
Mobile Application Development  

 
DIGITAL NOTES  

ON  
Mobile Application Development 

 
 

B.TECH IV YEAR - I SEM 
(2019-20)   

 

 
 

 
 

      

DEPARTMENT OF INFORMATION TECHNOLOGY 

  
 

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 

(Autonomous Institution – UGC, Govt. of India) 
 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) 

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, INDIA. 
 

 

 

 

 

 

 

 

 



Mobile Application Development  

 

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 
 

DEPARTMENT OF INFORMATION TECHNOLOGY 
 

IV Year B.Tech IT – I Sem                                                        L   T /P/D   C 

                                                                           5    1/-/-       4  

(R15A0563)MOBILE APPLICATION DEVELOPMENT 

 

UNIT I 

 

Introduction to Mobile A brief history of Mobile, The Mobile Ecosystem, Why Mobile?, 

Types of Mobile Applications, Mobile Information Architecture, Mobile Design, Mobile 2.0, 

Mobile Web development, Small Computing Device Requirements. J2ME: Overview The 

World of Java, Inside J2ME, J2ME Architecture, MIDlet Programming, J2ME Wireless 

Toolkit, Hello World J2ME Style, Multiple MIDlets in a MIDlet Suite  

 

UNIT II 

 

Introduction to Android: History of Android, Introduction to Android, Operating Systems, 

Android Development Tools, Android Architecture.  

 

UNIT III 

 

Development Tools: Installing and using Eclipse with ADT plug-in, Installing Virtual 

machine for Android sandwich/Jelly bean (Emulator), configuring the installed tools, creating 

a android project – Hello Word, run on emulator, Deploy it on USB-connected Android 

device  

UNIT IV 

 

User Interface Architecture: Application context, intents, Activity life cycle, multiple screen 

sizes User Interface Design: Form widgets, Text Fields, Layouts, Button control, toggle 

buttons, Spinners(Combo boxes),Images, Menu, Dialog. 

 

UNIT V 

 

Database: Understanding of SQLite database, connecting with the database 

 

TEXTBOOKS:  

 

1. J2ME: The Complete Reference, James Keogh, Tata McGrawHill  

2. Android application development for java programmers. By James C. Sheusi. Publisher: 

Cengage Learning, 2013.  

3. Lauren Darcey and Shane Conder, ―Android Wireless Application Development‖, 

Pearson Education, 2nd ed. (2011)  

 

 

 

 

 



Mobile Application Development  

 

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 
 

DEPARTMENT OF INFORMATION TECHNOLOGY 
 

 

 

INDEX 
 

S. No 
 

Unit 
Topic Page no 

1 
 

I Introduction to Mobile 1 

2 
 

I Mobile Information Architecture 2 

3 
 

I J2ME  4 

4 
 

II Introduction to Android 10 

5 
 

II Android Development Tools 11 

6 
 

III Installing & Using Eclipse with ADT Plug-in 14 

7 
 

III 
Installing Virtual Machine for Android Jelly bean 

(Emulator) 
15 

8 
 

III Configuring the installed tools 17 

9 
 

III Creating an Android Project 19 

10 
 

III Deploy it on USB-connected Android Device 21 

11 
 

IV User Interface Architecture 23 

12 
 

IV Activity Life Cycle 23 

13 
 

IV User Interface Design 24 

14 
 

V Understanding of SQLite database 26 

15 
 

V Connecting with the database 49 

 

 



Mobile Application Development   Page | 1  

 

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 
 

DEPARTMENT OF INFORMATION TECHNOLOGY 
 

UNIT -I 
 

A BRIEF HISTORY OF MOBILE 
 

Mobile phones have changed the way we live our lives providing voice calling, text messaging and mobile 

Internet access. The very first mobile phones were two-way radios that allowed taxi drivers and the emergency 

services to communicate. Motorola, on 3 April 1973 was first company to mass produce the first handheld 

mobile phone. 

 

PRE-STANDARDISATION OR “0 G” 

 

AT&T was one of the first to commercialize mobile telecommunication in 1947. The service known simply as 

―Mobile Telephone Service‖ (MTS) spread to more than a hundred towns and highway paths by the end of the 

year. The service relied on an operator to connect both incoming and outgoing calls. 

