
DATA STRUCTURES USING PYTHON

LAB MANUAL

B.TECH

(II YEAR – I SEM)

(2022-23)

DEPARTMENT OF INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

DEPARTMENT OF INFORMATION TECHNOLOGY

VISION

➢ To achieve high quality in technical education that provides the skills and attitude to adapt to

the global needs of the Information Technology sector, through academic and research

excellence.

MISSION

➢ To equip the students with the cognizance for problem solving and to improve the teaching

learning pedagogy by using innovative techniques.

➢ To strengthen the knowledge base of the faculty and students with motivation towards

possession of effective academic skills and relevant research experience.

➢ To promote the necessary moral and ethical values among the engineers, for the betterment

of the society.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: PROFESSIONALISM & CITIZENSHIP

To create and sustain a community of learning in which students acquire knowledge and learn

to apply it professionally with due consideration for ethical, ecological and economic issues.

PEO2: TECHNICAL ACCOMPLISHMENTS

To provide knowledge-based services to satisfy the needs of society and the industry by

providing hands on experience in various technologies in core field.

PEO3: INVENTION, INNOVATION AND CREATIVITY

To make the students to design, experiment, analyze, interpret in the core field with the help

of other multi-disciplinary concepts wherever applicable.

PEO4: PROFESSIONAL DEVELOPMENT

To educate the students to disseminate research findings with good soft skills and become a

successful entrepreneur.

PEO5: HUMAN RESOURCE DEVELOPMENT

To graduate the students in building national capabilities in technology, education and

research.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B. Tech Information Technology, the graduates will have the

following Program Specific Outcomes:

1. Fundamentals and critical knowledge of the Computer System: Able to understand the

working principles of the computer System and its components, Apply the knowledge to

build, asses, and analyze the software and hardware aspects of it.

2. The comprehensive and Applicative knowledge of Software Development:

Comprehensive skills of Programming Languages, Software process models, methodologies,

and able to plan, develop, test, analyze, and manage the software and hardware intensive

systems in heterogeneous platforms individually or working in teams.

3. Applications of Computing Domain & Research: Able to use the professional,

managerial, interdisciplinary skill set, and domain specific tools in development processes,

identify the research gaps, and provide innovative solutions to them.

PROGRAM OUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multi-disciplinary environments.

12. Life- long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

DEPARTMENT OF INFORMATION TECHNOLOGY

GENERAL LABORATORY INSTRUCTIONS

1. Students are advised to come to the laboratory at least 5 minutes before (to the starting time),

those who come after 5 minutes will not be allowed into the lab.

2. Plan your task properly much before to the commencement, come prepared to the lab with the

synopsis / program / experiment details.

3. Student should enter into the laboratory with:

a. Laboratory observation notes with all the details (Problem statement, Aim, Algorithm,

Procedure, Program, Expected Output, etc.,) filled in for the lab session.

b. Laboratory Record updated up to the last session experiments and other utensils (if any) needed

in the lab.

c. Proper Dress code and Identity card.

4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer system allotted

to you by the faculty.

5. Execute your task in the laboratory, and record the results / output in the lab observation note

book, and get certified by the concerned faculty.

6. All the students should be polite and cooperative with the laboratory staff, must maintain the

discipline and decency in the laboratory.

7. Computer labs are established with sophisticated and high-end branded systems, which should

be utilized properly.

8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the lab

sessions. Misuse of the equipment, misbehaviors with the staff and systems etc., will attract

severe punishment.

9. Students must take the permission of the faculty in case of any urgency to go out; if anybody

found loitering outside the lab / class without permission during working hours will be treated

seriously and punished appropriately.

10. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves the lab after

completing the task (experiment) in all aspects. He/she must ensure the system / seat is kept

properly.

HEAD OF THE DEPARTMENT PRINCIPAL

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
B.TECH - II- YEAR I-SEM-IT L/T/P/C

 -/-/3/1.5

(R20A0583) DATA STRUCTURES USING PYTHON LAB
COURSE OBJECTIVES:

1. To understand a range of Object-Oriented Programming, as well as in-depth data and

information processing techniques.

2. To understand the how linear data structures works

3. To understand the how non-linear data structures works

4. To understand the how searching sorting works.

5. To understand the how Trees and Graphs works in DS.

1. Write a Python program for class, Flower, that has three instance variables of type str,int,

and float, that respectively represent the name of the flower, its number of petals, and its

price. Your class must include a constructor method that initializes each variable to an

appropriate value, and your class should include methods for setting the value of each type,

and retrieving the value of each type.

2. Develop an inheritance hierarchy based upon a Polygon class that has abstract methods

area() and perimeter(). Implement classes Triangle, Quadrilateral, Pentagon, that extend

this base class, with the obvious meanings for the area() and perimeter() methods. Write

a simple program that allows users to create polygons of the various types and input their

geometric dimensions, and the program then outputs their area and perimeter.

3. Develop an inheritance hierarchy based upon a Polygon class that has abstract methods

area() and perimeter(). Implement classes Triangle, Quadrilateral, Pentagon,that extend

this base class, with the obvious meanings for the area() and perimeter() methods.write a

simple program that allows users to create polygons of the various types and input their

geometric dimensions, and the program then outputs their area and perimeter.

4. Write a Python program to illustrate the following comprehensions:

a) List Comprehensions b) Dictionary Comprehensions

c) Set Comprehensions d) Generator Comprehensions

5. Write a Python program to generate the combinations of n distinct objects taken from the

elements of a given list. Example: Original list: [1, 2, 3, 4, 5, 6, 7, 8, 9] Combinations of

2 distinct objects: [1, 2] [1, 3] [1, 4] [1, 5] [7, 8] [7, 9] [8, 9].

