

1

DIGITAL NOTES

ON

SOFTWARE REQUIREMENTS AND ESTIMATION

 (R20A0561)

B.TECH III YEAR–II SEM

 (2023-2024)

 PREPARED BY

 G.LAVARAJU

 K. SHANTHI

DEPARTMENT OF INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution–UGC,Govt.of India)

(AffiliatedtoJNTUH, Hyderabad, Approved byAICTE-AccreditedbyNBA&NAAC–A’Grade-ISO9001:2015Certified)

Maisammaguda,Dhulapally(PostVia.Hakimpet),Secunderabad–500100,TelanganaState,India

2

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

B.TECH - III- YEAR II-SEM-IT L/T/P/C

 3/-/-/3

(R20A0561) SOFTWARE REQUIREMENTS AND ESTIMATION

Course Objectives:

1. Learn the importance and scope of software requirements.

2. Understand the concepts of Requirements elicitation & Requirements modeling

3. Gain knowledge of principles and practices of Requirements Management.

4. Understand the process and methods of software estimation and size estimation.

5. Learn about Effort, Schedule and Cost Estimation techniques.

UNIT-I

 Software Requirements: What and Why

 Essential Software requirement, good practices for requirements engineering, Improving requirements

 processes, Software requirements and risk management

UNIT- II

 Software Requirements Engineering

 Requirements elicitation, requirements analysis documentation, review, elicitation techniques,

 analysis models, Software quality attributes, risk reduction through prototyping,

 setting requirements priorities, verifying requirements quality, Software Requirements Modeling-

 Use Case Modeling, Analysis Models, Dataflow diagram, state transition diagram, class diagrams,

 Object analysis, Problem Frame

 UNIT-III

 Software Requirements Management

 Requirements management Principles and practices, Requirements attributes,

 Change Management Process, Requirements Traceability Matrix,

 Links in requirements chain Requirements Management Tools:

 Benefits of using a requirements management tool, commercial requirements management tool,

 Rational Requisite pro, Caliber–RM, implementing requirements management automation,

UNIT- IV

 Software Estimation

 Components of Software Estimations, Estimation methods, Problems associated with estimation,

 Key project factors that influence estimation. Size Estimation-Two views of sizing, Function Point Analysis,

 Mark II FPA, Full Function Points, LOC Estimation, Conversion between size measures,

3

UNIT -V

 Effort, Schedule and Cost Estimation

 What is Productivity? Estimation Factors, Approaches to Effort and Schedule Estimation, COCOMO II,

 Putnam Estimation Model, Algorithmic models, Cost Estimation
 Software Estimation Tools:

 Desirable features in software estimation tools, IFPUG,USC’sCOCOMO II,

 SLIM (Software Life Cycle Management) Tools

 TEXT BOOKS:

1. Software Requirements and Estimation by Rajesh Naik and Swapna Kishore, Tata Mc Graw Hill

 REFERENCES:

1. Software Requirements by Karl E. Weigers,Microsoft Press.

2. Managing Software Requirements, Dean Leffingwell & Don Widrig, Pearson Education,2003.

3. Estimating Software Costs, Second edition, Capers Jones, Tata McGraw-Hill, 2007.

4. Practical Software Estimation, M.A. Parthasarathy, Pearson Education, 2007.

Course Outcomes:

At the end of the course the students will be able to:

1. Develop an SRS for a business system.

2. Analyze and compare the various requirements elicitation techniques.

3. Construct the analysis models like DFD, UCD, ERD etc.

4. Apply Size Estimation methods to a specific data set.

5. Estimate the software in terms of size, cost, effort and schedule.

4

INDEX

UNIT

TOPIC

PAGENO

I

Introduction to Software Requirements:

6-7

What and Why

Essential Software requirement
8-9

Good practices for requirements engineering, Improving

requirements processes, Software requirements and risk

management
9-10

Improving requirements processes, 11-13

Software requirements and risk management
15-17

 II

Introduction Software Requirements Engineering 18-19

Requirements elicitation 19-21

Requirements analysis documentation,review
22-24

Elicitation techniques, 25-27

Analysis models 27-28

Software quality attributes,risk reduction Through prototyping

28-30

Setting requirements priorities,verifying Requirements quality

31-34

Software Requirements Modeling-use Case Modeling,

34-37

 Analysis Models,Data flow diagram, 37-40

 State transition diagram,class diagrams, 40-41

 Object analysis,Problem Frames 41-44

III

Software Requirements management
44-45

Requirements management principles and practices 45-46

Requirements attributes, 47-49

 Change Management Process 50-52

 Requirements TraceabilityMatrix Links in requirements chain 52-55

 Requirements Management Tools 55-57

Commercial requirements management tool,Rational

Requisitepro
57-58

Caliber- RM 59-60

Implementing requirements 60-62

5

IV

Management automation

Software Estimation 63-64

Components of Software Estimations 64-65

Estimation methods 65-66

Problems associated with estimation 66-67

Key project factors that influence estimation 67-69

Size Estimation- Two views of sixing 69-70

Function Point Analysis 70-72

Mark IIFPA 72-73

Full Function Points 73-75

LOC Estimation 75-78

Conversion

Between Size measures
 78-80

 V Effort, Schedule and Cost Estimation 81-82

 What is Productivity? Estimation Factors 83-84

 Approaches to Effort and Schedule Estimation 85-87

 COCOMO II 87-88

 Putnam Estimation Model 88-89

Algorithmic models 90-91

Cost Estimation 91-92

Software Estimation Tools 93-93

Desirable features in software estimation tools 94-95

IFPUG 95-96

USC’s II 96-96

SLIM (Software Life Cycle Management) Tools 96-98

6

UNIT-I

 Essential Software requirement:
 Many software problems arise from short comings in the ways that people gather, document,

 agree on, and modify the product’s requirements. The problem areas might include

 informal information gathering, implied functionality, erroneous or uncommunicated

 assumptions, inadequately defined requirements, and a casual change process.

 Requirements are a specification of what should be implemented. They are descriptions of

 how the system should behave, or of a system property or attribute. They may be a constraint

 on the development process of the system (Sommerville 1997).

 Requirements must be documented, they are the foundation for both the software

 development and the project management activities, all stakeholders must be committed to

 following an effective requirements process.

 Software requirements include three distinct levels—business requirements,user requirements,

 and functional requirements. In addition, every system has an assortment of

 nonfunctional requirements.

7

 Business requirements describe why the organization is implementing the system—

 the objectives the organization hopes to achieve.

 User requirements describe user goals or tasks that the users must be able to perform

with the product.

 Functional requirements specify the software functionality that the developers must

 build into the product to enable users to accomplish their tasks, thereby satisfying

the business requirements. Functional requirements are documented in a

 software requirements specification (SRS). System requirements describes

the toplevel requirements for a product that contains multiple subsystems—that is, a

system.

 A feature is a set of logically related functional requirements that provides a capability to

 the user and enables the satisfaction of a business objective.

 Advertisement

 Requirements specifications do NOT include design or implementation details

 (other than known constraints),

 project

 planning information, or testing information. These are project requirements but not

 product requirements;

 These sub disciplines encompass all the activities involved with gathering, evaluating,

 and documenting the requirements for a software or software-containing product.

 Requirements management entails “establishing and maintaining an agreement with the

 customer on the requirements for the

 software project”.

 It costs far more to correct a defect that’s found late in the project than to fix it shortly

 after its creation. Preventing requirements errors and catching them early therefore has

 a huge leveraging effect on reducing rework.

8

 When Bad Requirements Happen to Nice People

 Insufficient user involvement leads to late-breaking requirements that delay project

completion.

 Creeping User Requirements

 Ambiguous Requirements

 Gold Platting, when a developer adds functionality that wasn’t in the requirements

specification

 Minimal Specification

 Overlooked User Classes

 Inaccurate Planning

 Benefits from a High-Quality Requirements Process

 Fewer requirements defects

 Reduced development rework

 Fewer unnecessary features

 Lower enhancement costs

 Faster development

 Fewer miscommunications

 Reduced scope creep

 Reduced project chaos

 More accurate system-testing estimates

 Higher customer and team member satisfaction

 Requirement Statement Characteristics

 Complete

 Correct

 Feasible

 Necessary

 Prioritized

9

 Unambiguous

 Verifiable

 Requirements Specification Characteristics

 Complete

 Consistence

 Modifiable

 Traceable

 Good practices for requirements engineering

 Requirements engineering is the process of identifying, eliciting, analyzing,

 specifying, validating, and managing the needs and expectations of stakeholders for a

 software system.

Steps in Requirements Engineering Process

 The requirements engineering process is an iterative process that involves several steps,

 including:

 Requirements Elicitation

 This is the process of gathering information about the needs and expectations of

 stakeholders for the software system. This step involves interviews, surveys, focus groups,

 and other techniques to gather information from stakeholders.

 Requirements Analysis

 This step involves analyzing the information gathered in the requirements elicitation

 step to identify the high-level goals and objectives of the software system. It also

 involves identifying any constraints or limitations that may affect the development of the

 software system.

 Requirements Specification

 This step involves documenting the requirements identified in the analysis step in a

 clear, consistent, and unambiguous manner. This step also involves prioritizing and

 grouping the requirements into manageable chunks.

 Requirements Validation

 This step involves checking that the requirements are complete, consistent, and accurate.

 It also involves checking that the requirements are testable and that they meet the needs

 and expectations of stakeholders.

 Requirements Management

 This step involves managing the requirements throughout the software development life

 cycle, including tracking and controlling changes, and ensuring that the requirements

 are still valid and relevant.

10

 Requirement Engineering

 The Requirements Engineering process is a critical step in the software development life cycle

 as it helps to ensure that the software system being developed meets the needs and

 expectations of stakeholders, and that it is developed on time, within budget, and to the

 required quality.

 Requirement Engineering is the process of defining, documenting and maintaining

 the requirements. It is a process of gathering and defining service provided by the system.

 it is the disciplined application of proven principle , methods ,tools and notations to

 describe a proposed system’s intended behaviour and its associated constraints.

 Requirements development is further partitioned into four subdomains:

 Elicitation Activities to collect, discover, and invent requirements. Sometimes called

 gathering requirements, but elicitation is much more than a collection process.

 Analysis Activities to assess requirements for their details, value, interconnections,

feasibility, and other properties to reach a sufficiently precise

understanding to implement the requirements at low risk.

 Specification Activities to represent requirements knowledge in appropriate and persistent

forms so that they can be communicated to others.

 Validation Activities to assess the extent to which requirements will satisfy a stakeholder

 need

11

 Improving requirements processes:

 The ultimate objective of software process improvement is to reduce the cost of

 creating and maintaining software. There are several ways to accomplish this:

 Correcting problems encountered on previous or current projects.

 Anticipating and preventing problems that you might encounter on future projects.

 Adopting practices that are more efficient than the practices currently being used.

 Requirements lie at the heart of every well-run software project, supporting and enabling

 the other technical and management activities. Figure 1 illustrates some connections

 between requirements and other processes; the sections that follow briefly describe these

 process interfaces.

12

Relationship of requirements to other project processes

 Project planning

 Too often, project deadlines and staff allocations are determined before the requirements

 are well understood. It’s no wonder then that so many projects overrun their schedules and

 budgets. A more realistic approach is to make requirements the foundation of the project

 planning process. The planners select an appropriate software development life cycle and

 develop resource and schedule estimates based on the requirements. Thoughtful planning

 might indicate that it’s not possible to deliver the entire desired feature set within the

 available bounds of resources and time. The planning process can lead to reductions in the

 project scope or to selecting an incremental or iterative to deliver functionality in planned

 chunks.

 Project tracking and control.

 Project tracking includes monitoring the status of each requirement so that the project manager

 can see whether construction and verification are proceeding as intended. If not, management

 might need to request a scope reduction through the change control process. If you find early

 on that your team isn’t implementing requirements as quickly as planned, you’ll need to

 adjust the expectations to reflect the reality of your team’s productivity. Sometimes this

 means reallocating lower priority requirements from the backlog into later iterations than

 planned. It doesn’t matter whether you, your managers, or your customers like this or not:

 that’s just the way it is.

 Change control.

 After a set of requirements has been baselined, all subsequent changes should be made

 through a defined change control process. The change control process helps ensure that:

13

 The impact of a proposed change is understood.

 All people who are affected by a change are made aware of it.

 The appropriate people make informed decisions to accept changes.

 Resources and commitments are adjusted as needed.

 The requirements documentation is kept current and accurate.

 System testing.

 The testing and requirements processes are tightly coupled. User requirements and

 functional requirements are key inputs to system testing. If the expected behavior of the

 software under various conditions is not clearly specified, the testers will be hard-pressed to

 identify defects and to verify that all planned functionality has been implemented as

 intended. An excellent starting point is to start thinking about testing from the very

 beginning. Think of user acceptance tests for each requirement as you specify it. This is a

 great way to identify missing exceptions and ambiguous requirements.

 Construction.

 Although executable software is the ultimate deliverable of a software project,

 requirements form the foundation for the design and implementation work, and they tie together

 the various construction work products. Use design reviews to ensure that the architecture

 and detailed designs correctly address all of the requirements, both functional and

 nonfunctional. Unit testing can determine whether the code satisfies the design specifications

 and the pertinent requirements. Requirements tracing lets you document the specific

 software design and code elements that were derived from each requirement.

 User documentation.

 I once worked in an office area that also housed the technical writers who prepared

 user documentation for complex software-containing products. I asked one of the writers why

 they worked such long hours. “We’re at the end of the food chain,” she replied. “We

 have to respond to the final changes in user interface displays and the features that got

 dropped or added at the last minute.” The product’s requirements are an essential input to

 the user documentation process, so poorly written or late requirements will lead to

 documentation problems. The long-suffering people at the end of the requirements chain,

 such as technical writers and testers, are often enthusiastic supporters of improved

 requirements engineering practices.

 Software requirements and risk management:

 A risk is a probable problem- it might happen or it might not. There are main two

 characteristics of risk

 Uncertainty- the risk may or may not happen which means there are no 100%

 risks.

 loss – If the risk occurs in reality, undesirable results or losses will occur.

 Risk management is a sequence of steps that help a software team to understand, analyze,

 and manage uncertainty.

14

Risk Assessment

 The objective of risk assessment is to division the risks in the condition of their loss,

 causing potential. For risk assessment, first, every risk should be rated in two methods:

o The possibility of a risk coming true (denoted as r).

o The consequence of the issues relates to that risk (denoted as s).

 Based on these two methods, the priority of each risk can be estimated:

 p = r * s

 Where p is the priority with which the risk must be controlled, r is the probability of

 the risk becoming true, and s is the severity of loss caused due to the risk becoming true.

 If all identified risks are set up, then the most likely and damaging risks can be controlled

 first, and more comprehensive risk abatement methods can be designed for these risks.

1. Risk Identification: The project organizer needs to anticipate the risk in the

15

 project as early as possible so that the impact of risk can be reduced by making

 effective risk management planning.

 A project can be of use by a large variety of risk. To identify the significant risk, this might

 affect a project. It is necessary to categories into the different risk of classes.

 There are different types of risks which can affect a software project:

 Technology risks: Risks that assume from the software or hardware technologies

 that are used to develop the system.

 People risks: Risks that are connected with the person in the development team.

 Organizational risks: Risks that assume from the organizational environment

where the software is being developed.

