i<n;i++)

for(j=i+1;j<n;j++)

{

if(temp[i]>temp[j])

{

t=temp[i];

Page 61

temp[i]=temp[j];

temp[j]=t; t=tem[i];

tem[i]=tem[j];

tem[j]=t;

}

}

for(i=0;i<n;i++)

{

q=tem[i];

if(time[q]<=avail)

{

safe[ind]=tem[i];

avail=avail-tem[q];

printf("%s",job[safe[ind]]);

ind++;

}

else

{

printf("No safe sequence\n");

}

}

printf("Safe sequence is:");

for(i=1;i<ind; i++)

printf("%s %d\n",job[safe[i]],time[safe[i]]);

getch();

}

OUTPUT:

Enter no of jobs:4

Enter name and time: A 1

Enter name and time: B 4

Enter name and time: C 2

Enter name and time: D 3

Enter the available resources: 20

Safe sequence is: A 1, C 2, D 3, B 4.

Page 62

EXPERIMENT.NO 11

AIM: To Write a C program to simulate disk scheduling algorithms

a) FCFS b) SCAN c) C-SCAN

DESCRIPTION

One of the responsibilities of the operating system is to use the hardware efficiently. For the

disk drives, meeting this responsibility entails having fast access time and large disk

bandwidth. Both the access time and the bandwidth can be improved by managing the order in

which disk I/O requests are serviced which is called as disk scheduling. The simplest form of

disk scheduling is, of course, the first-come, first-served (FCFS) algorithm. This algorithm is

intrinsically fair, but it generally does not provide the fastest service. In the SCAN algorithm,

the disk arm starts at one end, and moves towards the other end, servicing requests as it reaches

each cylinder, until it gets to the other end of the disk. At the other end, the direction of head

movement is reversed, and servicing continues. The head continuously scans back and forth

across the disk. C-SCAN is a variant of SCAN designed to provide a more uniform wait time.

Like SCAN, C-SCAN moves the head from one end of the disk to the other, servicing requests

along the way. When the head reaches the other end, however, it immediately returns to the

beginning of the disk without servicing any requests on the return trip

PROGRAM

A) FCFS DISK SCHEDULING ALGORITHM

#include<stdio.h>

main()

{

int t[20], n, I, j, tohm[20], tot=0; float avhm;

clrscr();

printf(“enter the no.of tracks”);

scanf(“%d”,&n);

printf(“enter the tracks to be traversed”);

for(i=2;i<n+2;i++)

scanf(“%d”,&t*i+);

for(i=1;i<n+1;i++)

{

tohm[i]=t[i+1]-t[i];

if(tohm[i]<0)

tohm[i]=tohm[i]*(-1);

}

for(i=1;i<n+1;i++)

tot+=tohm[i];

avhm=(float)tot/n;

printf(“Tracks traversed\tDifference between tracks\n”);

for(i=1;i<n+1;i++)

printf(“%d\t\t\t%d\n”,t*i+,tohm*i+);

printf("\nAverage header movements:%f",avhm);

getch();

}

Page 63

INPUT

Enter no.of tracks:9

Enter track position:55 58 60 70 18 90 150 160 184

OUTPUT

Tracks traversed Difference between tracks

55

58

60

70

18

90

45

 3

 2

10

52

72

150

160

184

60

10

24

Average header movements:30.888889

Page 64

B) SCAN DISK SCHEDULING ALGORITHM

#include<stdio.h>

main()

{

int t[20], d[20], h, i, j, n, temp, k, atr[20], tot, p, sum=0;

clrscr();

printf("enter the no of tracks to be traveresed");

scanf("%d'",&n);

printf("enter the position of head");

scanf("%d",&h);

t[0]=0;t[1]=h;

printf("enter the tracks");

for(i=2;i<n+2;i++)

scanf("%d",&t[i]);

for(i=0;i<n+2;i++)

{

for(j=0;j<(n+2)-i-1;j++)

 {

 if(t[j]>t[j+1])

{

 temp=t[j];

t[j]=t[j+1];

t[j+1]=temp;

 } } }

for(i=0;i<n+2;i++)

if(t[i]==h)

j=i;k=i;

p=0;

while(t[j]!=0)

{

atr[p]=t[j]; j--;

p++;

}

atr[p]=t[j];

for(p=k+1;p<n+2;p++,k++)

atr[p]=t[k+1];

for(j=0;j<n+1;j++)

{

if(atr[j]>atr[j+1])

d[j]=atr[j]-atr[j+1];

else

d[j]=atr[j+1]-atr[j];

sum+=d[j];

}

printf("\nAverage header movements:%f",(float)sum/n);

getch();}

Page 65

INPUT

Enter no.of tracks:9

Enter track position:55 58 60 70 18 90 150 160 184

OUTPUT

Tracks traversed Difference between tracks

150

160

184

90

70

60

58

55

18

50

10

24

94

20

10

2

3

37

 Average header movements: 27.77

Page 66

C) C-SCAN DISK SCHEDULING ALGORITHM

#include<stdio.h>

main()