6. Write a Python program for Linear Search and Binary search

7. Write a program to implement Bubble Sort and Selection Sort

8. Write a program to implement Merge sort and Quick sort

9. Write a program to implement stacks and Queues

10. Write a program to implement linked list

11. Write a program to implement Double Linked list

12. Write a program to implement Binary search Tree

Department of IT Page 2

Data Structures Using Python 2022-2023

COURSE OUTCOMES:

▪ To understand a range of Object-Oriented Programming, as well as in-depth data and

information processing techniques.

▪ To understand the how linear data structures works

▪ To understand the how non-linear data structures works

▪ To understand the how searching sorting works.

▪ To understand the how Trees and Graphs works in DS.

Department of IT Page 3

Data Structures Using Python 2022-2023

Table of Contents

S.No Name of the

program

Page

No

week1.

Write a Python program for class, Flower, that has three instance

variables of type str, int, and float that respectively represent the name

of the flower, its number of petals, and its price. Your class must

include a constructor method that initializes each variable to an

appropriate value, and your class should include methods for setting

the value of each type, and retrieving the value of each type.

1

week2.

Develop an inheritance hierarchy based upon a Polygon class that has

abstract methods area() and perimeter(). Implement classes Triangle,

Quadrilateral, Pentagon, that extend this base class, with the obvious

meanings for the area() and perimeter() methods. Write a simple

program that allows users to create polygons of the various types and

input their geometric dimensions, and the program then outputs their

area and perimeter.

5

week 3.
Develop an inheritance hierarchy based upon a Polygon class that has

abstract methods area() and perimeter(). Implement classes Triangle,

Quadrilateral, Pentagon, that extend this base class, with the obvious

meanings for the area() and perimeter() methods. Write a simple

program that allows users to create polygons of the various types and

input their geometric dimensions, and the program then outputs their

area and perimeter.

9

week 4.

Write a Python program to illustrate the following comprehensions:

a) List Comprehensions b) Dictionary Comprehensions

c) Set Comprehensions d) Generator Comprehensions

13

week 5.

Write a Python program to generate the combinations of n distinct

objects taken from the elements of a given list. Example: Original

list: [1, 2, 3, 4, 5, 6, 7, 8, 9] Combinations of 2 distinct objects: [1, 2]

[1, 3] [1, 4] [1, 5] [7, 8] [7, 9] [8, 9].

20

week 6. Write a program for Linear Search and Binary search. 23

week 7. Write a program to implement Bubble Sort and Selection Sort. 27

week 8. Write a program to implement Merge sort and Quick sort. 30

week 9. Write a program to implement Stacks and Queues. 34

week 10. Write a program to implement Singly Linked List. 42

week 11. Write a program to implement Doubly Linked list. 50

week 12. Write a program to implement Binary Search Tree. 58

Department of IT Page 4

Data Structures Using Python 2022-2023

WEEK 1:

Write a Python program for class, Flower, that has three instance variables of type str, int, and

float, that respectively represent the name of the flower, its number of petals, and its price. Your

class must include a constructor method that initializes each variable to an appropriate value,

and your class should include methods for setting the value of each type, and retrieving the value

of each type.

Program:
class Flower:
#Common base class for all Flowers

def init (self, petalName, petalNumber, petalPrice): self.name = petalName

self.petals = petalNumber self.price = petalPrice

def setName(self, petalName): self.name = petalName

def setPetals(self, petalNumber): self.petals =

petalNumber

def setPrice(self, petalPrice): self.price = petalPrice

def getName(self): return

self.name

def getPetals(self): return

self.petals

def getPrice(self): return

self.price

#This would create first object of Flower class f1 = Flower("Sunflower",
2, 1000)

print ("Flower Details:") print ("Name: ",

f1.getName())

print ("Number of petals:", f1.getPetals()) print ("Price:",f1.getPrice())

print ("\n")

#This would create second object of Flower class f2 = Flower("Rose", 5,

2000)

f2.setPrice(3333) f2.setPetals(6)

print ("Flower Details:") print ("Name: ",

f2.getName())

print ("Number of petals:", f2.getPetals()) print ("Price:",f2.getPrice())

Data using Python Lab 2022-2023

Department of IT Page 5

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Output:

Signature of the Faculty

Department of IT Page 6

Data Structures Using Python 2022-2023

Department of IT Page 7

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Exercise Programs:

Department of IT Page 8

Data Structures Using Python 2022-2023

Department of IT Page 9

Data Structures Using Python 2022-2023

Da- WEEK 2:

Develop an inheritance hierarchy based upon a Polygon class that has abstract methods area()

and perimeter(). Implement classes Triangle, Quadrilateral, Pentagon, that extend this base

class, with the obvious meanings for the area() and perimeter() methods. Write a simple

program that allows users to create polygons of the various types and input their geometric

dimensions, and the program then outputs their area and perimeter.

Program:

from abc import abstractmethod, ABCMeta import math

class Polygon(metaclass = ABCMeta):

def init (self, side_lengths = [1,1,1], num_sides = 3): self._side_lengths =
side_lengths

self._num_sizes = 3

@abstractmethod def

area(self):

pass

@abstractmethod

def perimeter(self): pass

def repr (self):

return (str(self._side_lengths))

class Triangle(Polygon):

def init (self, side_lengths): super().

 init (side_lengths, 3) self._perimeter =

self.perimeter() self._area = self.area()

def perimeter(self): return(sum(self._side_lengths))

def area(self):

#Area of Triangle

s = self._perimeter/2 product = s

for i in self._side_lengths: product*=(s-i)

return product**0.5

class Quadrilateral(Polygon):

def init (self, side_lengths): super().
 init (side_lengths, 4) self._perimeter =
self.perimeter()

self._area = self.area()

def perimeter(self): return(sum(self._side_lengths))