 Tools risks: Risks that assume from the software tools and other support software

used to create the system.

 Requirement risks: Risks that assume from the changes to the customer

requirement

and the process of managing the requirements change.

 Estimation risks: Risks that assume from the management estimates of the

resources required to build the system

2. Risk Analysis: During the risk analysis process, you have to consider every

identified

risk and make a perception of the probability and seriousness of that risk.

 There is no simple way to do this. You have to rely on your perception and experience of

 previous projects and the problems that arise in them.

 It is not possible to make an exact, the numerical estimate of the probability and seriousness

 of each risk. Instead, you should authorize the risk to one of several bands:

1. The probability of the risk might be determined as very low (0-10%), low (10-25%),

moderate (25-50%), high (50-75%) or very high (+75%).

16

2. The effect of the risk might be determined as catastrophic (threaten the survival of the

 plan), serious (would cause significant delays), tolerable (delays are within

allowed contingency),

or insignificant.

 Risk Control

 It is the process of managing risks to achieve desired outcomes. After all, the identified

 risks of a plan are determined; the project must be made to include the most harmful and

 the most likely risks. Different risks need different containment methods. In fact, most risks

 need ingenuity on the part of the project manager in tackling the risk.

 There are three main methods to plan for risk management:

1. Avoid the risk: This may take several ways such as discussing with the client to

change the requirements to decrease the scope of the work, giving incentives to the

engineers to avoid the risk of human resources turnover, etc.

2. Transfer the risk: This method involves getting the risky element developed by a

third party, buying insurance cover, etc.

3. Risk reduction: This means planning method to include the loss due to risk. For

instance, if there is a risk that some key personnel might leave, new recruitment can be

 planned.

 Risk Leverage: To choose between the various methods of handling risk, the project plan

 must consider the amount of controlling the risk and the corresponding reduction of risk.

 For this, the risk leverage of the various risks can be estimated.

 Risk leverage is the variation in risk exposure divided by the amount of reducing the risk.

17

 Risk leverage = (risk exposure before reduction - risk exposure after reduction) /

 (cost of reduction)

1. Risk planning: The risk planning method considers each of the key risks that

 have been identified and develop ways to maintain these risks.

 For each of the risks, you have to think of the behavior that you may take to minimize the

 disruption to the plan if the issue identified in the risk occurs.

 You also should think about data that you might need to collect while monitoring the plan

 so that issues can be anticipated.

 Again, there is no easy process that can be followed for contingency planning. It rely

 on the judgment and experience of the project manager.

 2.Risk Monitoring: Risk monitoring is the method king that your assumption about the

 product, process, and business risks has not changed.

18

UNIT-II

 Software Requirements Engineering:

 What does “software requirements engineering” mean exactly? While it is an integral

 phase in software engineering, it is not well understood. Software requirements engineering

 refers to the first phase, before any of the actual designing, coding, testing, or maintenance

 takes place.

 The goal is to create an important early document and process in the software design. Often

 referred to as software requirements specification, or SRS, it determines what software is

 produced. It is basically the gathering of information of a customer's or potential

 customer/target audience's requirements for a system, before any actual design takes place.

 Software requirements specifications give feedback to the potential customer, break

 down any problems into smaller parts, and also provide input toward the actual design.

 The customer will have clear information with the help of charts, flow charts, diagrams and

 tables to be certain that the software will serve the intended purpose. It will also have the

 system requirements entailed in the document. Sometimes these are presented together

 with the customer requirements, and sometimes they are separate.

 Recording the information in an organized manner helps cement ideas and isolates any

 potential problems that need to be worked on, before they can interrupt the process or

 create any problems. The requirements will act as a “parent document” to later plans, such as

 design specifications or testing and verification. It includes functional requirements,

 performance requirements, user requirements, input requirements, design requirements,

 operational and principal requirements, as well as constraints. Only when the

19

 requirements are defined, can the actual designing begin.

 Requirements Elicitation:

 Requirements elicitation is the process of gathering and defining the requirements for a

 software system. The goal of requirements elicitation is to ensure that the software

 development process is based on a clear and comprehensive understanding of the customer’s

 needs and requirements. This article focuses on discussing Requirement Elicitation in detail.

 What is Requirement Elicitation?

 Requirements elicitation is perhaps the most difficult, most error-prone, and most

 communication-intensive software development.

1. It can be successful only through an effective customer-developer partnership. It is

 needed to know what the users require.

2. Requirements elicitation involves the identification, collection, analysis, and

 refinement of the requirements for a software system.

3. It is a critical part of the software development life cycle and is typically performed

at the beginning of the project.

4. Requirements elicitation involves stakeholders from different areas of the organization,

including business owners, end-users, and technical experts.

5. The output of the requirements elicitation process is a set of clear, concise, and well-

defined requirements that serve as the basis for the design and development of the

software system.

 Requirements Elicitation Activities

 Requirements elicitation includes the subsequent activities. A few of them are listed below:

1. Knowledge of the overall area where the systems are applied.

2. The details of the precise customer problem where the system is going to be applied

must be understood.

3. Interaction of system with external requirements.

4. Detailed investigation of user needs.

5. Define the constraints for system development.

20

 Requirements Analysis:

 Requirement analysis is significant and essential activity after elicitation. We analyze, refine,

 and scrutinize the gathered requirements to make consistent and unambiguous requirements.

 This activity reviews all requirements and may provide a graphical view of the entire system.

 After the completion of the analysis, it is expected that the understandability of the

 project may improve significantly. Here, we may also use the interaction with the

 customer to clarify points of confusion and to understand which requirements are more

 important than others.

 The various steps of requirement analysis are shown in fig:

 (i) Draw the context diagram: The context diagram is a simple model that defines the

 boundaries and interfaces of the proposed systems with the external world. It identifies the

 entities outside the proposed system that interact with the system. The context diagram of

 student result management system is given below:

21

 (ii) Development of a Prototype (optional): One effective way to find out what the

 customer wants is to construct a prototype, something that looks and preferably acts as part

 of the system they say they want.

 We can use their feedback to modify the prototype until the customer is satisfied

 continuously. Hence, the prototype helps the client to visualize the proposed system and

 increase the understanding of the requirements.When developers and users are not sure about

 some of the elements, a prototype may help both the parties to take a final decision.

 Some projects are developed for the general market. In such cases, the prototype should be

 shown to some representative sample of the population of potential purchasers. Even

 though a person who tries out a prototype may not buy the final system, but their feedback

 may allow us to make the product more attractive to others.

 The prototype should be built quickly and at a relatively low cost. Hence it will always

 have limitations and would not be acceptable in the final system. This is an optional activity.

 (iii) Model the requirements: This process usually consists of various graphical

 representations of the functions, data entities, external entities, and the relationships between

22

 them. The graphical view may help to find incorrect, inconsistent, missing, and

 superfluous requirements. Such models include the Data Flow diagram,

 Entity-Relationship diagram, Data Dictionaries, State-transition diagrams, etc.

 (iv) Finalise the requirements: After modeling the requirements, we will have

 a better understanding of the system behavior. The inconsistencies and ambiguities have

 been identified and corrected. The flow of data amongst various modules has been

 analyzed. Elicitation and analyze activities have provided better insight into the system.

 Now we finalize the analyzed requirements, and the next step is to document these

 requirements in a prescribed format.

 Review:

 What are requirement reviews?

 In short, Requirement review is the practice of scanning the software errors to make the

 industry user-friendly for all.

 Why is requirement review performed?

 Software in the current time is so Advanced that the act of requirement review holds

 greater importance in software development. The pursuance of requirement reviews helps to

 have a clear peek into the space of the software industry. The requirement reviews call

 attention to the only chance of finding quality reviews. So keeping in mind that there are

 problems and solutions to everything, a requirement review needs a good performance.

 Importance of performing requirement review :

 The performance of requirement review helps to radiate the precise and correct data

 to the consumers and users.

 It helps to have a quick tour of the Existing project to see whether or not it is going in

 the right direction.

 It helps to provide practical instructions and helps make decisions accordingly.

23

 Methods of performing requirement review :

1. Team consultation:

Suggestion matters also matter the way of performance. Teamwork goes hand in hand.

When there are people to offer suggestions, give appropriate guidelines, and supervise in a

team. There is no doubt about the project getting mismanaged. Reaching out

to the team/individual who has better insights into requirement review works the best way.

 2.Understanding the user’s requirement:

 Recognize the user’s needs and go all out in understanding them. Requirements keep on

 changing with time. So, When you have collected a list of things that a user requires in the

 current time. There you found a way to go about it. To get exact information on their

 requirements, Asking for feedback is Important.

2. Finding measures to software problem:

The occurrence of software problems is predictable. Errors and defects are bound to take

place in software development. In this context, Rather than making a fuss about the

Problems, developers should find solutions to satisfy the requirements. The requirement

 review not only meets the expectations of users but also the standard of the entire industry.

 Advantages of performing requirement reviews :

 Requirement reviews accord the developers a motive and structure to carry out the

project further.

 Group collaboration is the highlight. Group work saves time.

 Therefore, the developers can utilize the saved time in rechecking and reconfirming the

processing work to take it ahead.

 Disadvantages of performing requirement reviews :

 Lack of attention acts as a hindrance. When a team does not listen to each other in a

meeting room because of disagreement on matters, it emerges as a sign of

unprofessional and uncoordinated work.

 At times, the Review cannot be accurate. So, If you fail in assembling the precise

information, it can be an obstacle for the developers and the industry.

 Elicitation Techniques:

 What Is Requirements Elicitation?

 It is all about obtaining information from stakeholders. In other words, once the business

 analysis has communicated with stakeholders for understanding their requirements, it

 can be described as elicitation. It can also be described as a requirement gathering.

 Requirement elicitation can be done by communicating with stakeholders directly or by doing

24

 some research, experiments. The activities can be planned, unplanned, or both.

 Planned activities include workshops, experiments.

 Unplanned activities happen randomly. Prior notice is not required for such

activities. For example, you directly go to the client site and start discussing the

requirements however there was no specific agenda published in advance.

 Following tasks are the part of elicitation:

 Prepare for Elicitation: The purpose here is to understand the elicitation activity

scope, select the right techniques, and plan for appropriate resources.

 Conduct Elicitation: The purpose here is to explore and identify information

related to change.

 Confirm Elicitation Results: In this step, the information gathered in the elicitation

session is checked for accuracy.

 We hope, you have got an idea about requirement elicitation by now. Let’s move on

 to the requirements elicitation techniques.

 Requirements Elicitation Techniques

 1) Stakeholder Analysis

 Stakeholders can include team members, customers, any individual who is impacted by the

 project or it can be a supplier. Stakeholder analysis is done to identify the stakeholders who

 will be impacted by the system.

 2) Brainstorming

 This technique is used to generate new ideas and find a solution for a specific issue. The

 members included for brainstorming can be domain experts, subject matter experts. Multiple

 ideas and information give you a repository of knowledge and you can choose from different

 ideas.

 This session is generally conducted around the table discussion. All participants should be

 given an equal amount of time to express their ideas.

25

 3) Interview

 This is the most common technique used for requirement elicitation. Interview techniques

 should be used for building strong relationships between business analysts and stakeholders.

 In this technique, the interviewer directs the question to stakeholders to obtain information.

 One to one interview is the most commonly used technique.

 If the interviewer has a predefined set of questions then it’s called a structured interview.

 If the interviewer is not having any particular format or any specific questions then it’s

 called an unstructured interview.

 4) Document Analysis/Review

 This technique is used to gather business information by reviewing/examining the

 available materials that describe the business environment. This analysis is helpful to

 validate the implementation of current solutions and is also helpful in understanding the

 business need.

 Document analysis includes reviewing the business plans, technical documents, problem

 reports, existing requirement documents, etc. This is useful when the plan is to update an

 existing system. This technique is useful for migration projects.

 5) Focus Group

 By using a focus group, you can get information about a product, service from a group.

 The Focus group includes subject matter experts. The objective of this group is to discuss the

 topic and provide information. A moderator manages this session.

 The moderator should work with business analysts to analyze the results and provide findings

 to the stakeholders.

26

 6) Interface Analysis

 Interface analysis is used to review the system, people, and processes. This analysis is

 used to identify how the information is exchanged between the components. An Interface

 can be described as a connection between two components.

 This is described in the below image:

 7) Observation

 The main objective of the observation session is to understand the activity, task, tools

 used, and events performed by others.

 The plan for observation ensures that all stakeholders are aware of the purpose of the

 observation session, they agree on the expected outcomes, and that the session meets

 their expectations. You need to inform the participants that their performance is not judged.

 8) Prototyping

 Prototyping is used to identify missing or unspecified requirements. In this technique,

 frequent demos are given to the client by creating the prototypes so that client can get an

 idea of how the product will look like. Prototypes can be used to create a mock-up of sites,

 and describe the process using diagrams.

 9) Joint Application Development (JAD)/ Requirement Workshops

 This technique is more process-oriented and formal as compared to other techniques.

 These are structured meetings involving end-users, PMs, SMEs. This is used to define,

 clarify, and complete requirements.

27

 This technique can be divided into the following categories:

 Formal Workshops: These workshops are highly structured and are usually

conducted with the selected group of stakeholders. The main focus of this workshop

 is to define, create, refine, and reach closure on business requirements.

 Business Process Improvement Workshops: These are less formal as compared to

 the above one. Here, existing business processes are analyzed and process

 improvements are identified.

 10) Survey/Questionnaire

 For Survey/Questionnaire, a set of questions is given to stakeholders to quantify their

 thoughts. After collecting the responses from stakeholders, data is analyzed to identify the

 area of interest of stakeholders.

 Questions should be based on high priority risks. Questions should be direct and

 unambiguous. Once the survey is ready, notify the participants and remind them to participate.

 Analysis Model :

 Analysis Model is a technical representation of the system. It acts as a link between

 system description and design model. In Analysis Modelling, information, behavior, and

 functions of the system are defined and translated into the architecture, component, and

 interface level design in the design modeling.

 Objectives of Analysis Modelling:

 It must establish a way of creating software design.

 It must describe the requirements of the customer.

 It must define a set of requirements that can be validated, once the software is

built.

28

Elements of Analysis Model:

 DataDictionary:

It is a repository that consists of a description of all data objects used or produced by

the software. It stores the collection of data present in the software. It is a very crucial

element of the analysis model. It acts as a centralized repository and also helps in

modeling data objects defined duringsoftwarerequirements.

 EntityRelationshipDiagra(ERD):

It depicts the relationship between data objects and is used in conducting data

 modeling activities. The attributes of each object in the Entity-Relationship Diagram

can be described using Data object description. It provides the basis for activity

related to data design.

 DataFlowDiagram(DFD):

It depicts the functions that transform data flow and it also shows how data is

 transformed when moving from input to output. It provides the additional information

which is used during the analysis of the information domain and serves as a basis for

 the modeling of function. It also enables the engineer to develop models of

functional and information domainsat the same time.

 StateTransitionDiagram:

It shows various modes of behavior (states) of the system and also shows the

transitions from one state to another state in the system. It also provides the details

of how the system behaves due to the consequences of external events. It

represents the behavior of a system by presenting its states and the events that

cause the system to change state. It also describes what actions are taken due

to the occurrence of a particular

event.