 

The first generation of cellular networks paved the way to the networks. Use of multiple cell tower sites, each 

connected through a network, allowed users to travel and even switch cell towers during a call. It was a 

revolution built on existing, analog technology with the first being built in Chicago in 1977. Known as the 

Analog Mobile Phone System (AMPS), it was built by AT&T and it took FCC 11 years to approve AT&T’s 

initial proposal in 1971.   

 

Advancement by 2G was the introduction of SMS messaging, with the first computer generated SMS sent in 

1992 in the UK. The very first download services were also introduced using 2G technology and enabled users 

to download ringtones. Mobile phones also saw use as another method of payment for services like car parking 

in Finland and vending machines. 

 

3G transformed the mobile phone industry and enabled widespread mobile Internet and the transmission 

services like TV and Radio for the very first time. Handset manufacturers jumped on the bandwagon and 

smartphone use took off.  

 

IP networks, bringing mobile Internet more in-line with wired home Internet connections.Speed is of course the 

big advantage. The fourth generation of mobile communication is still evolving, and we’re bound to see new 

standards, speed increases and coverage benefits in the next few years.  

 

THE MOBILE ECO-SYSTEM 

 
Mobile Ecosystem is a collection of multiple devices 

(mobile phones, Tablet, Phablet etc), software (operating 

system, development tools, testing tools etc), 

companies(device manufacturers, carrier, apps stores, 

development/testing companies) etc.. and the process by 

which  data (sms, bank-transactions etc.) is transferred/ 

shared by a user from one device to another device or by the 

device itself based on some programs(Birthday, Wedding 

Messages, Calendar).  

 

Data (Text, Multi-media, and VOICE) sharing can be done between devices of the same operating system or 

different operating systems. Examples – Iphone (IOS) to Windows Phone, Iphone IOS to Nexus(Android), 

Motorola(Android) to Nexus(Android). Data can also be shared between multiple devices with the same 

operating system of the same manufacturer. 

 

 Why Mobile? 
 

Mobile phones are used widely in our day-to-day lives giving us the freedom to communicate anywhere and at 

anytime. The latest mobile phones are incorporated with features like MP3 players, high resolution camera, high 

sound quality, 3G technology and the list goes on.  

https://www.makeuseof.com/tag/free-calls-iphone-official-google-voice-app/
https://www.makeuseof.com/tag/adding-events-google-calendar-sms/
https://www.makeuseof.com/tag/reduce-mobile-internet-data-usage-save-money-onavo-ios/
https://www.makeuseof.com/tag/reduce-mobile-internet-data-usage-save-money-onavo-ios/
https://www.makeuseof.com/tag/reduce-mobile-internet-data-usage-save-money-onavo-ios/
https://www.makeuseof.com/tag/gs-ltes-understanding-mobile-broadband-technology-explained/


Mobile Application Development   Page | 2  

 

 

The mobile phone allows us to connect to other compatible devices, surf the internet, listen to music, play games 

and capture our precious moments. These latest mobile phones are stylish in looks and excellent in terms of 

usability and functions. The 3G phones allow doing video calling and video conferencing. These phones allow 

fast data exchange and information apart from faster data downloads via internet. MMS, SMS, Email client and 

instant messaging as well as multimedia capabilities, gaming etc; are added features of latest mobile phones. 

 

Types of Mobile Applications 

 

Native apps are built for a specific operating system. A native app developed for iOS operating system won’t 

work on Android devices and vice-versa. If an app is developed for iOS, it will remain exclusive to that 

operating system. Softwares' used to develop native apps generally would be Objective-C or Swift for iOS, Java 

and ADT for Android operating system and .NET(C#) for Windows operating system. 

 

Mobile web apps are the web applications to render/deliver pages on web browsers running in mobile devices. 

Since these apps target browsers, they work on different mobile operating systems. You can view a mobile web 

app on Android, iOS or Windows tablets and phone devices. They also work on PC web browsers. Softwares' 

used to develop these applications are generally HTML, CSS, JavaScript, JQuery. 

 

Hybrid apps are a mixture of both native and mobile web apps. This type of application has cross-platform 

compatibility but can still access phone’s hardware. Softwares used to develop these apps are generally HTML, 

CSS, Javascript, JQuery, Mobile Javascript frameworks, Cordova/PhoneGap etc. 