Department of IT Page 10

Data Structures Using Python 2022-2023

def area(self):

Area of an irregular Quadrilateral semiperimeter =

sum(self._side_lengths) / 2

return math.sqrt((semiperimeter - self._side_lengths[0]) * (semiperimeter -

self._side_lengths[1]) * (semiperimeter - self._side_lengths[2]) *

(semiperimeter - self._side_lengths[3]))

class Pentagon(Polygon):

def init (self, side_lengths): super().

 init (side_lengths, 5) self._perimeter =

self.perimeter() self._area = self.area()

def perimeter(self): return((self._side_lengths) * 5)

def area(self):

Area of a regular Pentagon a =

self._side_lengths

return (math.sqrt(5 * (5 + 2 * (math.sqrt(5)))) * a * a) / 4

#object of Triangle

t1 = Triangle([1,2,2]) print(t1.perimeter(), t1.area())

#object of Quadrilateral

q1 = Quadrilateral([1,1,1,1]) print(q1.perimeter(),

q1.area())

#object of Pentagon p1 =

Pentagon(1)

print(p1.perimeter(), p1.area())

Output:

Signature of the Faculty

Department of IT Page 11

Data Structures Using Python 2022-2023

 Data Structures using Python Lab 2022-2023

Department of IT Page 12

Data Structures Using Python 2022-2023

WEEK 3:

 using Python Lab 2022-2023
Develop an inheritance hierarchy based upon a Polygon class that has abstract methods area()

and perimeter(). Implement classes Triangle, Quadrilateral, Pentagon, that extend this base

class, with the obvious meanings for the area() and perimeter() methods. Write a simple

program that allows users to create polygons of the various types and input their geometric

dimensions, and the program then outputs their area and perimeter.

Program:

from abc import abstractmethod, ABCMeta import math

class Polygon(metaclass = ABCMeta):

def init (self, side_lengths = [1,1,1], num_sides = 3): self._side_lengths = side_lengths

self._num_sizes = 3

@abstractmethod def

area(self):

pass

@abstractmethod

def perimeter(self): pass

def repr (self):

return (str(self._side_lengths))

class Triangle(Polygon):

def init (self, side_lengths): super(). init (side_lengths, 3)

self._perimeter = self.perimeter() self._area =

self.area()

def perimeter(self): return(sum(self._side_lengths))

def area(self):

#Area of Triangle

s = self._perimeter/2 product = s

for i in self._side_lengths: product*=(s-i)

return product**0.5

class Quadrilateral(Polygon):

def init (self, side_lengths): super(). init (side_lengths, 4)

self._perimeter = self.perimeter() g Python Lab

 2022-2023
self._area = self.area()

def perimeter(self): return(sum(self._side_lengths))

def area(self):

Area of an irregular Quadrilateral semiperimeter =

sum(self._side_lengths) / 2

Department of IT Page 13

Data Structures Using Python 2022-2023

return math.sqrt((semiperimeter - self._side_lengths[0]) * (semiperimeter -

self._side_lengths[1]) * (semiperimeter - self._side_lengths[2]) *

(semiperimeter - self._side_lengths[3]))

class Pentagon(Polygon):

def init (self, side_lengths): super(). init (side_lengths, 5)

self._perimeter = self.perimeter() self._area =

self.area()

def perimeter(self): return((self._side_lengths) * 5)

def area(self):

Area of a regular Pentagon a =

self._side_lengths

return (math.sqrt(5 * (5 + 2 * (math.sqrt(5)))) * a * a) / 4

#object of Triangle

t1 = Triangle([1,2,2]) print(t1.perimeter(), t1.area())

#object of Quadrilateral

q1 = Quadrilateral([1,1,1,1]) print(q1.perimeter(), q1.area())

#object of Pentagon p1 =

Pentagon(1)

print(p1.perimeter(), p1.area())

Output:

Signature of the Faculty

Department of IT Page 14

Data Structures Using Python 2022-2023

 using Python Lab 2022-2023
Exercise Programs:

Department of IT Page 15

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Department of IT Page 16

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

WEEK 4:

a) Write a Python program that inputs a list of words, separated by whitespace, and outputs

how many times each word appears in the list.

Program:

words = input('Enter words:\n')

words=words.split(' ')

word_list = set(words)

word_count={}

for word in word_list:

if word != '':

word_count[word]=words.count(word)

print(word_count)

Output:

Signature of the Faculty

Department of IT Page 17

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023
Exercise Programs:

Department of IT Page 18

Data Structures Using Python 2022-2023

 Data Structures using Python Lab 2022-2023

b) Write a Python program to illustrate the following comprehensions:

a) List Comprehensions b) Dictionary Comprehensions

c) Set Comprehensions d) Generator Comprehensions

Comprehensions in Python

Comprehensions in Python provide us with a short and concise way to construct new sequences

(such as lists, set, dictionary etc.) using sequences which have been already defined. Python

supports the following 4 types of comprehensions:

a) List Comprehensions

b) Dictionary Comprehensions

c) Set Comprehensions

d) Generator Comprehensions

a) List Comprehensions:

List Comprehensions provide an elegant way to create new lists. The following is the basic

structure of a list comprehension:

output_list = [output_exp for var in input_list if (var satisfies this condition)]

Note that list comprehension may or may not contain an if condition. List comprehensions can
contain multiple for (nested list comprehensions).

Example: Suppose we want to create an output list which contains only the even numbers

which are present in the input list. Let’s see how to do this using for loop and list

comprehension and decide which method suits better.