29

 Process Specification:

It stores the description of each function present in the data flow diagram. It describes

 the input to a function, the algorithm that is applied for the transformation of input,

and the output that is produced. It also shows regulations and barriers imposed on the

performance characteristics that are applicable to the process and layout constraints

that could influence the way in which the process will be implemented.

 ControlSpecification:

It stores additional information about the control aspects of the software. It is

used to indicate how the software behaves when an event occurs and which

processes are invoked due to the occurrence of the event. It also provides the details

of the processes which are executed to manage

events.

 DataObjectDescription:

It stores and provides complete knowledge about a data object present and used

in the software. It also gives us the details of attributes of the data object present

in the Entity Relationship Diagram. Hence, it incorporates all the data objects and

 their attributes.

 Software Quality Attributes:

 Software Quality shows how good and reliable a product is. To convey an associate

 degree example, think about functionally correct software. It performs all functions as laid

 out in the SRS document. But, it has an associate degree virtually unusable program. Even

 though it should be functionally correct, we tend not to think about it to be a high-quality

 product.

 Another example is also that of a product that will have everything that the users need but

 has an associate degree virtually incomprehensible and not maintainable code. Therefore,

 the normal construct of quality as “fitness of purpose” for code merchandise isn’t satisfactory.

 Factors of Software Quality

 The modern read of high-quality associates with software many quality factors like the

 following:

1. Portability: A software is claimed to be transportable, if it may be simply created to

figure in several package environments, in several machines, with alternative code

merchandise, etc.

2. Usability: A software has smart usability if completely different classes of users (i.e.

knowledgeable and novice users) will simply invoke the functions of the merchandise.

3. Reusability: A software has smart reusability if completely different modules of the

merchandise will simply be reused to develop new merchandise.

https://www.geeksforgeeks.org/software-requirement-specification-srs-document-checklist/

30

4. Correctness: Software is correct if completely different needs as laid out in the SRS

document are properly enforced.

5. Maintainability: A software is reparable, if errors may be simply corrected as and

once they show up, new functions may be simply added to the merchandise, and

therefore

 the functionalities of the merchandise may be simply changed, etc

6. Reliability. Software is more reliable if it has fewer failures. Since software engineers

 do not deliberately plan for their software to fail, reliability depends on the number

 and type of mistakes they make.

7. Efficiency. The more efficient software is, the less it uses of CPU-time, memory, disk

space, network bandwidth, and other resources. This is important to customers in

order to reduce their costs of running the software, although with today’s powerful

computers, CPU time, memory and disk usage are less of a concern than in years gone

 Risk Reduction Through Proto typing:

 Prototyping in software development plays a significant role in reducing risks associated

 with software requirements. Here's how it helps in mitigating such risks:

1. Clarification of Requirements: Often, clients or stakeholders may not have a clear and

comprehensive understanding of their requirements at the project's outset. Prototyping

2. allows for the visualization of the proposed software, making it easier for stakeholders to

3. grasp functionalities, interfaces, and workflows. This helps in eliciting and refining

requirements more accurately, reducing misunderstandings and ambiguities.

4. Validation of Requirements: Prototyping enables stakeholders to interact with a tangible

representation of the software early in the development process. By demonstrating the

prototype, it becomes easier to validate whether the requirements align with the

5. stakeholders' expectations. Any discrepancies or misunderstandings can be identified and

rectified in the early stages, reducing the risk of developing a software product that does

 not meet user needs.

6. Gathering User Feedback: Prototypes can be used to gather feedback from end-users,

stakeholders, and potential customers. By involving these parties in the evaluation of the

prototype, developers can understand user preferences, identify missing or conflicting

requirements, and make necessary adjustments. This user involvement minimizes the risk

of building software that doesn't meet user expectations.

7. Reducing Change Requests: Prototyping allows for early exploration of different design

 and functionality options. Through iterative development and feedback cycles, changes

 can be incorporated into the prototype, reducing the likelihood of major change requests

later in the development process. This helps in managing scope creep and controlling

https://www.geeksforgeeks.org/introduction-to-bandwidth/

31

additional costs or delays caused by late-stage requirement modifications.

8. Managing Uncertainty: Software projects often face uncertainty due to evolving or

unclear requirements. Prototyping provides a means to manage this uncertainty by allowing

flexibility in accommodating changes. As requirements become clearer through the

 prototyping iterations, the risk associated with changing or evolving requirements

diminishes.

9. Enhancing Communication: Prototypes serve as a communication tool between

stakeholders, including developers, designers, clients, and end-users. They facilitate

discussions, ensuring everyone has a shared understanding of the requirements and

functionalities. Improved communication reduces the risk of misunderstandings or

misinterpretations that could impact the final product.

 In summary, prototyping in software development contributes significantly to requirement

 risk reduction by clarifying and validating requirements, gathering early feedback,

 managing uncertainty, reducing change requests, and enhancing communication

 among stakeholders. This approach helps in creating software that better aligns with user

 needs, reducing the likelihood of costly rework and improving the overall success of the

 project.

 Setting Requirements Priorities:

 Most stakeholders view all requirements as equally important. They don’t always understand

 that development teams are working with limited time and resources. This can cause

 friction between the different parties. By performing requirements prioritization techniques,

 you can ease

 that tension and help stakeholders understand the limitations of development teams.

 Developers and stakeholders should collaborate when creating requirements prioritization

 strategies. This allows you to explore various alternatives when conflict arises.

 Why is requirements prioritization important?

 In an ideal world, dev teams will have all the resources, time, and money they want to put into

32

 every project. Unfortunately, the reality is that teams often battle against limitations that force

 them to compromise on various aspects of development.

 Without prioritization, teams have much less wiggle room when it comes to changing

 requirements. They need to know how to prioritize requirements to avoid missing deadlines,

 going over budget, or dropping requirements altogether. You can deliver a good product

 that satisfies customers and performs below business expectations with prioritization.

 Requirements prioritization techniques allow development teams to make compromises that

 don’t detract from the product’s value. It helps them better manage resources and requirements

 and prepare for unknowns. Say your requirements prioritization shows that some requirements

 are unfeasible given the allocated resources. The development team can collaborate with

 the stakeholders to identify the best way to proceed with the project.

 The more you go through requirement prioritization, the better your stakeholders will

 understand the limitations the dev team faces. This will help to make collaboration much

 more streamlined and manage expectations for the future.

 What are 3 ways to prioritize requirements?

 With so many prioritization techniques available, it can be difficult to know how to

 prioritize requirements. Thankfully, you can use some familiar prioritization frameworks

 that you’re likely familiar with already.

 MoSCoW method

 MoSCoW prioritization is a great tool for establishing a hierarchy of priorities during a project.

 It solves one of the biggest issues of less robust prioritization tools by laying out specific

 definitions for each priority level.

 MoSCoW is an acronym that gives us four prioritization categories: Must-have,

https://airfocus.com/blog/how-to-master-prioritization/
https://airfocus.com/glossary/what-is-product-value/
https://airfocus.com/glossary/what-is-moscow-prioritization/

33

 Should- have, Could-have, and Won’t-have.

 This is a great choice for requirements prioritization because it clearly labels each requirement

 .This helps stakeholders quickly understand how requirement priorities are affected by

 resource limitations.

 ICE scoring

 ICE scoring prioritizes requirements using three set measurements: Impact, Confidence, and

 Ease. This requirement prioritization technique differs from weighted prioritization methods

 by using just these three parameters and assigning each a relative score.

 ICE is one of the quicker and easier requirement prioritization strategies, though it does suffer

 from being quite subjective.

 Kano analysis

 The Kano Model looks at which features will be most important to customer satisfaction levels.

 It looks purely from an outside perspective to identify which requirements will truly add value

 for the user.

 This is highly useful for requirements prioritization, as it helps manage limited resources

 without detracting from the user experience.

 What is the agile method for prioritizing requirements?

 As with anything in the agile world, there are several different methods for prioritizing

 requirements in an agile setting.

 Priority poker

 There’s no reason that planning and prioritization need to be dull. Priority poker allows teams

 to prioritize requirements and have a little fun in the process. It’s also one of the best

 requirements prioritization techniques for eliminating subconscious bias like the HiPPO effect.

https://airfocus.com/glossary/what-is-the-ice-scoring-model/
https://airfocus.com/templates/ice-prioritization/
https://airfocus.com/glossary/what-is-the-kano-model/
https://airfocus.com/glossary/what-is-priority-poker/
https://airfocus.com/resources/guides/prioritization/#3/:~:text=Loudest%20or%20highest%2Dpaid%20person%20gut%20feeling%20dictating%20priorities

34

 Cost of Delay (CoD)

 Cost of Delay is a crucial metric that emphasizes development time for each requirement.

 It places a monetary value on any delays and tasks the team with prioritizing requirements

 with time frames in mind.

 Opportunity Scoring

 Opportunity scoring is another requirements prioritization technique that focuses on the user.

 The results of opportunity scoring allow teams to dedicate more time and resources to

 requirements that customers really need.

 Verifying RequirementsQuality:

 The main goals of requirements verification are to ensure completeness, correctness,

 and consistency of the system requirements.

 This phase can uncover missing requirements, ambiguous, or invalid ones, reducing rework

 and cost overruns. It’s far more effective to resolve a little problem upfront than it is in the

 future when hundreds of lines of code or a completely manufactured complex product

 must be tracked down and fixed.

 Requirements verification is necessary because it helps ensure that the system to be built will

 meet its objectives and functions as intended. Incomplete, incorrect, or inconsistent

 requirements can lead to problems during system development, testing, and deployment.

 Techniques Used in Requirements Verification:

 There are several techniques that can be used for requirements verification to ensure

 that the requirements meet the necessary quality criteria. Some of the commonly used

https://airfocus.com/glossary/what-is-cost-of-delay/
https://airfocus.com/glossary/what-is-opportunity-scoring/

35

 techniques include:

1. Inspection: This technique involves a systematic review of the requirements by a team of

experts to identify any errors, omissions, or inconsistencies. It can be conducted manually

or using automated tools.

2. Testing: Testing involves designing and executing tests to verify that the requirements

meet the desired functionality and quality criteria. It can be conducted at different levels,

such as unit testing, integration testing, and acceptance testing.

3. Walkthrough: In a walkthrough, the requirements are reviewed by a group of

stakeholders who provide feedback and identify any issues or concerns. It is typically less

formal than an inspection.

4. Prototyping: Prototyping involves creating a simplified version of the software to validate

 the requirements and identify any issues or limitations. It can help stakeholders visualize

and understand the system better.

5. Simulation: Simulation involves creating a model of the system and testing its behaviour

 under different scenarios. It can help identify issues with the requirements that may not

be apparent in static documentation.

6. Traceability Analysis: Traceability analysis involves tracking the relationships between

 the requirements and other artifacts, such as design documents and test cases, to ensure

that the requirements are complete, consistent, and verifiable.

36

 Software Requirements Modeling:

 Major styles of requirement modeling currently in practice are as follows – scenario-based

 model, data

 or flow model, class model, and behavioral model.

 Scenario-based model - This model is prepared from an end-user perspective. Techniques

 such as use

 cases, user stories, and activity diagrams would be a major contributor to this model.

 Flow-based model – When a requirement deals with a specific data flow that affects

 various modules of a

 System data-based modeling is the best method that can accommodate the system flow and

 the data flow

 within the system. This could be a tedious model but it is a helpful model to do impact analysis.

 Data Flow diagrams, activity diagrams are types of this model.

 Class-based model – Class diagrams are the most popular UML diagrams used for the

 construction of software applications. They are a graphical representation of the static view

 of the system and represent different aspects of the application. This involves

 identifying the classes such as the event occurrences, roles, places, structures, and other

 artifacts involved.

37

 Behavioral model – This modeling happens from a user perspective. Mainly state

 diagram and sequence diagram builds up this model.

 In short, the 5 common types that make up a requirement model are use case, user stories,

 activity diagram, flow diagram, state diagram, and sequence diagram.

 The different modeling technique is individually understandable. However, it is highly

 important to know how to use these models and when to use them. In some cases, certain

 models may be more appropriate than the others may, whereas in other cases, almost all the

 models may be applicable with a difference in weightage.

 There are 5 major aspects to consider when it comes to deciding on the usage of

 requirement models.

 The five aspects are:

 Nature of the requirement

 Type of requirement

 Impact of the requirement in the system

 Users related to the requirement

 The phase of the process that would deal with the requirement

 Nature of the requirement – This aspect deals with identifying if a given requirement is an

 enhancement requirement or a foundation requirement for a new system or a process

 Type of requirement – Three major types of requirements that could be considered for

 deciding the usage of requirements models are a functional requirement, performance

 requirement, and technical

38

 requirement. The functional requirement deals with the operation processes, where the

 change of state of various parameters would result in the required end-point.

 Performance requirements are add-ons of an existing process or for a functional

 requirement, to enhance the process efficiency. Technical requirements can either be

 allocated requirement that automatically flows from a functional or performance requirement

 to an element of the system or is a derived requirement that deals with the

 interfaces between the various stages within a system.

 Impact of the requirement in the system – An impact of a requirement in a system

 could be considered in three different fashions – minimum, medium, and maximum. A

 minimum impact could be defined as an

 impact that changes the user experience or the system parameter for a specific instance.

 An impact would be considered medium if the requirement is indirectly affecting the other

 related process or system

 parameters. A maximum impact would be considered where the majority of the parameters

 of the system or the related processes appear transformed.

 Users related to the requirement – Three major types of users would be business users,

 functional users, and technical users. Business users would have the objective of

 knowing the business value proposition that would be obtained if the endpoint of the

 requirement is reached. Functional users would be oriented towards understanding the

39

 changes or the impact that could be expected in the direct and indirect process related

 to the requirement where the technical concern is not a major aspect. Technical users

 would be aligned towards the development estimation of effort and risk for the given

 requirement initially and later during the development, they would need the detail related to

 the nuances to achieve the required endpoint.

 Phases of a process – The common phases of a process would be the following-

 Initial understanding phase Work estimation & Overall impact analyzing phase, Work

 initiation, Work in progress, Work in last phase, Quality analysis, End-user

 acceptance, Delivery.The judiciousness of choosing the modeling technique depends on

 choosing the priority of having those five elements of modeling based on the variation in

 the five aspects of a requirement discussed above.or each of the modeling types, here’s

 how the above five aspects are considered:

 Use Case: This technique would be suitable when the requirement is functional in-nature.

 Use cases depic the high-level functionalities that one would want the system to perform.

 This technique would be useful to get a foundation level understanding or a holistic style

 of the requirement. More than a business user

 this would be handy for a functional or technical user. This would play a major role in

 defining the scope of work, risk, and effort estimation for a given requirement.

 Activity diagram – This technique deals with the overall business process or system

40

 process – which is suitable for all types of users in line with the nature of requirement

 being functional and the type being foundational. This technique can aid in impact analysis

 by just defining the system or process scope but this technique can’t be of assistance for

 detailed impact analysis.

 Flow Diagram– This technique is helpful for a specific functional segment of a system or a

 process. So enhancement requirements of any nature would fit in this technique that would

 be easy for functional and technical users. After having defined the scope of the system

 or the process, this flow chart will guide in analyzing the impact in detail. On this front,

 technical and functional users are the ones who

 use the flow diagram for their work more than the business users. As a process, the

 requirement represented as a flow diagram would be highly utilized until the last phase

 of the development.