 

Mobile Information Architecture 

 
While designing a mobile, the following steps need to be followed. 

 Put the content first creating the clarity of purpose upon which to make and support sound user 

experience decisions 

 Separate taxonomy and navigation: 

o Design taxonomies, categories, and classification schemes to make the organization of   

content intelligible to users. 

o Design navigation and interaction to make using that content context appropriate. 

 Learn the patterns and guard against falling into default patterns. 

 Build a future-friendly and re-usable foundation. 

 

Mobile Design 
 

Small Screens 

 

Decision needs to be made early as to whether to use responsive design (where the device handles the changes 

in display) or adaptive design (where your servers handle the changes). A good process to follow would be: 

 

 Group device types based on similar screen sizes and try to keep this to a manageable number of 

groups 

 Define content rules and design adaption rules that enable you to display things well on each group of 

devices 

 Try to adhere as closely to web standards (W3) as possible when implementing flexible layouts 

 Don’t forget that there are many different browser types available for the mobile web and the wider 

Internet too.  

 

Keep Navigation Simple 

 

 Prioritize navigation based on the way users work with functionality – the most popular go at the top 

 Minimize the levels of navigation involved 

 Ensure labelling is clear and concise for navigation 

 Offer short-key access to different features 

 Remember to offer a 30x30 pixel space for touch screen tap points 

 Ensure that links are visually distinct and make it clear when they have been activated too 

 Make it easy to swap between the mobile and full site (if you choose to implement separate versions) 

 



Mobile Application Development   Page | 3  

 

Keep Content to a Minimum 

 

 Don’t overwhelm your users – respect the small screen space. Keep content to a minimum. 

 Make sure that content is universally supported on all devices or avoid it. Think Flash and then don’t 

use it, for example. 

 Make page descriptions short and to the point – for relevant bookmarks. 

 

Reduce the Inputs Required from Users 

 

 Keep URLs short. 

 Offering alternative input mechanisms (video, voice, etc.) 

 Minimizing inputs in forms (you can always ask for more data when the user logs on to the desktop) 

 Allowing permanent sign in (most smart phones are password or fingerprint protected – the risks of 

staying logged in are less than on the desktop) 

 Keep scrolling to a minimum and only allow scrolling in one direction 

 

Remember Mobile Connections Are Not Stable 

 

Mobile connections can be a colossal PITA in areas with patchy service. Try: 

 

 Retaining data so that it’s not lost in a connection break 

 Minimizing page size for rapid loading 

 Killing off ad-networks, etc. on mobile sites which consume huge amounts of bandwidth and data 

 Keeping images to a minimum and reducing the size of those images 

 Reducing the numbers of embedded images to a minimum (speeding up load times) 

 

Mobile 2.0 

 
Mobile 2.0 refers to services that integrate the social web with the core aspects of mobility – personal, localized, 

always-on and ever-present. A range of sites are available for both so-called "smartphones" and for more 

ordinary "feature" mobile phones. Ex: Micro-blogging services - Jaiku, Twitter, Pownce, CellSpin; Open 

platforms for sms services - Fortumo and Sepomo; Information providing and services - mobeedo. 

 

Mobile Web Development 
 

Working with Code : For coding our markup, JavaScript, and CSS, we can use almost any web tool available 

on the market, including Adobe Dreamweaver, Microsoft Visual Studio, Eclipse, Aptana Studio, and of course 

any good text editor, such as Sublime Text, Textmate, WebStorm, or Notepad++.  

Adobe Dreamweaver : Since the CS5.5 version, Dreamweaver has worked better with mobile markup and 

allows us to validate against mobile web standards. When we create a new document we can choose HTML5 as 

the document type. 

Adobe Edge Tools : Adobe offers a group of tools under the name of Edge that help designers and developers 

to create HTML5 applications such as Edge Code, Edge Reflow, Edge Inspect, and Edge . 

 

Microsoft Visual Studio and WebMatrix : Microsoft IDEs have supported HTML5 syntax and IntelliSense 

since version 2010 SP1. WebMatrix for mobile web development is available for free.  