Using Loop:
#Constructing output list WITHOUT using List comprehensions

 input_list = [1, 2, 3, 4, 4, 5, 6, 7, 7]

output_list = []

#Using loop for constructing output list

for var in input_list:

if var % 2 == 0: output_list.append(var)

print(“Output List using for loop:”, output_list)

Output:

Department of IT Page 19

Data Structures Using Python 2022-2023

 Data Structures using Python Lab 2022-2023

Using List Comprehension:
Using List comprehensions

for constructing output list

input_list = [1, 2, 3, 4, 4, 5, 6, 7, 7]

list_using_comp = [var for var in input_list if var % 2 == 0]

print("Output List using list comprehensions:",list_using_comp)

Output:

b) Dictionary Comprehensions:

Extending the idea of list comprehensions, we can also create a dictionary using dictionary

comprehensions. The basic structure of a dictionary comprehension looks like below.

output_dict = {key:value for (key, value) in iterable if (key, value satisfy this condition)}

Example 1: Suppose we want to create an output dictionary which contains only the odd

numbers that are present in the input list as keys and their cubes as values. Let’s see how to do

this using for loops and dictionary comprehension.

Using Loop:
input_list = [1, 2, 3, 4, 5, 6, 7] output_dict = {}

Using loop for constructing output dictionary for var in input_list:

if var % 2 != 0: output_dict[var] = var**3

print("Output Dictionary using for loop:",output_dict)

Output:

Department of IT Page 20

Data Structures Using Python 2022-2023

 Data Structures using Python Lab 2022-2023

Using Dictionary Comprehension:
Using Dictionary comprehensions

for constructing output dictionary input_list =

[1,2,3,4,5,6,7]

dict_using_comp = {var:var ** 3 for var in input_list if var % 2 != 0}

print("Output Dictionary using dictionary comprehensions:", dict_using_comp)

Output:

Example 2: Given two lists containing the names of states and their corresponding capitals,

construct a dictionary which maps the states with their respective capitals. Let’s see how to do

this using for loops and dictionary comprehension.

Using Loop:
state = ['Gujarat', 'Maharashtra', 'Rajasthan'] capital = ['Gandhinagar',

'Mumbai', 'Jaipur']

output_dict = {}

Using loop for constructing output dictionary

for (key, value) in zip(state, capital): output_dict[key] = value

print("Output Dictionary using for loop:", output_dict)

Output:

Using Dictionary Comprehension:
Using Dictionary comprehensions
for constructing output dictionary

state = ['Gujarat', 'Maharashtra', 'Rajasthan'] capital = ['Gandhinagar',

'Mumbai', 'Jaipur']

dict_using_comp = {key:value for (key, value) in zip(state, capital)}

print("Output Dictionary using dictionary comprehensions:",dict_using_comp)

Department of IT Page 21

Data Structures Using Python 2022-2023

 Data Structures using Python Lab 2022-2023

Output:

c) Set Comprehensions:

Set comprehensions are pretty similar to list comprehensions. The only difference between

them is that set comprehensions use curly brackets { }. Let’s look at the following example

to understand set comprehensions.

Example : Suppose we want to create an output set which contains only the even numbers that

are present in the input list. Note that set will discard all the duplicate values. Let’s see how we

can do this using for loops and set comprehension.

Using Loop:
input_list = [1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 7]

output_set = set()

Using loop for constructing output set

 for var in input_list:

if var % 2 == 0:

output_set.add(var)

print("Output Set using for loop:", output_set)

Output:

Using Set Comprehension:
Using Set comprehensions

for constructing output set

input_list = [1, 2, 3, 4, 4, 5, 6, 6, 6, 7, 7]

set_using_comp = {var for var in input_list if var % 2 == 0} print("Output Set using set

comprehensions:",set_using_comp)

Output:

Department of IT Page 22

Data Structures Using Python 2022-2023

Department of IT Page 23

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-

2023
d) Generator Comprehensions:

Generator Comprehensions are very similar to list comprehensions. One difference

between them is that generator comprehensions use circular brackets whereas list

comprehensions use square brackets. The major difference between them is that

generators don’t allocate memory for the whole list. Instead, they generate each

value one by one which is why they are memory efficient. Let’s look at the

following example to understand generator comprehension:

input_list = [1, 2, 3, 4, 4, 5, 6, 7, 7]

output_gen = (var for var in input_list if var % 2 == 0)

print("Output values using generator comprehensions:", end = ' ')

for var in output_gen:

print(var, end = ' ')

Output:

Signature of the Faculty

Department of IT Page 24

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Exercise Programs:

Department of IT Page 25

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Department of IT Page 26

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Department of IT Page 27

Data Structures Using Python 2022-2023

D

a Structures using Python Lab 2022-2023
WEEK 5:

Write a Python program to generate the combinations of n distinct objects taken from the

elements of a given list. Example: Original list: [1, 2, 3, 4, 5, 6, 7, 8, 9] Combinations of 2

distinct objects: [1, 2] [1, 3] [1, 4] [1, 5] [7, 8] [7, 9] [8, 9].

Program:

def combination(n, n_list): if n<=0:

yield [] return

for i in range(len(n_list)): c_num = n_list[i:i+1]

for a_num in combination(n-1, n_list[i+1:]): yield c_num + a_num

n_list = [1,2,3,4,5,6,7,8,9]

print("Original list:") print(n_list)
n = 2

result = combination(n, n_list) print("\nCombinations of",n,"distinct

objects:") for e in result:

print(e)

Output:

Signature of the Faculty

Department of IT Page 28

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023
Exercise Programs:

Department of IT Page 29

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Department of IT Page 30

Data Structures Using Python 2022-2023

D

a Structures using Python Lab 2022-2023
WEEK 6:

Write a program for Linear Search and Binary search

Linear Search Program:
def linearSearch(target, List): position = 0

global iterations iterations =
0

while position < len(List): iterations += 1

if target == List[position]: return position

position += 1

return -1

if name == ' main ':