 State diagram – This technique is more specific compared to a flow chart. Regarding the

 objects of a system or the process, the various states of an object that happens during a

 process flow are depicted only in a state diagram. In line with this, only technical and

 functional users would find this useful especially during the development phase more

 than the initial and final phases. This element can’t be a direct contributor to the impact

 analysis parameter.

 Sequence diagram – This is more relevant for a technical user, especially when many

 processes happen in parallel. It provides a visual representation of how processes or objects

41

 interact during a scenario.

 This technique adds more value for technical users, as this will help in drilling down to detailed

 technical specifications. On the other side, this is the most preferred methodology for

 requirement reference majorly during the development phase. Here’s a summary of the

 above-stated aspects in the form of ‘Requirements modeling techniques’ vs

 ‘Usage aspects’ matrix –

Requirement

modeling

techniques

Nature of requirement Requirement impact

User Stories All category Doesn’t reflect any impact

Use case
Preferred for functional

requirement

Reflects the scope/outline for the

impact sections

Activity diagram
Preferred for functional

requirement

Reflects the scope/outline for the

impact sections

Flow diagram
Preferred for functional &

technical requirement

Preferred for high impact

requirement

42

State diagram

Preferred for functional &

technical

requirement

All levels of impact would be

reflected. Mandatory for high

impact requirements

Sequence diagram

Preferred for functional &

technical

requirement

All levels of impact would be

reflected. Mandatory for high

impact requirements

 ObjectAnalysis:

 Object-Oriented Analysis and Design (OOAD) is a software engineering methodology

 that involves using object-oriented concepts to design and implement software systems.

 OOAD involves a number of techniques and practices, including object-oriented

 programming, design patterns, UML diagrams, and use cases. Here are some important

 aspects of OOAD:

1. Object-Oriented Programming: Object-oriented programming involves modeling

real-world objects as software objects, with properties and methods that represent the

behavior of those objects. OOAD uses this approach to design and implement software

systems.

2. Design Patterns: Design patterns are reusable solutions to common problems in

 software design. OOAD uses design patterns to help developers create more

 maintainable and efficient software systems.

3. UML Diagrams: Unified Modeling Language (UML) is a standardized notation for

creating diagrams that represent different aspects of a software system. OOAD uses

UML diagrams to represent the different components and interactions of a software

system.

4. Use Cases: Use cases are a way of describing the different ways in which users interact

with a software system. OOAD uses use cases to help developers understand the

requirements of a system and to design software systems that meet those requirements.

43

 Object-Oriented Analysis (OOA) is the first technical activity performed as part of

 object-oriented software engineering. OOA introduces new concepts to investigate a problem.

 It is based on a set of basic principles, which are as follows-

1. The information domain is modeled.

2. Behavior is represented.

3. The function is described.

4. Data, functional, and behavioral models are divided to uncover greater detail.

5. Early models represent the essence of the problem, while later ones

6. provide implementation details.

 the above notes principles form the foundation for the OOA approach.

 Problem Frames:

 Problem Frames is a methodology used in software engineering for understanding and

 solving complex problems. It was developed by Michael Jackson, not the musician but a

 British computer scientist, in the 1990s.

 The main idea behind Problem Frames is to analyze problems in a systematic way by breaking

 them down into smaller, manageable components called "frames." Each frame represents a

 particular aspect or viewpoint of the problem, allowing engineers to focus on specific

 areas and understand the problem from different perspectives.

 Some key components and concepts within Problem Frames include:

1. Context: Understanding the environment or context in which the problem exists.

This involves identifying stakeholders, constraints, and relevant external factors.

2. Goals: Defining the objectives or goals that need to be achieved. This step involves

understanding what success looks like for the system or project being developed.

3. Decomposition: Breaking down the problem into smaller, more manageable frames. Each

frame focuses on a specific aspect of the problem, making it easier to analyze and solve.

4. Frames: These are the individual components that represent different aspects or

perspectives of the problem. Each frame provides a structured way of looking at a particular

issue within the broader problem.

5. Relations between Frames: Understanding how the different frames interact with each

other and influence one another is crucial. Identifying dependencies and relationships

helps in developing a holistic solution.

6. Solution Context: Considering the context in which the solution will exist. This involves

understanding the implications, constraints, and requirements of implementing the solution.

44

 Problem Frames provide a structured approach to problem-solving in software engineering,

 helping teams to systematically analyze complex problems and design effective

 solutions. The methodology emphasizes breaking down the problem into manageable parts,

 ensuring a comprehensive understanding before attempting to solve it.

45

Unit-III

 Software Requirement Management
 The requirement management process is the process of managing changing requirements

 during the requirements engineering process and system development where the

 new requirements emerge as a system is being developed and after it has gone into use.

 During this process, one must keep track of individual requirements and maintain links

 between dependent requirements so that one can assess the impact of requirements changes

 along with establishing a formal process for making change proposals and linking these to

 system requirements

 It belongs to one of the phases of the Requirement Engineering Process.

 Now during this phase, there needs to be a certain level of requirement management details

 which will help to make Requirement Management decisions. To accumulate the

 details for taking that decision one can follow the following processes:

 Requirements Identification: In this, the requirement must be uniquely identified so

that it can be cross-referenced with other requirements. Here, one can learn what is

important and required and what is not and it also helps to establish a foundation for

product vision, scope, cost, and schedule.

 Requirement change management process: This is the set of activities that assess the

impact and cost of changes.\

46

 Traceability policies: The main purpose of this policy is to keep a record of the defined

relationships between each requirement and the system designs which will help to

 minimize the risks.

 Tool support: Tools like MS Excel, spreadsheets,or a simple database system can be used.

 Advantages of the Requirement Management Process:

 1. Recognizing the need for change in the requirements.

 2.Improved team communication.

 3.It helps to minimize errors at the early stage of the development cycle.

 Requirement Engineering Principals:

1. Value Orientation: The act of writing requirements based on assumptions

 has no value, neither for the users nor for your business. The requirements outcome

 need to add value for the users. Remember, users use products to do their job

 better. The requirements should be something that adds value to the outcome

and the benefit of using your product in end-users life.

2. Stakeholders: Using Requirement Engineering helps you do your best to

 satisfy the stakeholders’ needs and desires. When we speak about developing a

digital product, many product people think they should just deliver a product

based on end-user needs.

3. Critical: Most important ones. If you don’t consider engaging them, you are

going to develop a useless product, and they can make the product fail.

4. Major: These are the ones that have an important role in product success.

They have a great impact on a product’s success, but by not considering

them, the product won’t fail.

5. Minor: Not considering these stakeholders will not have an impact or have

a minor impact on product success.

47

 Requirement Engineering Practices:

1. Eliciting requirements: collaborate & focus on value:

The gathering of requirements should be a highly collaborative effort. Therefore,

 even before you start thinking about the product itself, you’ll have to map all the

relevant stakeholders who have interest in and influence over the project.

2. Requirements quality translates to software quality:

When defining requirements, focus on delivering value, and make sure that everyone

involved shares an understanding of ‘value’ in your project. This, in turn, helps avoid

scope creep: you’ll want to make sure that the scope of the project is clearly

defined and documented so that it doesn’t spiral out of control.

3. Prioritize requirements and set expectations:

Requirements definition should be an iterative process, which greatly helps the next step.

Set up a priority list of your requirements based on their value, and make sure all

stakeholders agree with the final list. Having this prioritized list of requirements

provides clarity, making it easier for your team to set realistic expectations

with the customer/end user on what is to be delivered.

4. Trace requirements through the lifecycle:

Follow the progress of requirements along the development lifecycle. Tie requirements

 in with tasks, source code, risks, and test cases so that you have airtight traceability from

end to end.

5. Use a dedicated tool for managing requirements:

 No high-performing engineering team relies on inadequate tooling, and more and more

 companies consider updating their toolchains a strategic step that will increase their

48

 profitability.

 Requirements Attributes:

 Requirements Attributes: A requirement attribute is a descriptive property associated

 with a requirement. Requirement attributes are either user-defined attributes (defined by the

 project owner) or system attributes To avoid causing errors in requirement records or in

 integrations with other products, do not modify system attributes.

 Examples of Attributes:

 Priority - Statement of relative importance of the requirement to stakeholders

 (high, medium, low).

 Assigned to - Who in the organization is responsible for making sure the requirement

 is met (person's name or organizational name).

 Target Iteration – The iteration in which the requirement is planned to be implemented

 (number or text).

 Estimation of Size - Gives you a high-level estimate for the effort required to implement and

 verify the requirement, typically measured using a neutral unit such as points.

 Effort Remaining – An estimate of the remaining effort to implement and verify the

 requirement (hours).

 Completion Status – The progress of implementing a requirement. This may be captured

 as an enumerated list (Complete, Partially Completed, Not Started) or can be inferred

 from the Effort Remaining attribute.

49

 Source - Person, document or other origin of a given requirement. This is useful for

 determining whom to call for questions or for grouping requirements according to the

 person making the demands.

 Comments - Reviewer's or writer's comments on a requirement.

 Difficulty - An indication of the level of effort needed or how hard it will be to

 implement the requirement (high, medium, low).

 Risk - Confidence measure on the likelihood of meeting (or not meeting) a requirement.

 Could be high, medium, low or the integers one through ten.

 Test ID - Identification of a specific test or other method of verification.

 Change Mangement Process:

 What is change management?

 Change management is the process that businesses and organizations use to implement

 changes through building and delivering effective change strategies. It includes reviewing

 reasons for change, implementing changes, and helping people adapt to these changes. This

 could be staff structure, introducing new technology, reducing costs, increasing profits,

 or a combination of these to reach a desired goal.

 What is the change management process?

 The change management process refers to the stages involved in any change management

 strategy and its implementation. implementing new technology into a business will not just

 involve the technology change itself. It may affect staffing levels, require structural

 changes, new recruitment drives, or even redundancies.

 The change management process breaks down into the following five steps:

50

1. Prepare for change: It’s an important part of the process, ensuring the change

 manager supports staff through any concerns and manages resistance by

communicating the process and getting buy-in from employees.

2. Create a vision for change: This stage is about creating the strategy to

 reach transformation once stakeholders have agreed for a change. Those

involved set goals, delegating key performance indicators (KPIs) and tasks to the

 relevant parties.

3. Implement changes: This step puts the change plans into action. Excellent

management and communication are key here, and change managers need to

make sure everyone is doing their duties and that employees are still

happy and empowered, to ensure everything runs smoothly.

4. Review and analyze: The final stage of the process is important to make

sure that changes continue and are beneficial. Change managers review what

worked and what didn’t work to make adjustments accordingly.

 Types of change management

 1.Anticipatory

 Anticipatory change is when an organization makes changes in response to something

 expected to happen. For example, environmental concerns or new trends the organization

 wants to capitalize on can cause stakeholders to anticipate the need for change.

3. Reactive

Reactive change happens in response to an event that impacts the business. This could

be new industry regulations or changes to deal with a pandemic like Covid-19.

 3. Incremental

 Incremental change is a series of changes, usually at a micro level, that adds up to wider

 overall changes. Examples include implementing a reward system, introducing new flexible

 working policies, or changing office hours.

51

 4. Strategic

 Strategic changes are made at and filtered down from a higher level and impact the

 whole organization.

 Requirements Traceability Matrix

 What is Traceability Matrix (TM)?

 A Traceability Matrix is a document that co-relates any two-baseline documents that

 require a many-to-many relationship to check the completeness of the relationship.

 What is Requirement Traceability Matrix?

 Requirement traceability Matrix is a document that maps and traces user requirement with test

 cases. It captures all requirements proposed by the client and requirement traceability in

 a single document, delivered at the conclusion of the Software development life cycle.

 RTM captures all requirements proposed by the client and their traceability in just one

 document delivered at the end of the life-cycle.

 RTM usually helps to evaluate the impact of project requirements. When requirements shift

 in the middle of a project, a traceability matrix lets you see the impacted workflows, test

 cases, training materials, software code, etc.

 Benefits of RTM

 Versioning is Easier and More Effective: As a project manager, it’s not uncommon

 for the requirements of your project to undergo modification at some point. RTM helps

 you trace these shifts and how it impacts every part of your project.

 Tackling Defects: A traceability matrix can aid you in filtering defects linked to

https://www.guru99.com/software-development-life-cycle-tutorial.html

52

 crucial requirements, along with defect severity, priority, and more. Finally, RTM

 establishes complete test coverage.

 How to Create Traceability Matrix?

 Steps for creating a requirements traceability matrix.

1.Establish your RTM goals by laying out your reason for creating the RTM.

2.Gather all accessible requirement documentation, such as the technical requirement document

(TRD) or functional requirement document (FRD), and business requirement document (BRD).

You’ll also need testing documentation, like test cases, results, and bugs.

3.To make a simple RTM document, you can use an Excel spreadsheet. Create columns for

business requirements, functional requirements, test cases, test results, and bugs. Then, record

 each requirement from BRD with a requirement ID number.

4.Take the FRD and record all corresponding functional requirements for every business

requirement.

5.Connect test case IDs to the corresponding functional requirements.

53

 Types of Traceability Matrix

 There are three types of RTM

 1. Forward Traceability

 Forward traceability is used to map the requirements to the test cases. Not only will this

 establish that every requirement is being tested from top to bottom, but it will also

 assist in confirming that a project’s trajectory is sound.

 2. Backward Traceability Matrix

 You can make a backward traceability matrix by mapping test cases with the requirements.

 Doing so aids you in avoiding “scope creep” and going beyond the initial

 requirements unnecessarily.

 3. Bidirectional Traceability

 Bidirectional traceability essentially combines forward and backward traceability

 into one document. This type is useful because it establishes that each requirement has

 relating test cases.

54

 Requirements Traceability Matrix (RTM) Tools

 consider these requirements management tools:

 Visure Requirements: This tool is provided by Visure Solutions, which is focused

on business-critical and safety-critical industries. Its Visure Requirements tool

provides complete traceability.

 Modern Requirements4DevOps: This tool is integrated with Microsoft's Azure DevOps,

 TFS, and VSTS, and gives project managers traceability through every stage of the process.

 ReQtest: Providing traceability from project start to finish; this tool is based in the cloud.

It has a very customizable requirement module that assists project managers in quickly

evaluating and tracing changes.

 Links in requirements chain Requirements Management Tools:

 Derived requirements traceability is a form of requirements management focused on

 tracing requirements that aren’t explicitly defined in higher-level requirements

https://www.guru99.com/requirement-management-tools.html
https://visuresolutions.com/requirements-management-tool/
https://www.modernrequirements.com/
https://reqtest.com/
https://www.jamasoftware.com/solutions/requirements-management/

55

 Four Types of Derived Requirements Traceability

 1.Forward to Requirements

 When customer needs evolve, requirements may have to be adjusted in response. By making

 these adjustments, project teams can keep pace with changes in customers priorities,

 introductions of new business rules, and modifications of existing rules, among other events.

 2. Backward From Requirements

 Tracking backward from requirements can provide clarity into the origin of each

 derived requirement. For instance, a requirements management tool could show the link

 between the derived requirement, the requirement it came from, and the customer use case

 being addressed.

56

 3. Forward From Requirements

 Once derived requirements begin flowing into downstream deliverables during

 product development, it’s possible to draw trace relationships between requirements and

 their corresponding elements. This type of link provides assurance that every

 requirement is satisfied by a particular component.

 4. Backward to Requirements

 Finally, this type of link allows for visibility into why certain features were created.