 

Eclipse : To use Eclipse as our development environment, there are several plug-ins you can use to create 

mobile HTML5 apps. Aptana from Titanium, a free Eclipse-based IDE for HTML5 and mobile development 

can be downloaded as a free version from Aptana’s website. 

 

Native Web IDEs : To target native web or hybrid apps, some platforms offer tools and IDEs that can be used 

to develop, test, and build the final packages. 

. 

Testing : Emulators are very useful and provide a simple, fast, and fairly accurate testing solution. If it doesn’t 

work in the emulator, it probably will not work on the real device. 

https://en.wikipedia.org/wiki/Micro-blogging
https://en.wikipedia.org/wiki/Jaiku
https://en.wikipedia.org/wiki/Twitter
https://en.wikipedia.org/wiki/Pownce
https://en.wikipedia.org/w/index.php?title=CellSpin&action=edit&redlink=1
https://en.wikipedia.org/wiki/Short_message_service
https://en.wikipedia.org/wiki/Fortumo
https://en.wikipedia.org/w/index.php?title=Sepomo&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Mobeedo&action=edit&redlink=1
http://web.ms/WebMatrix
http://aptana.com/


Mobile Application Development   Page | 4  

 

Emulators and Simulators : An emulator is a piece of software that translates compiled code from an original 

architecture to the platform where it is running. An emulator is a desktop application that emulates mobile 

device hardware and a mobile operating system, allowing us to test and debug our applications and see the 

working. The browser, and even the operating system, is not aware that it is running on an emulator. 

A simulator is a less complex application that simulates some of the behavior of a device, but does not emulate 

hardware and does not work over the real operating system. A simulator may be created by the device 

manufacturer or by some other company offering a simulation environment for developers. In mobile browsing, 

there are simulators with pixel-level simulation, and others that neither create a skin over a typical desktop 

browser (such as Firefox, Chrome, or Safari) with real typography nor simulate these browsers’ rendering 

engines. 

For mobile web development, we will find emulators from Nokia, BlackBerry, Android, webOS, and Windows 

Phone, and simulators from Apple for iOS (though only for Mac OS X). A multiple mobile browser simulator is 

available from Adobe, called Device Central. 

Small Computing Device Requirements  

 
There are minimum resource requirements for a small computing device to run a J2ME application. First the 

device must have a minimum of 96 × 54 pixel display that can handle bitmapped graphics and have a way for 

users to input information, such as a keypad, keyboard, or touch screen. At least 128 kilobytes (KB) of 

nonvolatile memory is necessary to run Mobile Information Device (MID), and 8KB of nonvolatile memory is 

needed for storage of persistent application data.  

 

To run JVM, 32KB of volatile memory must be available. The device must also provide two-way network 

connectivity. The native operating system must implement exception handling, process interrupts, be able to run 

the JVM, and provide schedule capabilities. Furthermore, all user input to the operating system must be 

forwarded to the JVM, otherwise the device cannot run a J2ME application.  

 

J2ME OVERVIEW  

 
 the Java development team enhanced the capabilities of Java to dramatically reduce the complexity of 

developing a multi-tier application.  

 The team grouped features of Java into three editions, each having a software development kit (SDK).  

 The original edition of Java, called the Java 2 Standard Edition (J2SE), consists of application programming 

interfaces (APIs) needed to build a Java application or applet.  

 The Java 2 Micro Edition (J2ME) contains the API used to create applications for small computing devices, 

including wireless Java applications.  

 The development team at Sun worked on Java in the early 1990s to address the programming needs of the 

fledgling embedded computer market, but that effort was sidetracked by more compelling opportunities 

presented by the Internet.  

 As those opportunities were addressed, a new breed of portable communications devices opened other 

opportunities at the turn of the century. Cell phones expanded from voice communications devices to voice and 

text communications devices.  

 Pocket electronic telephone directories evolved into personal digital assistants. Chipmakers were releasing 

new products at this time that were designed to transfer computing power from a desktop computer into mobile 

small computers that controlled gas pumps, cable television boxes, and an assortment of other appliances.  

 J2ME is a reduced version of the Java API and Java Virtual Machine that is designed to operate within the 

sparse resources available in the new breed of embedded computers and microcomputers.  