{

int t[20], d[20], h, i, j, n, temp, k, atr[20], tot, p, sum=0;

clrscr();

printf("enter the no of tracks to be traveresed");

scanf("%d'",&n);

printf("enter the position of head");

scanf("%d",&h);

t[0]=0;t[1]=h;

printf("enter total tracks");

scanf("%d",&tot);

t[2]=tot-1;

printf("enter the tracks");

for(i=3;i<=n+2;i++)

scanf("%d",&t[i]);

for(i=0;i<=n+2;i++)

for(j=0;j<=(n+2)-i-1;j++)

if(t[j]>t[j+1])

{

temp=t[j];

t[j]=t[j+1];

t[j+1]=temp

}

for(i=0;i<=n+2;i++)

if(t[i]==h);

j=i;break;

p=0;

while(t[j]!=tot-1)

{

atr[p]=t[j];

j++;

p++;

}

atr[p]=t[j];

p++;

i=0;

while(p!=(n+3) && t[i]!=t[h])

{

atr[p]=t[i]; i++;

p++;

}

Page 67

for(j=0;j<n+2;j++)

{

if(atr[j]>atr[j+1])

d[j]=atr[j]-atr[j+1];

else

d[j]=atr[j+1]-atr[j];

sum+=d[j];

}

printf("total header movements%d",sum);

 printf("avg is %f",(float)sum/n);

getch();

}

Page 68

INPUT

Enter the track position : 55 58 60 70 18 90 150 160 184

Enter starting position : 100

OUTPUT

Tracks traversed Difference Between tracks

150

160

184

18

55

58

60

70

90

50

10

24

240

37

3

2

10

20

Average seek time : 35.7777779

Page 69

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	MISSION
	PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)
	PEO1 – ANALYTICAL SKILLS
	PEO2 – TECHNICAL SKILLS
	PEO3 – SOFT SKILLS
	PEO4 – PROFESSIONAL ETHICS

	PROGRAM SPECIFIC OUTCOMES (PSOs)
	PROGRAMOUTCOMES (POs)
	Engineering Graduates should possess the following:

	MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
	(UGC-Autonomous Institution , Govt. of India)

	TABLE OF CONTENTS
	Head of the Department Principal

	DESCRIPTION:
	ALGORITHM:
	B). SHORTEST JOB FIRST:
	DESCRIPTION: (1)
	ALGORITHM: (1)
	C). ROUND ROBIN:
	DESCRIPTION: (2)
	ALGORITHM: (2)
	OUTPUT:
	DESCRIPTION: (3)
	ALGORITHM: (3)
	Step10: Stop
	DESCRIPTION
	PROGRAM
	OUTPUT

	DESCRIPTION (1)
	PROGRAM (1)
	INPUT
	OUTPUT

	EXPERIMENT.NO 4
	MEMORY MANAGEMENT
	DESCRIPTION: (4)
	ALGORITHM: (4)
	INPUT

	ALGORITHM: (5)
	SOURCE CODE:
	DESCRIPTION (2)
	PROGRAM (2)
	WORST-FIT
	INPUT
	INPUT (1)
	INPUT (2)

	EXPERIMENT NO.6
	DESCRIPTION: (5)
	Page replacement algorithms are an important part of virtual memory management and it helps the OS to decide which memory page can be moved out making space for the currently needed page. However, the ultimate objective of all page replacement algorit...
	FIFO-This is the simplest page replacement algorithm. In this algorithm, the operating system keeps track of all pages in the memory in a queue, the oldest page is in the front of the queue. When a page needs to be replaced page in the front of the qu...
	LRU-In this algorithm page will be replaced which is least recently used
	OPTIMAL- In this algorithm, pages are replaced which would not be used for the longest duration of time in the future. This algorithm will give us less page fault when compared to other page replacement algorithms.
	ALGORITHM: (6)
	OUTPUT: (1)
	B) LEAST RECENTLY USED
	ALGORITHM: (7)
	SOURCE CODE :
	OUTPUT: (2)
	C) OPTIMAL
	ALGORTHIM:
	OUTPUT: (3)
	EXPERIMENT NO. 7
	DESCRIPTION: (6)
	OUTPUT: (4)
	B) TWO LEVEL DIRECTORY
	Description:
	OUTPUT
	EXPERIMENT.NO.8
	A) SEQUENTIAL:
	AIM: To write a C program for implementing sequential file allocation method
	ALGORITHM: (8)
	OUTPUT: (5)
	B) INDEXED:
	ALGORITHM: (9)
	C) LINKED:
	DESCRIPTION: (7)
	ALGORTHIM: (1)
	OUTPUT: (6)
	EXPERIMENT.NO 9
	DEAD LOCK AVOIDANCE
	DESCRIPTION:

	ALGORITHM: (10)
	OUTPUT (1)
	Banker‘s Algorithm:
	DESCRIPTION: (8)
	ALGORITHM: (11)
	OUTPUT: (7)
	DESCRIPTION (3)
	PROGRAM (3)
	A) FCFS DISK SCHEDULING ALGORITHM
	INPUT
	OUTPUT

	B) SCAN DISK SCHEDULING ALGORITHM
	INPUT
	OUTPUT

	C) C-SCAN DISK SCHEDULING ALGORITHM
	INPUT
	OUTPUT