 Consider how most applications include lines of code that don’t directly relate to

 stakeholder requirements. Even so, it is important to know why a software engineer wrote

 that code in the first place.

 Traceability links create clarity in such situations, shining a light on how the different

 pieces of a system all fit together. Conversely, test cases derived from – and traced

 back to – individual requirements offer a mechanism for detecting unimplemented

 requirements, because the tester won’t find the expected functionality.

57

 Benefits of using a requirements management tool

 Benefit of implementing a requirements management tool

 Minimises defects

 A requirements management tool can help you identify the causes of defects, allowing you

 to plan effective solutions. It can also help you implement procedures that preemptively

 address potential causes for defects.

 Mitigates risk

58

 Some products might involve elements of risk that can require effective management to

 avoid or mitigate. If the product is a physical product, a requirements management tool

 can help you identify appropriate safety requirements that protect the product's users.

 Improves product delivery time

 A requirements management tool can effectively reduce the product's development

 time. A management tool can help you organise product requirements, avoid delays, reduce

 defects and identify product dependencies.

 Reduces costs

 Implementing a requirements management tool usually reduces the overall cost of

 product development processes. This is because a requirements management tool can reduce

 delays and shorten the development phase. Businesses usually incur more costs if a

 product is in the development phase for an extended duration.

 Provides traceability

 One of the important features that many requirement management tools might offer is the

 ability to trace errors and defects to an original source. Depending on the software, a

 requirements management tool can record processes and display project information

 in clear visualisations. This can help you identify which processes in the product's

 development are causing defects or issues.

 commercial requirements management tool

 Commercial requirements management tools are essential for businesses to effectively

 capture, track, and manage requirements throughout the project lifecycle. These tools offer

 features like requirement documentation, traceability, collaboration, and version control.

 Here are a few popular ones:

59

 1.IBM Engineering Requirements Management DOORS: This tool is known for its

 robustness in managing complex requirements. It allows traceability, collaboration, and

 integrates well with other IBM tools.

 2.Jama Connect: It provides a collaborative platform for requirements, risk, and test

 management. It's user-friendly and offers customization options.

 3.Polarion Requirements: Part of the Siemens PLM Software suite, Polarion offers

 requirements management along with capabilities for ALM(Application Lifecycle Management).

 4.Helix RM (formerly IBM Rational DOORS Next Generation): A modern requirements

management tool offering traceability, collaboration, and integration with other tools in the

 Helix suite.

 5.Visure Requirements: Known for its flexibility and scalability, Visure Requirements

 offers features like traceability, impact analysis, and customizable reporting.

 Rational Requisite pro:

 Rational RequisitePro, previously known as Requisite, was an IBM Rational

 software tool specifically designed for managing and tracing software project requirements.

 It was widely used for requirement management in software development projects,

 particularly in the early stages of the software development lifecycle.

 RequisitePro offered a structured approach to capturing, organizing, and managing

 requirements. Some of its key features included:

 1.Requirements Management: Capturing and documenting requirements in a structured

 manner, allowing for easy organization and categorization.

 2.Traceability: Establishing and managing traceability relationships between

 different requirements, ensuring that changes to one requirement are reflected and tracked

 across related requirements.

 3.Collaboration and Communication: Facilitating collaboration among team members

 by providing a centralized platform for discussions, comments, and feedback on requirements.

 4.Version Control: Tracking changes to requirements and managing different versions,

 allowing teams to revert to previous versions if needed.

60

 Caliber – RM:

 Caliber Requirements Management (Caliber-RM) is a software tool developed by Micro

 Focus. It's designed to facilitate the management of software and system requirements

 throughout the software development lifecycle. Caliber-RM provides features that aid in

 capturing, analyzing, and tracing requirements, ensuring a streamlined and organized

 approach to requirement management.

 Some key features of Caliber-RM include:

 1.Requirement Capture: It allows users to capture and document requirements in a

 structured format, making it easier to organize and manage them.

 2.Traceability: Caliber-RM enables the establishment of traceability links between

 different requirements, ensuring that changes in one requirement are tracked across

 related requirements.

 1.Collaboration and Communication: The tool supports collaboration among team

 members by providing a platform for discussions, comments, and feedback on requirements.

 2.Version Control: Caliber-RM allows for versioning of requirements, enabling teams to

 track changes and manage different versions.

 3.Reporting and Analysis: It offers reporting and analysis capabilities, allowing

 stakeholders to gain insights into the status and progress of requirements.

 Caliber-RM aims to streamline the requirements management process, improve

 communication among team members, and ensure that the software being developed aligns

 with the specified requirements.

61

 Implementing requirements management automation

 Implementing requirements management automation involves leveraging tools and

 processes to streamline and optimize the handling of requirements throughout a project's

 lifecycle. Here's a step-by-step guide to implementing this:

 1.Assessment and Planning:

 Assess Current Practices: Evaluate existing manual processes for managing requirements.

 Identify Needs: Determine the specific needs, challenges, and goals for automation.

 2.Selecting the Right Tool:

 Research Tools: Explore various requirements management tools available in the market.

 Consider Requirements: Ensure the chosen tool aligns with your project's requirements,

scalability, integration capabilities, and budget.

 3.Implementation Strategy:

 Define Processes: Map out how requirements will be captured, documented, reviewed, and

managed using the tool.

 Training and Onboarding: Provide training to the team members on how to use the

 selected tool effectively.

 4.Migration and Data Import:

 Transfer Existing Data: If applicable, migrate existing requirements data into the new

automated system.

 5.Customization and Configuration:

 Customize Workflows: Tailor the tool's workflows to match the specific requirements of

your organization and project.

 Configure Settings: Set up permissions, access controls, and notifications as needed.

 6. Integration with Other Tools:

 Integrate with Existing Systems: Ensure seamless integration with other tools used in your

project management or development environment (e.g., issue tracking, version control

62

 systems).

 7.Testing:

 Test Functionality: Verify that the automated system meets the requirements and

functions as expected.

 User Acceptance Testing (UAT): Involve stakeholders and end-users to validate the

system's usability and effectiveness.

 8.Rollout and Adoption:

 Gradual Implementation: Consider a phased rollout to allow for smooth adoption by

teams.

 Encourage Adoption: Provide ongoing support and encouragement for team members to

embrace the new automated system.

 9.Monitoring and Improvement:

 Performance Metrics: Establish metrics to measure the effectiveness and efficiency of the

automated requirements management system.

 Feedback and Iteration: Gather feedback from users and stakeholders to identify areas for

improvement and make necessary adjustments.

 10.Documentation and Maintenance:

 Document Processes: Maintain documentation outlining the automated requirements

management processes and procedures.

 Regular Updates: Keep the system updated with the latest versions and patches.

63

UNIT-IV

Software Estimation

 Components of Software Estimations:

 Software estimation involves predicting the effort, time, cost, and resources required to

 develop a software product. Estimating accurately is crucial for project planning, resource

 allocation, and meeting client expectations. Several components are considered when

 making software estimations:

1. Size of the Project: The size of the software, often measured in lines of code, function

 points, or other metrics, serves as a fundamental aspect of estimation. Larger projects

 typically require more effort and time to develop.

2. Complexity: The complexity of the software, including its architecture, design intricacy,

and technical challenges, significantly impacts the estimation. Complex systems generally

 take more time and effort to develop.

3. Requirements: Clear and well-defined requirements are essential for accurate estimation.

Changes or uncertainties in requirements throughout the project can affect estimates.

Requirements volatility should be considered when estimating.

4. Experience and Expertise: The skills and experience of the development team play a

crucial role. A more experienced team might be able to handle tasks more efficiently and

accurately, impacting the estimation.

5. Historical Data: Past project data and historical information can be valuable for estimation.

Analyzing similar past projects can provide insights into effort, time, and resources

required for the current project.

6. Risk Assessment: Identifying and assessing risks associated with the project is important.

Factors such as technology uncertainties, dependencies on third-party components, or

changes in the market can impact estimates.

7. Tools and Technology: The tools, frameworks, and technologies used in the project can

influence estimations. Some technologies might speed up development, while others might

require additional time for learning or troubleshooting.

8. Project Management Approach: The chosen project management methodology

(e.g., Agile, Waterfall, etc.) can impact estimations. Agile methodologies, for instance,

might require frequent re-estimations due to their adaptive nature.

9. Communication and Collaboration: Effective communication among team members and

stakeholders helps in understanding requirements and potential challenges, which can affect

estimations.

64

10. Buffer for Contingencies: Including a buffer or contingency in estimates to account for

unforeseen events, delays, or changes is a common practice to mitigate risks.

 Estimation methods:

 Estimating software projects accurately is challenging due to the dynamic nature of

 software development. Often, a combination of expert judgment, historical data

 analysis, and continuous refinement throughout the project lifecycle helps in improving the

 accuracy of estimations.

 Software estimation methods are techniques used to predict the effort, time, cost, and

 resources required for software development. Several methods and approaches exist, each

 with its strengths and weaknesses. Here are some common software estimation methods:

1. Expert Judgment: This method relies on the expertise and experience of individuals or a

 group of experts. It involves consulting with experienced professionals who have worked

on similar projects to gather insights and make informed estimates. While subjective,

expert judgment is often used in combination with other methods for more accurate

 estimates.

2. Algorithmic Estimation Models: These models use mathematical algorithms based on

historical data to predict future project parameters. Examples include COCOMO

 (Constructive Cost Model) and its variants, which use various formulas and factors to

 estimate effort, cost, and schedule based on project size and complexity.

3. Use Case Points: This method estimates software size based on the number and

complexity of use cases. Use case points involve assigning weights to use cases based on

complexity factors to estimate effort and resources required.

4. Function Points: Function Point Analysis assesses software by quantifying its

functionality based on user input, output, inquiries, data files, and interfaces. Function

 points serve as a measure of software size and can be used to estimate effort and resources.

5. Comparative Estimation: This method involves comparing the current project with

similar past projects to derive estimates. The key is to identify similarities and differences

between projects and adjust estimates accordingly.

6. Three-Point Estimation: This technique considers an optimistic, pessimistic, and most

 likely scenario for each task or requirement and calculates a weighted average or uses a

formula (like PERT - Program Evaluation and Review Technique) to derive the final

estimate.

65

7. Expert Estimation with Delphi Technique: In this method, experts anonymously provide

individual estimates, and these estimates are aggregated and discussed iteratively until a

consensus is reached, helping to reduce bias and influence from dominant opinions.

8. Top-down and Bottom-up Estimation: Top-down estimation involves deriving estimates

 for the entire project and then breaking them down into smaller components. Bottom-up

estimation starts with individual tasks or components and aggregates them to create an

overall estimate.

9. Parametric Estimation: This method uses parameters and mathematical models to

estimate based on historical data, project characteristics, and other factors. It involves

establishing relationships between variables to derive estimates.

 Each estimation method has its strengths and weaknesses, and the choice of method often

 depends on project size, complexity, available data, and the preferences of the development

 team. Combining multiple estimation methods or refining estimates iteratively as the

 project progresses often leads to more accurate predictions.

 Problems associated with software estimation

 Anybody who has been in the field of software development will immediately relate to

 what I am going to say in this blog. Software Engineering has given us estimation models like

66

 Function point estimation, NESMA and most recent Planning Poker extensively used in

 agile Development. But still the challenge continues and it starts before the beginning of

 Software Development Life Cycle..

1. Software Requirements - To build a product or customized software, the

requirements are never clear. They keep evolving. Even if, they are well-documented

in RFP (Request for Proposal) or a Product Description Document, they are never

synchronously understood by all the stakeholders. Additionally, because of the new

Web or Cloud platform, there are various non-functional requirements like load,

multiple browsers, multiple devices, dependency on computer, network speed etc.

When you are quoting during software sales, your estimate can go off by more than

50 %.

2. Technology – Software Technology is continuously changing and there are patches

 and versions of each technologies which you need to keep an eye on. Some patches

are needed for some operating system, or some patches have fixed a recent

vulnerability. There is a new service pack released. OMG (Oh My God !), you feel

exhausted keeping pace with turbulence. By the time, you have start development,

some new technology or an upgrade is beckoning you and it is tough to decide

whether you opt for the current stable version and compromise the new features or

try the new version with the risk of being the guinea pig..

3. Resources – As a direct consequence of Technology turbulence, Resource

productivity gets affected. Resource Productivity is continuously changing and they

67

 need to be trained continuously. Again, you may train them, but they may not be

 available by the time the project starts- either they have left the company or allotted

 to the project which has got delayed. Again, resources, being human, their

productivity varies due to their moods and personal problems. Exactly at the time of

critical software delivery, the critical resource may fall ill or have a fight with his

wife or may need to attend a religious/social function.

4. Schedule – Customer wants delivery as per his schedule because of his business

priorities. This is sometimes not possible due to technical or business process

limitations. Certain modules need to be developed before certain others. Some

software deliveries need to be sequential and cannot be parallel like you cannot

deploy two mothers to get a child delivered in 4 months, instead of 9 months.

5. Negotiated Price – It is very difficult to justify the price which you quote for the

software. The resources needed to develop the software are human and their

efficiency or experience is not directly visible. Sometimes, the software sales have a

 tough time justifying the cost. To win the contract and hope to recover in future sales,

 the negotiated price is lower than cost of software development.

 Key project factors that influence estimation:

 Estimating a software project involves considering numerous factors that can significantly

68

 impact the accuracy of estimations. Key project factors that influence software estimation

 include:

1. Project Scope: The defined boundaries and extent of the project greatly affect estimation.

 A clear, well-defined scope helps in more accurate estimation, while a vague or changing

scope can introduce uncertainties.

2. Requirements Clarity and Stability: The clarity, completeness, and stability of project

requirements play a crucial role. Ambiguous, volatile, or evolving requirements make

estimation challenging and may lead to inaccurate predictions.

3. Project Complexity: The complexity of the software solution, including its architecture,

functionality, technical intricacies, and integration requirements, affects the estimation

process. More complex projects generally require more effort and time.

4. Project Size: The size of the project, often measured in terms of lines of code, function

points, or other metrics, is a fundamental factor. Larger projects typically require more

resources and time for development.

5. Team Expertise and Experience: The skills, expertise, and experience of the

development team impact estimation. A highly skilled and experienced team might handle

 tasks more efficiently, potentially affecting estimated effort and timeframes.

6. Technological Factors: The choice of technology stack, frameworks, tools, and

 third-party integrations can influence estimation. Working with unfamiliar or emerging

technologies may require additional time for research and implementation.

7. Dependencies and Constraints: External dependencies, such as dependencies on

third-party components or services, availability of resources, or regulatory constraints, can

affect estimation accuracy.

8. Risks and Uncertainties: Identifying and assessing project risks is crucial. Uncertainties

 like market changes, technological uncertainties, or unexpected events, can significantly

 impact estimations.

9. Project Management Approach: The chosen project management methodology, whether

Agile, Waterfall, or others, can impact estimation. Different methodologies have varying

approaches to planning and estimation.

10. Communication and Collaboration: Effective communication among team members,

stakeholders, and clients is vital. Lack of communication or collaboration issues can lead

 to misunderstandings, impacting estimation accuracy.

11. Quality Standards and Testing Requirements: High-quality standards and rigorous

testing requirements affect the overall development time and effort. Estimations need to

 account for adequate time for testing and quality assurance activities.