List = [1, 2, 3, 4, 5, 6, 7, 8]

target = 3

answer = linearSearch(target, List) if answer != -1:

print('Target found at index :', answer, 'in', iterations,'iterations')

else:

print('Target not found in the list')

Output:

Department of IT Page 31

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Binary Search Program:

def binarySearch(target, List):

left = 0

right = len(List) - 1 global

iterations iterations = 0

while left <= right: iterations +=

1

mid = (left + right) // 2 if target ==

List[mid]:

return mid

elif target < List[mid]: right = mid - 1
else:

left = mid + 1 return -1

if name == ' main ':
List = [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14]
target = 12

answer = binarySearch(target, List) if(answer != -1):

print('Target',target,'found at position', answer, 'in', iterations,'iterations')

else:

print('Target not found')

Output:

Signature of the Faculty

Department of IT Page 32

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Exercise Programs:

Department of IT Page 33

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Department of IT Page 34

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

WEEK 7:

Write a program to implement Bubble Sort and Selection Sort

Bubble Sort Program:
def bubble_sort(alist):

for i in range(len(alist) - 1, 0, -1): no_swap = True
for j in range(0, i):

if alist[j + 1] < alist[j]:

alist[j], alist[j + 1] = alist[j + 1], alist[j] no_swap = False

if no_swap:

return

alist = input('Enter the list of numbers: ').split() alist = [int(x) for x in alist]

bubble_sort(alist) print('Sorted list: ', alist)

Output:

Selection Sort Program:

def selection_sort(alist):

for i in range(0, len(alist) - 1): smallest = i

for j in range(i + 1, len(alist)): if alist[j] <

alist[smallest]:
smallest = j

alist[i], alist[smallest] = alist[smallest], alist[i]

alist = input('Enter the list of numbers: ').split() alist = [int(x) for x in alist]

selection_sort(alist)
print('Sorted list: ', alist)

Output:

Signature of the Faculty

Department of IT Page 35

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Exercise Programs:

Department of IT Page 36

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Department of IT Page 37

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

WEEK 8:

Write a program to implement Merge sort and Quick sort

Merge Sort Program:

def merge_sort(alist, start, end):

'''Sorts the list from indexes start to end - 1 inclusive.''' if end - start > 1:

mid = (start + end)//2 merge_sort(alist, start, mid)

merge_sort(alist, mid, end) merge_list(alist, start, mid,

end)

def merge_list(alist, start, mid, end): left = alist[start:mid]

right = alist[mid:end] k = start

i = 0
j = 0

while (start + i < mid and mid + j < end): if (left[i] <= right[j]):

alist[k] = left[i] i = i + 1

else:

alist[k] = right[j] j = j + 1

k = k + 1

if start + i < mid: while k <

end:

alist[k] = left[i] i = i + 1
k = k + 1

else:

while k < end:

alist[k] = right[j] j = j + 1

k = k + 1

alist = input('Enter the list of numbers: ').split() alist = [int(x) for x in alist]

merge_sort(alist, 0, len(alist)) print('Sorted list: ', alist)

Output:

Department of IT Page 38

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Quick Sort Program:

def quicksort(alist, start, end):

'''Sorts the list from indexes start to end - 1 inclusive.''' if end - start > 1:

p = partition(alist, start, end) quicksort(alist, start, p)

quicksort(alist, p + 1, end)

def partition(alist, start, end): pivot = alist[start]

i = start + 1 j = end - 1

while True:

while (i <= j and alist[i] <= pivot): i = i + 1

while (i <= j and alist[j] >= pivot): j = j - 1

if i <= j:

alist[i], alist[j] = alist[j], alist[i] else:

alist[start], alist[j] = alist[j], alist[start] return j

alist = input('Enter the list of numbers: ').split() alist = [int(x) for x in alist]

quicksort(alist, 0, len(alist)) print('Sorted list: ', alist)

Output:

Signature of the Faculty

Department of IT Page 39

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Exercise Programs:

Department of IT Page 40

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Department of IT Page 41

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

WEEK 9:

Write a program to implement Stacks and Queues

Stack Program:

Custom stack implementation in Python class Stack:

Constructor to initialize the stack def init (self, size):

self.arr = [None] * size self.capacity =

size self.top = -1

Function to add an element `x` to the stack def push(self, x):

if self.isFull():

print("Stack Overflow!! Calling exit()…") exit(1)

print("Inserting", x, "into the stack…") self.top = self.top + 1

self.arr[self.top] = x

Function to pop a top element from the stack def pop(self):

check for stack underflow if

self.isEmpty():

print("Stack Underflow!! Calling exit()…") exit(1)

print("Removing", self.peek(), "from the stack")

#decrease stack size by 1 and (optionally) return the popped element

top = self.arr[self.top] self.top = self.top - 1

return top

Function to return the top element of the stack def peek(self):

if self.isEmpty(): exit(1)

return self.arr[self.top]

Function to return the size of the stack def size(self):

return self.top + 1

Function to check if the stack is empty or not def isEmpty(self):

return self.size() == 0

Function to check if the stack is full or not def isFull(self):
return self.size() == self.capacityPython Lab 2022-2023

if name == ' main ':

stack = Stack(3)

stack.push(1)

 stack.push(2)

stack.pop()

stack.pop()

stack.push(3)

Department of IT Page 42

Data Structures Using Python 2022-2023

print("Top element is", stack.peek())

print("The stack size is", stack.size())

stack.pop()

check if the stack is empty if stack.isEmpty():

print("The stack is empty") else:

print("The stack is not empty")

Output:

Department of IT Page 43

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Department of IT Page 44

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Queue Program:

Custom queue implementation in Python class Queue:

Initialize queue

def init (self, size):

self.q = [None] * size # list to store queue elements self.capacity =

size # maximum capacity of the queue self.front =

0 # front points to the front element in the queue self.rear = -1 # rear points to the last element in the

queue self.count = 0 # current size of the queue

Function to dequeue the front element def pop(self):

check for queue underflow if

self.isEmpty():

print("Queue Underflow!! Terminating process.") exit(1)

print("Removing element…", self.q[self.front])

self.front = (self.front + 1) % self.capacity self.count = self.count - 1

Function to add an element to the queue def append(self, value):

check for queue overflow if

self.isFull():

print("Overflow!! Terminating process.") exit(1)

print("Inserting element…", value)

self.rear = (self.rear + 1) % self.capacity self.q[self.rear] = value

self.count = self.count + 1

Function to return the front element of the queue def peek(self):

if self.isEmpty():

print("Queue UnderFlow!! Terminating process.") exit(1)

return self.q[self.front]

Function to return the size of the queue def size(self):

return self.count using Python Lab 2022-2023

Function to check if the queue is empty or not def isEmpty(self):
return self.size() == 0

Function to check if the queue is full or not def isFull(self):

return self.size() == self.capacity

if name == ' main ':

Department of IT Page 45

Data Structures Using Python 2022-2023

create a queue of capacity 5 q = Queue(5)

q.append(1)

q.append(2)

q.append(3)

print("The queue size is", q.size()) print("The front element is",

q.peek()) q.pop()
print("The front element is", q.peek())

q.pop()

q.pop()

if q.isEmpty():

print("The queue is empty") else:

print("The queue is not empty")

Output:

Department of IT Page 46

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Signature of the Faculty

Department of IT Page 47

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Exercise Programs:

Department of IT Page 48

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Department of IT Page 49

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

WEEK 10:

Write a program to implement Singly Linked List

Program:

import os
from typing import NewType

class _Node: '''
Creates a Node with two fields:
1. element (accesed using ._element)

2. link (accesed using ._link) '''

 slots = '_element', '_link'

def init (self, element, link): '''
Initialses _element and _link with element and link respectively.

'''

self._element = element self._link = link

class LinkedList: '''

Consists of member funtions to perform different operations on the linked list.
'''

def init (self): '''
Initialses head, tail and size with None, None and 0 respectively.

'''

self._head = None self._tail

= None self._size = 0

def len (self): '''

Returns length of linked list '''

return self._size

def isempty(self): '''

Returns True if linked list is empty, otherwise False. '''

return self._size == 0

def addLast(self, e): '''

Adds the passed element at the end of the linked list. '''

newest = _Node(e, None)

if self.isempty(): self._head = newest

else:

self._tail._link = newest

self._tail = newest self._size += 1

Department of IT Page 50

Data Structures Using Python 2022-2023

def addFirst(self, e): '''
Adds the passed element at the beginning of the linked list.

'''

newest = _Node(e, None)

if self.isempty(): self._head =

newest self._tail = newest
else:

newest._link = self._head self._head = newest

self._size += 1

def addAnywhere(self, e, index): '''
Adds the passed element at the passed index position of the linked list.

'''

newest = _Node(e, None)

i = index - 1 p =
self._head

if self.isempty(): self.addFirst(e)

else:

for i in range(i): p = p._link

newest._link = p._link p._link =

newest

print(f"Added Item at index {index}!\n\n") self._size += 1

def removeFirst(self): '''

Removes element from the beginning of the linked list. Returns the removed element.

'''
if self.isempty():

print("List is Empty. Cannot perform deletion operation.")

return

e = self._head._element self._head =

self._head._link self._size = self._size - 1

if self.isempty(): self._tail =

None

return e

def removeLast(self): '''

Removes element from the end of the linked list. Returns the removed element.

'''

if self.isempty():

print("List is Empty. Cannot perform deletion operation.")

return

p = self._head

if p._link == None: e =

p._element

self._head = None else:

while p._link._link != None: p = p._link

e = p._link._element p._link =

Department of IT Page 51

Data Structures Using Python 2022-2023

None self._tail = p

self._size = self._size - 1 return e

def removeAnywhere(self, index): '''
Removes element from the passed index position of the linked list. Returns the removed element.

'''

p = self._head i =

index - 1

if index == 0:

return self.removeFirst() elif index ==
self._size - 1:

return self.removeLast() else:

for x in range(i): p =

p._link

e = p._link._element p._link =

p._link._link

self._size -= 1 return e

def display(self):

'''Utility function to display the linked list. '''

if self.isempty() == 0: p =

self._head while p:

print(p._element, end='-->') p = p._link

print("NULL") else:

print("Empty")

def search(self, key): '''

Searches for the passed element in the linked list. Returns the index position if

found, else -1.
'''

p = self._head index

= 0 while p:

if p._element == key: return index

p = p._link index += 1

return -1

def options(): '''

Prints Menu for operations '''
options_list = ['Add Last', 'Add First', 'Add Anywhere',

'Remove First', 'Remove Last', 'Remove Anywhere', 'Display List', 'Print Size',

'Search', 'Exit']

print("MENU")

for i, option in enumerate(options_list): print(f'{i + 1}. {option}')

choice = int(input("Enter choice: ")) return choice

Department of IT Page 52

Data Structures Using Python 2022-2023

def switch_case(choice): '''

Switch Case for operations '''

if choice == 1:

elem = int(input("Enter Item: ")) L.addLast(elem)

print("Added Item at Last!\n\n")

elif choice == 2:

elem = int(input("Enter Item: ")) L.addFirst(elem)

print("Added Item at First!\n\n")

elif choice == 3:

elem = int(input("Enter Item: ")) index = int(input("Enter

Index: ")) L.addAnywhere(elem, index)

elif choice == 4:

print("Removed Element from First:", L.removeFirst())

elif choice == 5:

print("Removed Element from last:", L.removeLast())

elif choice == 6:

index = int(input("Enter Index: "))

print(f"Removed Item: {L.removeAnywhere(index)} !\n\n")

elif choice == 7: print("List: ", end='')