 Two views of sizing:

 In software size estimation, there are two primary approaches or perspectives often used to

69

 determine and quantify the size of a software project:

1. Functional Size Measurement: This approach focuses on measuring the size of software

based on its functionalities and user requirements rather than technical aspects. Function

Point Analysis (FPA) is a prominent method within this perspective. FPA quantifies the

software's functional size by evaluating the number of inputs, outputs, inquiries,

logical files, and external interfaces. It aims to measure what the software does from a

user's perspective, abstracting away from the underlying technical implementation.

2. Physical Size Measurement (Lines of Code - LOC): This approach measures software

 size based on the actual lines of code written for the software. Unlike the functional view

 that emphasizes what the software does, this method provides a more direct and technical

measure of size, focusing on the volume of code written. However, the number of lines of

 code can vary significantly based on programming languages, coding practices, and the

efficiency of the code.

 These two perspectives offer distinct viewpoints on how to measure software size during

 estimation. The functional approach, exemplified by methods like Function Point Analysis,

 assesses size based on the software's functionalities, while the physical approach, represented by

 Lines of Code estimation, evaluates size based on the lines of code written, providing a

 more implementation-centric view.

 Choosing between these approaches or using them in combination depends on various

 factors, including the nature of the project, the level of abstraction required, and the

 available information or expertise within the development team. Integrating both

 perspectives can provide a more comprehensive understanding of the software's size and

 complexity.

 Function Point Analysis was initially developed by Allan J. Albrecht in 1979 at IBM and

 it has been further modified by the International Function Point Users Group

 (IFPUG). The initial definition is given by Allan J. Albrecht.

 Functional Point Analysis gives a dimensionless number defined in function points which

 we have found to be an effective relative measure of function value delivered to our customer.

70

Objectives of Functional Point Analysis
 The objective of FPA is to measure the functionality that the user requests and receives.

 The objective of FPA is to measure software development and maintenance

 independently of the technology used for implementation.

 It should be simple enough to minimize the overhead of the measurement process.

 It should be a consistent measure among various projects and organizations.

 Types of Functional Point Analysis

 There are basically two types of Functional Point Analysis, that are listed below.

 Transactional Functional Type

 Data Functional Type

Transactional Functional Type

 External Input (EI): EI processes data or control information that comes from

 outside the application’s boundary. The EI is an elementary process.

 External Output (EO): EO is an elementary process that generates data or control

information sent outside the application’s boundary.

 External Inquiries (EQ): EQ is an elementary process made up of an input-output

combination that results in data retrieval.

Data Functional Type

 Internal Logical File (ILF): A user-identifiable group of logically related data or

 control information maintained within the boundary of the application.

 External Interface File (EIF): A group of users recognizable logically related data

allusion to the software but maintained within the boundary of another software.

Benefits of Functional Point Analysis
 FPA is a tool to determine the size of a purchased application package by counting all

the functions included in the package.

 It is a tool to help users discover the benefit of an application package to their

https://www.geeksforgeeks.org/software-engineering-calculation-of-function-point-fp/
https://www.geeksforgeeks.org/what-is-information-retrieval/

71

 organization by counting functions that specifically match their requirements.

 It is a tool to measure the units of a software product to support quality and

productivity analysis.

 It is a vehicle to estimate the cost and resources required for software development and

maintenance.

 It is a normalization factor for software comparison.

 Characteristics of Functional Point Analysis

 We calculate the functional point with the help of the number of functions and types of

 functions used in applications. These are classified into five types.

Measurement Parameters Examples

Number of External Inputs (EI) Input screen and tables

Number of External Output (EO) Output screens and reports

Number of external inquiries (EQ) Prompts and interrupts

Number of internal files (ILF) Databases and directories

Number of external interfaces (EIF) Shared databases and shared routines

 Functional Point helps in describing system complexity and also shows project timelines.

 It is majorly used for business systems like information systems.

Weights of 5 Functional Point Attributes

Measurement Parameter Low Average High

Number of external inputs (EI) 3 4 6

Number of external outputs (EO) 4 5 7

Number of external inquiries (EQ) 3 4 6

Number of internal files (ILF) 7 10 15

Number of External Interfaces (EIF) 5 7 10

https://www.geeksforgeeks.org/software-engineering-calculation-of-function-point-fp/

72

 Functional Complexities help us in finding the corresponding weights, which results in

 finding the Unadjusted Functional point (UFp) of the Subsystem. Consider the

 complexity as average for all cases. Below mentioned is the way how to compute FP.

 Measurement Parameter Count

Weighing Factor

Total_Co

unt
Simple Average

Comple

x

 Number of external inputs (EI) 32
32*4=12

8
3 4 6

 Number of external outputs (EO) 60
60*5=30

0
4 5 7

 Number of external inquiries (EQ) 24 24*4=96 3 4 6

 Number of internal files (ILF) 8 8*10=80 7 10 15

 Number of external interfaces

(EIF)
2 2*7=14 5 7 10

Algorithms used Count total →

618

 From the above tables, Functional Point is calculated with the following formula

 FP = Count-Total * [0.65 + 0.01 * ⅀(fi)]

 = Count * CAF

 Here, the count-total is taken from the chart.

 CAF = [0.65 + 0.01 * ⅀(fi)]

 ⅀(fi) = sum of all 14 questions and it also shows the complexity factor – CAF.

 CAF varies from 0.65 to 1.35 and ⅀(fi) ranges from 0 to 70.

 When ⅀(fi) = 0, CAF = 0.65 and when ⅀(fi) = 70, CAF = 0.65 + (0.01*70) = 0.65 +

0.7 = 1.35

Questions on Functional Point

1. Consider a software project with the following information domain characteristic

 for the calculation of function point metric.

 Number of external inputs (I) = 30

 Number of external output (O) = 60

 Number of external inquiries (E) = 23

73

 Number of files (F) = 08

 Number of external interfaces (N) = 02

 Mark IIFPA:

 The Mark II Function Point Analysis (Mark IIFPA) is an enhanced or refined version of the

 traditional Function Point Analysis (FPA) method used in software size estimation. FPA,

 developed by Allan Albrecht in the 1970s, is a well-known technique for quantifying the

 functional size of software based on user interactions and functionalities.

 Mark II Function Point Analysis was introduced as an improvement upon the original FPA

 method, aiming to address certain limitations and enhance the accuracy and applicability of

 function point counting.

 Some of the key features or improvements in Mark II Function Point Analysis might include:

1. Refined Counting Rules: Mark II FPA might have updated or refined counting rules

 compared to the original FPA method, which could lead to more precise and consistent

function point counts.

2. Adaptability: It could be more adaptable to modern software development practices,

taking into account changes and advancements in technology, architecture, and software

functionalities.

3. Enhanced Guidelines: Mark II FPA might offer more detailed guidelines or

methodologies for counting function points, providing clearer instructions on how to

evaluate and measure different types of functionalities.

4. Increased Accuracy: The improvements in Mark II FPA aim to enhance accuracy in

estimating software size, which is crucial for project planning, resource allocation, and

decision-making.

 However, specific details and nuances of the Mark II Function Point Analysis might vary

 based on the version or adaptation of the methodology used by different practitioners or

 organizations. It's essential to refer to authoritative sources or documentation specific to Mark

 II FPA for a more comprehensive understanding of its features, guidelines, and

74

 applications in software size estimation.

 Full Function Points:

 The Full Function Point (FFP) method in software estimation is an extended and more

 comprehensive version of the traditional Function Point Analysis (FPA) technique. FFP

 aims to provide a more detailed and nuanced measurement of the functional size of

 software by including additional categories or aspects that might not be covered by the

 standard FPA.

 Here are the key components and characteristics of the Full Function Point method:

1. Extension of Function Point Analysis (FPA): FFP builds upon the foundation of FPA,

which quantifies software functions based on five primary categories: External Inputs (EIs),

External Outputs (EOs), External Inquiries (EQs), Internal Logical Files (ILFs), and

External Interface Files (EIFs).

2. Additional Categories or Aspects: FFP extends the scope of function point counting by

incorporating supplementary categories or aspects. These additional aspects could

encompass more complex functionalities, modern technology components, transaction

types, elements of data communications, distributed architectures, or other elements that

impact

 the software's functional size.

3. Comprehensive Measurement: The purpose of Full Function Points is to offer a more

comprehensive measurement of the software's functional size. By encompassing a broader

range of functionalities and interactions, FFP aims to capture a more detailed view of the

software's complexity, intricacies, and scope.

4. Enhanced Accuracy and Detail: The inclusion of additional categories or aspects in FFP

allows for a more detailed assessment of the software's functional size. This increased

granularity enhances the accuracy of estimation, aiding in better project planning, resource

allocation, and decision-making.

5. Detailed Analysis and Counting Rules: Similar to FPA, Full Function Points require a

thorough analysis of the software's functionalities and their complexity. Counting rules and

guidelines specific to FFP need to be followed, ensuring consistent and standardized

measurement across different software projects.

6. Improved Project Management: The comprehensive assessment provided by Full

75

Function Points supports project managers and stakeholders in understanding the software's

size, complexity, and functional intricacies. This information is valuable for estimating

project timelines, resource requirements, and overall project scope.

7. Application Flexibility: The specific categories or aspects included in Full Function Points

might vary based on the needs of the project, advancements in technology, industry

standards, or organization-specific considerations.

 LOC Estimation:

 A line of code (LOC) is any line of text in a code that is not a comment or blank line, and also

 header lines, in any case of the number of statements or fragments of statements on the line.

 LOC clearly consists of all lines containing the declaration of any variable, and executable

 and non-executable statements. As Lines of Code (LOC) only counts the volume of code,

 you can only use it to compare or estimate projects that use the same language and are coded

 using the same coding standards.

 Features :

 Variations such as “source lines of code”, are used to set out a codebase.

 LOC is frequently used in some kinds of arguments.

 They are used in assessing a project’s performance or efficiency.

 Advantages :

 Most used metric in cost estimation.

 Its alternates have many problems as compared to this metric.

 It is very easy in estimating the efforts.

 Disadvantages :

 Very difficult to estimate the LOC of the final program from the problem specification.

 It correlates poorly with quality and efficiency of code.

 It doesn’t consider complexity.

 Research has shown a rough correlation between LOC and the overall cost and length of

 developing a project/ product in Software Development, and between LOC and the

 number of defects. This means the lower your LOC measurement is, the better off you

 probably are in the development of your product.

 Let’s take an example and check how does the Line of code work in the simple sorting

 program

 given below:

C++

void selSort(int x[], int n) {

 //Below function sorts an array in ascending

76

order
 int i, j, min, temp;

 for (i = 0; i < n - 1; i++) {

 min = i;
 for (j = i + 1; j < n; j++)

 if (x[j] < x[min])

 min = j;

 temp = x[i];

 x[i] = x[min];

 x[min] = temp;

 }

}

 So, now If LOC is simply a count of the number of lines then the above function shown

 contains 13 lines of code (LOC). But when comments and blank lines are ignored, the

 function shown above contains 12 lines of code (LOC).

 Let’s take another example and check how does the Line of code work the given below:

C++

void main()

 {
 int fN, sN, tN;

 cout << "Enter the 2 integers: ";

 cin >> fN >> sN;

 // sum of two numbers in stored in variable sum

 sum = fN + sN;

 // Prints sum

 cout << fN << " + " << sN << " = " << sum;
 return 0;

}

 Here also, If LOC is simply a count of the numbers of lines then the above function shown

 contains 11 lines of code (LOC). But when comments and blank lines are ignored, the

 function shown above contains 9 lines of code (LOC).

 Conversion between Size measures:

 Effort and Schedule

 Sizing the project by using function points, SLOC, or other methods is a job only half

 done. Transforming the size to a deliverable effort within a comfortable schedule makes the

77

 project planning a complete success story. Further, the total project effort (for example, in

 person months) that needs to be consumed in a given schedule provides the guidance to do a

 proper resource loading.

 Once the phase-wise resource loading details are available, you can apply the resource rate

 to each category of resource—such as project manager, architect, analyst, and developer—

 for the duration of the assignment. Thus the total base cost for the project is calculated. You

 can then add project management, configuration management, and other overheads as

 appropriate to get the gross cost. Figure 7.3 shows the broad parameters that are to be

 taken into account during different lifecycle stages of the project execution.

 Deriving Effort

 The overall project effort (typically measured in person months) is directly dependent on two

 critical inputs: application size and project team/programmer productivity. The steps to

 calculate each of these items are as follows:

 From the given specification for the application, calculate the size of the application.

 The size can be estimated by using one of the popular estimation methods, such as

 Function points method: Output will be in FP count.

 Object points method: Output will be a list of classes of simple/medium/

 complex categories.

 SLOC method: Output will be a "gut feel" of lines of code.

 Make sure that you have the productivity (delivery rate) available for the technology

platform on which the application is being developed. For every language there are

available average productivity figures that should be adjusted by the historic project

productivity data for your own IT organization. Productivity of your project team:

 Is based on competency of programmers

 Is specific to a given technology

 Is dependent on the software development environment

 Convert application size to effort (in person months):

 Effort = Application size x productivity

 The effort thus derived is the total project effort that would be spent for all the lifecycle

stages of the project, from requirements creation through user acceptance. Add project

javascript:popUp('/content/images/chap7_9780321439109/elementLinks/f07x03.gif')

78

management and configuration management effort as applicable. The effort is also the

aggregate of the individual effort spent by each of the resources assigned to the project.

 Scheduling

 Transforming the overall project effort into a delivery schedule (elapsed time) is somewhat

 tricky. If the right approach is not applied, the risks of project failure are high. There are

 three alternatives to calculate the schedule:

 Use popular scheduling methods like COCOMO II.

 "Gut feel" scheduling based on past experience.

 Schedule driven by business user need.

 The schedule data that can be obtained by one of these methods is in the form of duration

 required to deliver the project itself. For example, the schedule could span 10 months from

 the start date of the project. The schedule thus encompasses all the lifecycle stages of the entire

 project. From the total duration given to the project team, the project manager must divide

 the time into lifecycle-based segments. The lifecycle phase percentage is also to be based on

 historical delivery information of the IT organization. For example, with 10 months of

 elapsed time, the schedule can be split as follows:

 Requirements: 2 months (20 percent)

 Detailed design: 1.5 months (15 percent)

 Build and unit test: 4 months (40 percent)

 System and integration test: 2.5 months (25 percent)

 Resource Loading

 Resource loading is a complex activity and has to be worked on with extreme care.

 Improper assignment of resources will have an impact on project delivery schedules as well

 as the quality of outputs. Resource loading requires two critical mapping considerations:

 The right resource role for the appropriate lifecycle stage. For example, you need to

 know when to assign a project manager, an architect, or a programmer.

 The right duration of assignment. This includes when to assign and when to release.

 The effort spent by each resource is determined by tactful resource allocation method.

79

 For Figure 7.3 shown earlier in this section, the resource loading patterns are displayed

 illustratively in Table 7.2. For your project, you can prepare a table showing resource role

 assignments for the appropriate durations. For example, assume a total project effort of 100

 person months. This effort includes project management and configuration management effort.

 Table 7.2 illustrates the typical resource loading based on the percentage breakup of elapsed

 time, as given in the example in this chapter.