L.display()

print("\n")

elif choice == 8: print("Size:", len(L)) print("\n")

elif choice == 9:

key = int(input("Enter item to search: ")) if L.search(key) >= 0:
print(f"Item {key} found at index position

{L.search(key)}\n\n") else:

print("Item not in the list\n\n")

elif choice == 10: import sys

sys.exit()

if name == ' main ': L =

LinkedList()
while True:

choice = options() switch_case(choice)

Output:

Signature of the Faculty

Department of IT Page 53

Data Structures Using Python 2022-2023

Exercise Programs:

Department of IT Page 54

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Department of IT Page 55

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Department of IT Page 56

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Department of IT Page 57

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

WEEK 11:

Write a program to implement Doubly Linked list

Program:

import os

class _Node: '''

Creates a Node with three fields:
1. element (accessed using ._element)
2. link (accessed using ._link)

3. prev (accessed using ._prev) '''

 slots = '_element', '_link', '_prev'

def init (self, element, link, prev): '''
Initialses _element, _link and _prev with element, link and prev respectively.

'''

self._element = element self._link = link

self._prev = prev

class DoublyLL: '''

Consists of member funtions to perform different operations on the doubly linked

list.
'''

def init (self): '''
Initialises head, tail and size with None, None and 0 respectively.

'''

self._head = None self._tail

= None self._size = 0

def len (self): '''

Returns length of linked list '''

return self._size

def isempty(self): '''
Returns True if doubly linked list is empty, otherwise False.

'''

return self._size == 0

def addLast(self, e): '''

Adds the passed element at the end of the doubly linked list.

'''g Python Lab 2022-2023

newest = _Node(e, None, None) if

self.isempty():

self._head = newest else:

self._tail._link = newest newest._prev = self._tail

self._tail = newest self._size += 1

Department of IT Page 58

Data Structures Using Python 2022-2023

def addFirst(self, e): '''
Adds the passed element at the beginning of the doubly linked list.

'''

newest = _Node(e, None, None)

if self.isempty(): self._head =

newest self._tail = newest
else:

newest._link = self._head self._head._prev =

newest

self._head = newest
self._size += 1

def addAnywhere(self, e, index): '''

Adds the passed element at the passed index position of the doubly linked list.
'''
if index >= self._size:

print(f'Index value out of range, it should be between

0 - {self._size - 1}') elif self.isempty():

print("List was empty, item will be added at the end") self.addLast(e)

elif index == 0: self.addFirst(e)

elif index == self._size - 1: self.addLast(e)

else:

newest = _Node(e, None, None) p =
self._head

for _ in range(index - 1): p = p._link

newest._link = p._link

p._link._prev = newest

newest._prev = p p._link =

newest self._size += 1

def removeFirst(self): '''
Removes element from the beginning of the doubly linked list. Returns the removed element.

'''

if self.isempty():

print('List is already empty') return

e = self._head._element self._head =

self._head._link self._size -= 1

if self.isempty(): self._tail =

None
else:

self._head._prev = None return e

def removeLast(self): '''

Removes element from the end of the doubly linked list. Returns the removed element.

'''

if self.isempty():

print("List is already empty") return

e = self._tail._element self._tail =

self._tail._prev self._size -= 1

if self.isempty(): self._head = None

Department of IT Page 59

Data Structures Using Python 2022-2023

else:

self._tail._link = None return e

def removeAnywhere(self, index): '''

Removes element from the passed index position of the doubly linked list.

Returns the removed element. '''

if index >= self._size:

print(f'Index value out of range, it should be between

0 - {self._size - 1}') elif self.isempty():

print("List is empty") elif index == 0:

return self.removeFirst() elif index ==

self._size - 1:

return self.removeLast() else:
p = self._head

for _ in range(index - 1): p = p._link

e = p._link._element p._link =

p._link._link p._link._prev = p

self._size -= 1
return e

def display(self): '''

Utility function to display the doubly linked list. '''

if self.isempty(): print("List is Empty")

return

p = self._head print("NULL<-->",

end='') while p:

print(p._element, end="<-->") p = p._link

print("NULL")

print(f"\nHead : {self._head._element}, Tail :

{self._tail._element}")

def options(): '''

Prints Menu for operations '''
options_list = ['Add Last', 'Add First', 'Add Anywhere',

'Remove First', 'Remove Last', 'Remove Anywhere', 'Display List', 'Exit']

print("MENU")

for i, option in enumerate(options_list): print(f'{i + 1}. {option}')

choice = int(input("Enter choice: ")) return choice

def switch_case(choice): '''

Switch Case for operations '''

os.system('cls') if choice

== 1:

elem = int(input("Enter Item: ")) DL.addLast(elem)

print("Added Item at Last!\n\n")

Department of IT Page 60

Data Structures Using Python 2022-2023

elif choice == 2:

elem = int(input("Enter Item: ")) DL.addFirst(elem)

print("Added Item at First!\n\n")

elif choice == 3:

elem = int(input("Enter Item: ")) index =

int(input("Enter Index: ")) DL.addAnywhere(elem,

index)Data Structures using Python Lab 2022-202

elif choice == 4:

print("Removed Element from First:", DL.removeFirst())

elif choice == 5:

print("Removed Element from last:", DL.removeLast())

elif choice == 6:

index = int(input("Enter Index: "))

print(f"Removed Item: {DL.removeAnywhere(index)} !\n\n")

elif choice == 7: print("List:")

DL.display() print("\n")

elif choice == 8: import sys

sys.exit()

if name == ' main ': DL =
DoublyLL()

while True:

choice = options() switch_case(choice)

Output:

Signature of the Faculty

Department of IT Page 61

Data Structures Using Python 2022-2023

Data Structures using Python Lab 20221-2023

Exercise Programs:

Department of IT Page 62

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Department of IT Page 63

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Department of IT Page 64

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

WEEK 12:

Write a program to implement Binary Search Tree

Program:

Binary Search Tree class

binarySearchTree:

def init (self,val=None): self.val = val

self.left = None self.right

= None

def insert(self,val):

check if there is no root if (self.val ==

None):

self.val = val

check where to insert else:
check for duplicate then stop and return

if val == self.val: return 'no duplicates allowed in binary search tree'

check if value to be inserted < currentNode's value if (val < self.val):
check if there is a left node to currentNode if true then recurse

if(self.left): self.left.insert(val)
insert where left of currentNode when currentNode.left=None

else: self.left = binarySearchTree(val)

same steps as above here the condition we check is value to be # inserted > currentNode's value

else:

if(self.right): self.right.insert(val)

else: self.right = binarySearchTree(val)

def breadthFirstSearch(self): currentNode =

self bfs_list = []

queue = [] queue.insert(0,currentNode)

while(len(queue) > 0):

currentNode = queue.pop() bfs_list.append(currentNode.val)

if(currentNode.left):

queue.insert(0,currentNode.left) if(currentNode.right):

queue.insert(0,currentNode.right) return bfs_list

In order means first left child, then parent, at last right child

def depthFirstSearch_INorder(self): return

self.traverseInOrder([])
Pre order means first parent, then left child, at last right child

def depthFirstSearch_PREorder(self): return

self.traversePreOrder([])

Post order means first left child, then right child , at last parent

def depthFirstSearch_POSTorder(self): return

self.traversePostOrder([])

def traverseInOrder(self, lst): if (self.left):

self.left.traverseInOrder(lst) lst.append(self.val)

Department of IT Page 65

Data Structures Using Python 2022-2023

if (self.right): self.right.traverseInOrder(lst)

return lst

def traversePreOrder(self, lst): lst.append(self.val)

if (self.left): self.left.traversePreOrder(lst)

if (self.right): self.right.traversePreOrder(lst)

return lst

def traversePostOrder(self, lst): if (self.left):

self.left.traversePostOrder(lst) if (self.right):

self.right.traversePostOrder(lst) lst.append(self.val)
return lst

def findNodeAndItsParent(self,val, parent = None):

returning the node and its parent so we can delete the # node and reconstruct the

tree from its parent

if val == self.val: return self, parent if (val < self.val):
if (self.left):

return self.left.findNodeAndItsParent(val, self) else: return 'Not found'

else:

if (self.right):

return self.right.findNodeAndItsParent(val, self) else: return 'Not found'

deleteing a node means we have to rearrange some part of the tree

def delete(self,val):

check if the value we want to delete is in the tree
if(self.findNodeAndItsParent(val)=='Not found'): return 'Node is not in tree'

we get the node we want to delete and its parent-node # from

findNodeAndItsParent method
deleteing_node, parent_node = self.findNodeAndItsParent(val) # check how many children nodes does the node

we are going #to delete have by traversePreOrder from the deleteing_node nodes_effected =

deleteing_node.traversePreOrder([])Data Structures using Python Lab 2022-2023

if len(nodes_effected)==1 means, the node to be deleted doesn't # have any children

so we can just check from its parent node the position(left or # right) of node we want to delete

and point the position to 'None' i.e node is deleted

if (len(nodes_effected)==1):
if (parent_node.left.val == deleteing_node.val) : parent_node.left = None

else: parent_node.right = None return

'Succesfully deleted'
if len(nodes_effected) > 1 which means the node we are # going to delete has

'children',
so the tree must be rearranged from the deleteing_node

else:
if the node we want to delete doesn't have any parent # means the node to be

deleted is 'root' node

if (parent_node == None): nodes_effected.remove(deleteing_node.val)
make the 'root' nodee i.e self value,left,right to None, # this means we need to

implement a new tree again without # the deleted node

self.left = None self.right

= None self.val = None

Department of IT Page 66

Data Structures Using Python 2022-2023

#construction of new tree for node in nodes_effected:
self.insert(node)

return 'Succesfully deleted'

if the node we want to delete has a parent # traverse from

parent_node

nodes_effected = parent_node.traversePreOrder([])

deleting the node
if (parent_node.left == deleteing_node) : parent_node.left = None

else: parent_node.right = None

removeing the parent_node, deleteing_node and inserting # the nodes_effected in

the tree nodes_effected.remove(deleteing_node.val)

nodes_effected.remove(parent_node.val)

for node in nodes_effected: self.insert(node)

return 'Successfully deleted'

bst = binarySearchTree()

bst.insert(7) bst.insert(4)

bst.insert(9) bst.insert(0)

bst.insert(5) bst.insert(8)

bst.insert(13)a Structures using

Python Lab 2022-2023

IN order - useful in sorting the tree in ascending order print('IN order:

',bst.depthFirstSearch_INorder())

PRE order - useful in reconstructing a tree print('PRE order:' ,bst.depthFirstSearch_PREorder())

POST order - useful in finding the leaf nodes print('POST order:',

bst.depthFirstSearch_POSTorder())

print(bst.delete(5)) print(bst.delete(9))

print(bst.delete(7))

after deleting

print('IN order: ',bst.depthFirstSearch_INorder()) print('PRE order:' ,bst.depthFirstSearch_PREorder())

print('POST order:', bst.depthFirstSearch_POSTorder())

Department of IT Page 67

Data Structures Using Python 2022-2023

Output:

Signature of the Faculty

Department of IT Page 68

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

Exercise Programs:

Department of IT Page 69

Data Structures Using Python 2022-2023

Data Structures using Python Lab 2022-2023