Table 7.2. Resource Loading Chart

 Resource M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Total PM

 Project manager 1 1 1 1 1 1 1 1 1 1 10

 Technical analyst 1 1 1 1 1 5

 Business analyst 2 3 3 3 3 3 3 3 2 2 27

 Programmer 4 4 6 8 10 8 6 4 50

 Configuration controller 1 1 1 1 1 1 1 1 8

 Total effort 3 5 10 10 11 13 15 14 11 8 100

 [M1 = Month 1] [Total PM = Total Person Months].

 Costing

 Once the resource loading chart (as shown in Table 7.2) is complete, it is fairly easy to attach

 the rate per hour (or rate per week/month) for each of the resource roles, such as project

 manager, architect, analyst, developer, etc. The steps are

 Arrive at the rate per time unit for each of the resources.

 From the resource loading chart, obtain the duration of assignment for each category

javascript:popUp('/content/images/chap7_9780321439109/elementLinks/f07x03.gif')

80

 of resource (project manager, architect, analyst, developer).

 Multiply the individual resource allocation duration by the rate to obtain individual

 resource costs.

 Aggregate the individual costs to get the overall project cost for resources.

 Add overheads and buffers as applicable.

81

UNIT-V

 What is Productivity:

 Software productivity tools help developers create and manage software projects

 more effectively. These tools can help developers track the progress of their projects,

 manage software dependencies, and automate software builds. Some software productivity

 tools are specific to a particular programming language, while others are more general.

 Many software productivity tools are available as open source software, and many are also

 available as commercial software.

 There are various software productivity tools available for compiler design. Some of the most

 popular ones are:

1. Code generation tools: These tools help in automatically generating code for the

compiler. This can be extremely helpful in reducing the development time and effort

required for the compiler.

2. Debugging tools: These tools help in debugging the compiler code. This can be

3. extremely helpful in finding and correcting errors in the compiler code.

4. Performance analysis tools: These tools help in analyzing the performance of the

compiler. This can help optimize the compiler code for better performance.

 Estimation Factors:

 The necessity of cost estimation stems from the requirements of scheduling and cost planning.

 For lack of more precise methods, cost estimation for software development is almost always

 based on a comparison of the current project with previous ones. Due to the uniqueness of

 software systems, the number of comparable projects is usually quite small, and empirical

 data are seldom available. But even if there are exact cost records of comparable projects,

 these data are based on the technical and organizational conditions under which the comparable

 project was carried out at that time

 The technical and organizational conditions are variable parameters, which makes empirical

 data

82

 from comparable projects only an unreliable basis for estimates. Relationship between the

 best and worst programming experience (referring to the same task, [Schnupp 1976]):

 The time requirement for each task handled in a team consists of two basic components

 ([Brooks 1975]): (1) Productive work

 (2) Communication and mutual agreement of team members

 If no communication were necessary among team members, then the time requirement t for

 a project would decline with the number n of team members

 t ≈ 1/n

 If each team member must exchange information with one other and that the average time

 for such communication is k, then the development time follows the formula:

 t ≈ 1/n + k. n2/2 "

 Adding manpower to a late software project makes it later." ([Brooks 1975])

 Most empirical values for cost estimation are in-house and unpublished. The literature

 gives few specifications on empirical data, and these often deviate pronouncedly. The

 values also depend greatly on the techniques and tools used.

 Distribution of the time invested in the individual phases of software development

 (including the documentation effort by share) according to the selected approach

 model and implementation technique ([Pomberger 1996]):

 Approach model: classical sequential software life cycle

 Implementation technique: module-oriented problem analysis and system specification....

 25% design...

 25% implementation..

83

 15% testing.. 35%

 Approach model: prototyping-oriented software life cycle

 Implementation technique: module-oriented

 problem analysis and system specification..... 40%

 design... 25% implementation................................

10% testing.. 25%

 Approach model: object- and prototyping-oriented software life cycle Implementation

 technique: object-oriented

 problem analysis and system specification..... 45%

 design... 20%implementation.................................

 18% testing……………………………27%...

 The following options are useful to achieve reliable cost and effort estimates:

 Delay estimation until late in the project. The longer we wait, the less likely we are to make

 errors in our estimates. However this is not practical. Cost estimates must be provided

 “up-front”. 2. Base estimates on similar projects that have already been completed. This works

 well if the current project is quite similar to past efforts. Unfortunately, past experience has not

 always been a good indicator of future results.

2. Use “decomposition techniques” to generate project cost and effort estimates. These

 techniques use a “divide and conquer” approach to estimation. By decomposing a project into

 major functions and related software engineering activities, cost and effort estimation

 can be performed in a step-wise fashion.

 Use one or more empirical models for software cost and effort estimation. A model is

84

 based on experience (historical data) and takes the form d = f(vi), where d is one of a

 number of estimated variables (eg. effort, cost, project duration) and vi are selected

 independent parameters (eg. Estimated LOC or FP)

 Approaches to Effort and Schedule Estimation:

 The cost and schedule estimation process helps in determining number of resources to

 complete all project activities. It generally involves approximation and development of

 costing alternatives to plan, perform or work, deliver, or give project. A good estimation

 is very much essential for keeping a project under budget.

 Two perspectives are generally required to derive project plans. These perspectives are given

 below :

1. Forward-Looking :

 The Forward-Looking approach is also known as Top-Down approach. This

approach generally starts with describing and explaining various project

 tasks that involve starting with project aim or end deliverable and breaking

 it all down into smaller planning chunks.

 Top-down budgeting also refers to a method of budgeting where project

managers prepare a high-level budget for organization.

 These project managers or senior management develops and creates a

characterization of overall size, process, environment, people, and quality

that is essential for software project. In this approach, duration of

 deliverable’s is estimated.

 It generally takes less time and effort than bottom-up estimate. With help of

software cost estimation model, an estimation of overall effort and schedule

 is done. The project manager generally divides estimation of overall effort

 into a top-level of WBS (Work Breakdown Structure).

 They also divide schedule into major milestones dates. At this stage,

sub-project managers are simply given responsibility for decomposing every

element of WBS into lower levels with help of various allocations of

 top-level, staffing profile, and, major milestones dates as constraints.

 The main benefit of this approach is use of holistic data from earlier projects

 or products, along with unmitigated risks, and scope creeps. This also helps

 in reducing risk of overlooked work activities or costs.

2. Backward-Looking :

 Backward-Looking approach is also known as Bottom-up approach.

85

 In this approach, project team breaks requirements of clients down,

 determining lowest level appropriate to develop a range of estimates,

 covering overall scope of project based on available definition of task.

 Overall elements of lowest level WBS are generally explained into detailed

 tasks, for which WBS element manager is responsible for estimating budge

 and schedule.

 All of these estimates are joined and integrated into higher-level WBS

budgets and milestones.

Milestone scheduling also called budget allocation with help of top-down approach

 results in a highly optimistic plan. Whereas, bottom-up approach results in a

 highly pessimistic plan. Iteration is very much needed and important, using results

 of one approach to validate and even check results of other approach. Both of

approaches should be used together, in balance, throughout life-cycle of project as

shown below.

Below is diagram showing planning balance through life cycle.

 Engineering stage planning emphasis on following points :

 Macro-level task estimation for engineering artifacts.

 Macro-level task estimation for production stage artifacts.

86

 Stakeholder concurrence.

 Coarse-grained variance analysis of actual vs. planned expenditures.

 Tuning top-down project-independent planning guidelines into project-specific

 planning guidelines.

 WBS definition and elaboration.

 Production stage planning emphasis on following points :

 Macro-level task estimation for production stage artifacts.

 Macro-level task estimation for maintenance of engineering artifacts.

 Stakeholder concurrence.

 Coarse-grained variance analysis of actual vs. planned expenditures.

 Top-down perspective generally dominates during engineering stage. This is because there

 is no enough depth or details of understanding not even stability in sequences of detailed

 task to perform planning of bottom-up approach. On other hand, there is enough prior

 experience and planning fidelity that bottom-up planning perspective dominates during

 production stage.

 COCOMO II

 COCOMO-II is the revised version of the original Cocomo (Constructive Cost Model)

 and was developed at the University of Southern California. It is the model that allows

 one to estimate the cost, effort, and schedule when planning a new software development

 activity.

Sub-Models of COCOMO Model

 End User Programming

 Application generators are used in this sub-model. End user write the code by using these

 application generators. For Example, Spreadsheets, report generator, etc.

 2. Intermediate Sector

https://www.geeksforgeeks.org/?p=193526

87

 Application Generators and Composition Aids: This category will create largely

prepackaged capabilities for user programming. Their product will have many

 reusable components. Typical firms operating in this sector are Microsoft, Lotus,

 Oracle, IBM, Borland, Novell.

 Application Composition Sector: This category is too diversified and to be handled

 by prepackaged solutions. It includes GUI, Databases, domain specific components

such as financial, medical or industrial process control packages.

 System Integration: This category deals with large scale and highly embedded

systems.

 3. Infrastructure Sector

 This category provides infrastructure for the software development like Operating System,

 Database Management System, User Interface Management System, Networking System, etc.

 Stages of COCOMO II

1. Stage-I

 It supports estimation of prototyping. For this it uses Application Composition Estimation

 Model

 This model is used for the prototyping stage of application generator and system integration.

2. Stage-II

 It supports estimation in the early design stage of the project, when we less know about it.

 For this it uses Early Design Estimation Model. This model is used in early design

 stage of application generators, infrastructure, system integration.

3. Stage-III

 It supports estimation in the post architecture stage of a project. For this it uses Post

 Architecture Estimation Model. This model is used after the completion of the detailed

 architecture of application generator, infrastructure, system integration.

88

 Putnam Estimation Model:

 he Lawrence Putnam model describes the time and effort requires finishing a software

 project of a specified size. Putnam makes a use of a so-called The Norden/Rayleigh Curve to

 estimate project effort, schedule & defect rate as shown in fig:

 Putnam noticed that software staffing profiles followed the well known Rayleigh distribution.

 Putnam used his observation about productivity levels to derive the software equation:

 The various terms of this expression are as follows:

 K is the total effort expended (in PM) in product development, and L is the product

 estimate in KLOC .

 td correlate to the time of system and integration testing. Therefore, td can be relatively

 considered as the time required for developing the product.

 Ck Is the state of technology constant and reflects requirements that impede the development

 of the program.

 Typical values of Ck = 2 for poor development environment

 Ck= 8 for good software development environment

89

 Ck = 11 for an excellent environment (in addition to following software engineering

 principles, automated tools and techniques are used).

 The exact value of Ck for a specific task can be computed from the historical data of the

 organization developing it.

 Putnam proposed that optimal staff develop on a project should follow the Rayleigh curve.

 Only a small number of engineers are required at the beginning of a plan to carry out

 planning and specification tasks. As the project progresses and more detailed work are

 necessary, the number of engineers reaches a peak. After implementation and unit testing, the

 number of project staff falls.

 Effect of a Schedule change on Cost

 Putnam derived the following expression:

 Where, K is the total effort expended (in PM) in the product development

 L is the product size in KLOC

 td corresponds to the time of system and integration testing

 Ck Is the state of technology constant and reflects constraints that impede the progress of the

 Program Now by using the above expression, it is obtained that,

90

 (As project development effort is equally proportional to project development cost)

 From the above expression, it can be easily observed that when the schedule of a project is

 compressed, the required development effort as well as project development cost

 increases in proportion to the fourth power of the degree of compression. It means that a

 relatively small compression in delivery schedule can result in a substantial penalty of human

 effort as well as development cost.

 Algorithmic models:

 Algorithmic modeling is a powerful computational design methodology that allows designers to

 create complex geometries and shapes using mathematical algorithms. With the growing

 demand for optimization and customization across industries, algorithmic modeling has

 become an essential tool for architects, engineers, product designers, and digital artists.

 This article provides an academic overview of algorithmic modeling, including its concepts,

 historical overview, benefits, and applications.

 Algorithmic Modeling Concepts

 Algorithmic modeling is based on the use of mathematical algorithms to create complex

 geometries and shapes. The process includes defining a set of parameters that are used to

 create a design. These parameters can be adjusted and optimized to create different design

91

 variations. Algorithmic models are created using parametric modeling software. The software

 allows designers to create and modify algorithmic models in a visual programming environment.

 Benefits of Algorithmic Modeling

 Algorithmic modeling offers several advantages over traditional design methods, including:

 Flexibility: Algorithmic models can be customized and optimized according to specific

 project parameters, making it easy to change and adapt projects.

 Efficiency: Algorithmic modeling enables faster and more efficient design iterations,

 reducing the time required for manual adjustments and iterations.

 Complexity: Algorithmic modeling allows designers to create complex shapes and figures that

 would be difficult or impossible to create by hand.

 Accuracy. Algorithmic models provide a high degree of precision and accuracy, which is

 very important in industries such as engineering and manufacturing.

 Applications of algorithmic modeling

 Architecture. Architects use algorithmic modeling to create complex building designs and

 explore different design options.

 Engineering: Engineers use algorithmic modeling to optimize product performance and

 improve manufacturing efficiency.

 Product Design: Algorithmic modeling is used in product design to create complex

 shapes and optimize product performance.

 Digital art and animation. Algorithmic modeling is used in digital art and animation to

92

 create complex visual effects and realistic 3D models.

 Cost estimation

 simply means a technique that is used to find out the cost estimates. The cost estimate is the

 financial spend that is done on the efforts to develop and test software in

 Software Engineering

 Cost estimation models are some mathematical algorithms or parametric equations that are

 used to estimate the cost of a product or a project. Various techniques or models are

 available for cost estimation, also known as Cost Estimation Models as shown below :

1. Empirical Estimation Technique – Empirical estimation is a technique or model in

 which empirically derived formulas are used for predicting the data that are a

 required and essential part of the software project planning step. These techniques are

usually based on the data that is collected previously from a project and also based on

 some guesses, prior experience with the development of similar types of projects, and

assumptions. It uses the size of the software to estimate the effort. In this technique,

an educated guess of project parameters is made. Hence, these models are based on

common sense. However, as there are many activities involved in empirical estimation

techniques, this technique is formalized. For example Delphi technique and Expert

Judgement technique.

2. Heuristic Technique – Heuristic word is derived from a Greek word that means “to

discover”. The heuristic technique is a technique or model that is used for solving

problems, learning, or discovery in the practical methods which are used for achieving

immediate goals. These techniques are flexible and simple for taking quick decisions

through shortcuts and good enough calculations, most probably when working with

complex data. But the decisions that are made using this technique are necessary to be

optimal. In this technique, the relationship among different project parameters is

expressed using mathematical equations. The popular heuristic technique is given

by Constructive Cost Model (COCOMO). This technique is also used to increase or

 speed up the analysis and investment decisions.

https://www.geeksforgeeks.org/software-engineering/
https://www.geeksforgeeks.org/software-engineering-cocomo-model/

93

3. Analytical Estimation Technique – Analytical estimation is a type of technique

 that is used to measure work. In this technique, firstly the task is divided or broken

down into its basic component operations or elements for analyzing. Second, if the

standard time is available from some other source, then these sources are applied to

each element or component of work. Third, if there is no such time available, then the

work is estimated based on the experience of the work. In this technique, results are

derived by making certain basic assumptions about the project. Hence, the analytical

estimation technique has some scientific basis. Halstead’s software science is based

on an analytical estimation model.

Other Cost Estimation Models are:

1. Function Point Analysis (FPA): This technique counts the number and complexity

 of functions that a piece of software can perform to determine how functional and

sophisticated it is. The effort needed for development, testing and maintenance can be

estimated using this model.

2. Putnam Model: This model is a parametric estimation model that estimates effort,

time and faults by taking into account the size of the the programme, the expertise of

the development team and other project-specific characteristics.

3. Price-to-Win Estimation: Often utilized in competitive bidding, this model is

 concerned with projecting the expenses associated with developing a particular

software project in order to secure a contract. It involves looking at market dynamics

 and competitors.

4. Models Based on Machine Learning: Custom cost estimating models can be built

 using machine learning techniques including neural networks, regression analysis and

decision trees. These models are based on past project data. These models are flexible

enough to adjust to changing data and project-specific features.

5. Function Points Model (IFPUG): A standardized technique for gauging the

functionality of software using function points is offered by the International Function

Point Users Group (IFPUG). It is employed to calculate the effort required for

software development and maintenance.

 Desirable features in software estimation tools:

 The decomposition technique and empirical estimation model are available as part of a

 range of software tools. Such automated estimation tools are helpful in estimating cast and

 effort and conducting “what-if” analysis for important project variables, such as delivery

 data or staffing. All automated estimation tools display the same general characteristics,

 and all perform the following generic functions-

 Sizing of Project Deliverable : Estimated the size of one or more work products i.e.,

 external representation of software, software itself, distributed functionality, descriptive

 information, all are approximate first.

 Selecting Project Activities : The required process framework is selected and the

 software engineering project is specified.

https://www.geeksforgeeks.org/software-engineering-halsteads-software-metrics/

94

 Predicting Staffing Levels : The number of people available is specified. This is an

 important task, because the relationship between the people available and work is

 highly inauspicious.

 Predicting Software Effort : The estimation tool related to the use of some models from

 the size of project deliverable to the effort required (from producing them).

 Predicting Software Cost : Software costs can be calculated by assigning labor rates to

 project activities.

 Predicting Software Schedules : Having knowledge of effort, staffing level and project

 activities, a draft schedule can be produced by allocating lober in software engineering

 activities based on the recommended model for effort distribution.

 Here are the few automation estimation tools:

1. Time monitoring tools: Programmes such as Harvest or Toggl assist keep track of

 how much time is spent on activities, but they also offer insights into previous

information, which helps make future estimations more accurate.

2. Tools for Test Automation: Tools such as Selenium or Appium automate the testing

process during the testing phase.

3. Tools for Continuous Integration/Continuous Deployment (CI/CD): These tools

facilitate a more efficient and error-free release process while also accelerating

development.

4. Planning and Estimation Tools: Together estimating the amount of work needed for

projects or user stories is made easier by tools like Planning Poker.

5. Requirements Management Tools: Software such as IBM Engineering connects the

process of gathering, monitoring and maintaining project requirements is automated

with requirements management systems.

6. Machine Learning-Based Estimation Tools: Based on previous information, team

performance and other project criteria, these tools use machine learning algorithms to

generate more precise and based on fact estimations.

7. Tools for Resource Management: Applications such as Resource Guru facilitate

effective team resource scheduling and management.

8. Code Review Tools: By evaluating code for quality, security and maintainability, tools

such as Code Climate can automate certain steps in the code review process.

 The International Function Point Users Group (IFPUG)

 Critical to the ongoing success of function points as a viable software metric is the work that is

 being accomplished by the International Function Point Users Group (IFPUG). Since 1986,

 IFPUG has continued to grow in members and in its importance to the software

 measurement community. Today IFPUG enjoys a membership of thousands of individual,

 corporate, educational, and institutional members from more than 30 countries.

95

 IFPUG is a not-for-profit, member-run user group. IFPUG's mission is to be a recognized

 leader in promoting and encouraging the effective management of application software

 development and maintenance activities through the use of function point analysis and other

 software-measurement techniques. For more information, contact IFPUG at

 www.ifpug.org/, email ifpug@ifpug.org, phone (USA) 609-799-4900, or fax 609-799-7032.

 IFPUG serves to facilitate the exchange of knowledge and ideas for improved software-

 measurement techniques and seeks to provide a composite environment that stimulates the

 personal and professional development of its members. IFPUG typically meets twice a year,

 once in the spring and then again in the fall. The spring conference is dedicated to training

 programs and committee meetings. The fall program is devoted to both committee work and

 training programs, but it also typically includes a two-and-a-half-day user conference and

 vendor showcase.

 Committee work is the core of IFPUG. The two most visible committees are the Counting

 Practices Committee and the Certification Committee. The Counting Practices

 Committee is responsible for maintaining the current counting guidelines, Counting

 Practices Manual. The Certification Committee is responsible for establishing and

 enforcing the certification guidelines. Other critical committees that generate guidelines for

 either counting or using function points include New Environments, IT Performance

 and Management Reporting. IFPUG also has an Academic Affairs Committee, a

 Communications and Marketing Committee, a Conference Committee, and an Education

 Committee to assist the members with academic studies, information dissemination,

 conferences, and workshops.

http://www.ifpug.org/
mailto:ifpug@ifpug.org

96

 USC’s cocomo II:

 he USC COCOMO II model, also known as COCOMO 2000, is an advancement of the

 COCOMO (Constructive Cost Model) developed by Barry Boehm in the 1980s. COCOMO

 II was developed at the University of Southern California's Center for Systems and

 Software Engineering as an enhancement and extension of the original COCOMO model.

 COCOMO II, or COCOMO 2000, aims to provide a more detailed and comprehensive

 framework for estimating software development effort, cost, and duration. It considers a broader

 range of project attributes and characteristics compared to its predecessor, offering more

 accuracy and flexibility in estimation.

 Key features and improvements in COCOMO II (2000) include:

1. Three Sub-models: COCOMO II consists of three different sub-models to cater to

 different stages of software development:

a. Application Composition Model: Used for estimating costs in projects involving

integrating existing software components.

b. Early Design Model: Estimates costs based on early design decisions before

 detailed specifications are available.

c. Post-Architecture Model: Suitable for estimating costs after the software

architecture has been defined.

2. Expanded and Refined Cost Drivers: COCOMO II includes a more extensive set of cost

drivers compared to the original COCOMO. These cost drivers consider various project

attributes, team factors, process characteristics, and product attributes to provide more

 accurate estimations.

3. Enhanced Estimation Granularity: COCOMO II allows for more detailed estimation by

breaking down different components, phases, and attributes of the software project,

providing a more fine-grained view of the estimation process.

4. Improved Sensitivity Analysis: COCOMO II enables better sensitivity analysis, allowing

project managers to understand how changes in different parameters affect the overall

estimates.

5. Better Reusability Modeling: COCOMO II provides improved models for estimating

costs when reusing components or leveraging existing software assets, considering their

impact on project effort and cost.

97

6. Updated Estimation Equations: COCOMO II includes updated estimation equations and

algorithms, increasing the accuracy of project cost, effort, and schedule predictions.

 COCOMO II (2000) is widely recognized and used in the software industry due to its

 more sophisticated and customizable nature compared to the original COCOMO model.

 It offers software development teams a structured framework for estimation, aiding in better

 planning, resource allocation, and decision-making throughout the software development

 lifecycle.

 Definition of Software Development Lifecycle Management

 Software Development Life Cycle (SDLC) Management is a process that aims to develop

 software with the lowest cost, highest quality, and in the shortest time. It also includes

 detailed documentation for how to develop, extend, and maintain the software system.

 A Software Development Life Cycle involves several different stages, including

 requirements gathering, planning/designing, building, testing, and finally deployment.

 Description of Software Development Life Cycle Management

 Some of the most popular Software Development Life Cycle Management methodologies

 include Spiral Development, Agile, and SCRUM.

 Teams following the best practices of the Software Development Life Cycle Management

 process see more success and have an easier time developing software in stages. The SDLC

 process applies equally well for Minimum Viable Products which are part of the Lean

 Startup approach, as well as full blown projects.

 The main stages of the Software Development Life Cycle Management process include:

1. Identify Requirements – The first stage is about understanding the problems you are

trying to solve, and what the software needs to do.

2. Plan & Design – Taking into account the requirements, the next step is to plan and

prioritize the features that need to be created. This phase can and should include some

research to validate technologies and approaches.

3. Build / Code – This stage is one of the longest, and where much of the work is done. It

should overlap to some degree with the following Documentation and Test phase.

4. Test / Debug / Document – Documenting and testing should happen during the build

 stage as well, but this stage is where the focus turns from developing features to bug

 fixing and stabilizing the software for launch to customers.

Often Alpha and Beta versions are released in this phase to ensure configuration and

98

other rare or hard to spot bugs are found and fixed.

5. Deploy – The final deployment stage is where the software is released for customers to

 use and goes live.

Tools & Templates

 Software Development Life Cycle Management tools and templates include many kinds of

 charting software, spreadsheets, or simply a long, horizontal paper that can be drawn on and

 updated for each of the stages.

 upBOARD's Software Development Life Cycle (SDLC) Management Tools & Templates

 upBOARD provides a strategic view of your software development life cycle (SDLC), a line of

 sight to your software development strategy, and a complete dashboard for tracking

 activities and results. Using upBOARD, your software development process becomes a living

 “board” that’s always on, current, and available on the cloud for everyone to see. Our experts

 In agile software development have assembled online tools and templates to help guide any

 software developer, software development manager, team or organization across the

 software development lifecycle. Use these best practices as standalone processes or mix and

 match tools and templates to create your own leading-edge collaborative environment,

 including integrating data from Google Drive, JIRA and other tools.

	(Autonomous Institution–UGC,Govt.of India)
	UNIT-I
	UNIT- II
	UNIT-III
	UNIT- IV
	UNIT -V
	TEXT BOOKS:
	REFERENCES:
	Steps in Requirements Engineering Process
	 Requirements Analysis
	 Requirements Specification
	 Requirements Validation
	 Requirements Management
	 Requirement Engineering

	Risk Assessment
	Risk Control
	What is Requirement Elicitation?
	Requirements Elicitation Activities
	What Is Requirements Elicitation?
	Requirements Elicitation Techniques
	1) Stakeholder Analysis
	2) Brainstorming
	3) Interview
	4) Document Analysis/Review
	5) Focus Group
	6) Interface Analysis
	7) Observation
	8) Prototyping
	9) Joint Application Development (JAD)/ Requirement Workshops
	10) Survey/Questionnaire

	Objectives of Analysis Modelling:
	Elements of Analysis Model:

	Factors of Software Quality
	Why is requirements prioritization important?
	What are 3 ways to prioritize requirements?
	MoSCoW method
	ICE scoring
	Kano analysis

	What is the agile method for prioritizing requirements?
	Priority poker
	Cost of Delay (CoD)
	Opportunity Scoring

	Techniques Used in Requirements Verification:
	1. Value Orientation: The act of writing requirements based on assumptions
	has no value, neither for the users nor for your business. The requirements outcome
	need to add value for the users. Remember, users use products to do their job
	better. The requirements should be something that adds value to the outcome
	and the benefit of using your product in end-users life.
	2. Stakeholders: Using Requirement Engineering helps you do your best to
	satisfy the stakeholders’ needs and desires. When we speak about developing a
	digital product, many product people think they should just deliver a product
	based on end-user needs.
	1. Eliciting requirements: collaborate & focus on value:
	The gathering of requirements should be a highly collaborative effort. Therefore,
	even before you start thinking about the product itself, you’ll have to map all the
	relevant stakeholders who have interest in and influence over the project.
	2. Requirements quality translates to software quality:
	When defining requirements, focus on delivering value, and make sure that everyone
	involved shares an understanding of ‘value’ in your project. This, in turn, helps avoid
	scope creep: you’ll want to make sure that the scope of the project is clearly
	defined and documented so that it doesn’t spiral out of control.
	3. Prioritize requirements and set expectations:
	Requirements definition should be an iterative process, which greatly helps the next step.
	Set up a priority list of your requirements based on their value, and make sure all
	stakeholders agree with the final list. Having this prioritized list of requirements
	provides clarity, making it easier for your team to set realistic expectations
	with the customer/end user on what is to be delivered.
	4. Trace requirements through the lifecycle:
	Follow the progress of requirements along the development lifecycle. Tie requirements
	in with tasks, source code, risks, and test cases so that you have airtight traceability from
	end to end.
	5. Use a dedicated tool for managing requirements:

	What is change management?
	What is the change management process?
	1. Prepare for change: It’s an important part of the process, ensuring the change
	manager supports staff through any concerns and manages resistance by
	communicating the process and getting buy-in from employees.
	2. Create a vision for change: This stage is about creating the strategy to
	reach transformation once stakeholders have agreed for a change. Those
	involved set goals, delegating key performance indicators (KPIs) and tasks to the
	relevant parties.
	3. Implement changes: This step puts the change plans into action. Excellent
	management and communication are key here, and change managers need to
	make sure everyone is doing their duties and that employees are still
	happy and empowered, to ensure everything runs smoothly.
	4. Review and analyze: The final stage of the process is important to make
	sure that changes continue and are beneficial. Change managers review what
	worked and what didn’t work to make adjustments accordingly.

	Types of change management
	1.Anticipatory
	Anticipatory change is when an organization makes changes in response to something
	expected to happen. For example, environmental concerns or new trends the organization
	wants to capitalize on can cause stakeholders to anticipate the need for change.
	3. Reactive
	Reactive change happens in response to an event that impacts the business. This could
	be new industry regulations or changes to deal with a pandemic like Covid-19.
	3. Incremental
	4. Strategic
	Requirements Traceability Matrix
	What is Traceability Matrix (TM)?
	Versioning is Easier and More Effective: As a project manager, it’s not uncommon
	for the requirements of your project to undergo modification at some point. RTM helps
	you trace these shifts and how it impacts every part of your project.
	Tackling Defects: A traceability matrix can aid you in filtering defects linked to
	crucial requirements, along with defect severity, priority, and more. Finally, RTM
	establishes complete test coverage.

	How to Create Traceability Matrix?
	Types of Traceability Matrix
	1. Forward Traceability
	2. Backward Traceability Matrix
	3. Bidirectional Traceability

	Requirements Traceability Matrix (RTM) Tools
	1.Forward to Requirements
	2. Backward From Requirements
	3. Forward From Requirements
	4. Backward to Requirements
	Minimises defects
	Mitigates risk
	Improves product delivery time
	Reduces costs
	Provides traceability

	Objectives of Functional Point Analysis
	Types of Functional Point Analysis
	Transactional Functional Type
	Data Functional Type

	Benefits of Functional Point Analysis
	Characteristics of Functional Point Analysis
	Weights of 5 Functional Point Attributes
	Questions on Functional Point
	C++
	C++ (1)
	Effort and Schedule
	Deriving Effort
	Scheduling
	Resource Loading
	Table 7.2. Resource Loading Chart

	Costing

	Sub-Models of COCOMO Model
	End User Programming
	2. Intermediate Sector
	3. Infrastructure Sector

	Stages of COCOMO II
	1. Stage-I
	2. Stage-II
	3. Stage-III

	Effect of a Schedule change on Cost
	Algorithmic Modeling Concepts

	Benefits of Algorithmic Modeling
	Applications of algorithmic modeling
	Other Cost Estimation Models are:
	Here are the few automation estimation tools:

	The International Function Point Users Group (IFPUG)
	Definition of Software Development Lifecycle Management
	Description of Software Development Life Cycle Management
	Tools & Templates
	upBOARD's Software Development Life Cycle (SDLC) Management Tools & Templates