 

Inside J2ME 

 
 Consumers expect the same software and capabilities found on their desktop and laptop computers to be 

available on their cell phones and personal digital assistants.  

 Developers seeking to build applications that run on cell phones, personal digital assistants, and various 

consumer and industrial appliances must strike a balance between a thick client and a thin client.  



Mobile Application Development   Page | 5  

 

 A thick client is front-end software that contains the logic to handle a sizable amount of data processing for 

the system.  

 A thin client is front-end software that depends on back-end software for much of the system processing.  

 Processing on the wireless device might involve two steps: First the software performs a simple validation 

process to assure that all fields on the form contain information.  

 Next the order is transmitted to the back-end system.  

 The back-end system handles adjusting account balances and other steps involved in processing the order.  

 A confirmation notice is returned by the back-end system to the wireless device, which displays the 

confirmation notice on the screen.  

 A key benefit of using J2ME is that J2ME is compatible with all Java-enabled devices. A Java-enabled device 

is any computer that runs the Java Virtual Machine.  

 

J2ME Architecture 

  
 The modular design of the J2ME architecture enables an application to be scaled based on constraints of a 

small computing device. J2ME architecture consists of layers located above the native operating system, 

collectively referred to as the Connected Limited Device Configuration (CLDC). The CLDC, which is installed 

on top of the operating system, forms the run-time environment for small computing devices. The J2ME 

architecture comprises three software layers (Figure 3-1). The first layer is the configuration layer that includes 

the Java Virtual Machine (JVM), which directly interacts with the native operating system. The configuration 

layer also handles interactions between the profile and the JVM. The second layer is the profile layer, which  

 consists of the minimum set of application programming interfaces (APIs) for the small computing device. The 

third layer is the Mobile Information Device Profile (MIDP). The MIDP layer contains Java APIs for user 

network connections, persistence storage, and the user interface. It also has access to CLDC libraries and MIDP 

libraries.  

 

 A small computing device has two components supplied by the original equipment manufacturer (OEM). 

These are classes and applications. OEM classes are used by the MIDP to access device-specific features such 

as sending and receiving messages and accessing device-specific persistent data. OEM applications are 

programs provided by the OEM, such as an address book.  

 

Run-Time Environment 

  
 A MIDlet is defined with at least a single class that is derived from the javax .microedition.midlet.MIDlet 

abstract class. Developers commonly bundle related MIDlets into a MIDlet suite, which is contained within the 

same package and implemented simultaneously on a small computing device. All MIDlets within a MIDlet suite 

are considered a group and must be installed and uninstalled as a group. Members of a MIDlet suite share 

resources of the host environment and share the same instances of Java classes and run within the same JVM. 

This means if three MIDlets from the same MIDlet suite run the same class, only one instance of the class is 

created at a time in the Java Virtual Machine. A key benefit of the relationship among MIDlet suite members is 

that they share the same data, including data in persistent storage such as user preferences.  

 

 Sharing data among MIDlets exposes each MIDlet to data errors caused by concurrent read/write access to 

data. This risk is reduced by synchronization primitives on the MIDlet suite level that restrict access to volatile 

data and persistent data. A MIDlet suite is installed, executed, and removed by the application manager running 

on the device. The application manager also makes the Java archive (JAR) file and the Java application 

descriptor (JAD) file available to members of the MIDlet suite.  

 

Inside the Java Archive File:  
 

 All the files necessary to implement a MIDlet suite must be contained within a production package called a 

Java archive (JAR) file. These files include MIDlet classes, graphic images (if required by a MIDlet), and the 

manifest file. The manifest file contains a list of attributes and related definitions that are used by the application 

manager to install the files contained in the JAR file onto the small computing device. Nine attributes are 

defined in the manifest file; all but six of these attributes are optional.  

 



Mobile Application Development   Page | 6  

 

 
 

 The manifest file’s extension is changed to .mf when the MIDlet is prepared for deployment.  

 

MIDlet-Name: Best MIDlet  

MIDlet-Version: 2.0  

MIDlet-Vendor: MyCompany  

MIDlet-1: BestMIDlet, /images/BestMIDlet.png, Best.BestMIDlet  

MicroEdition-Profile: MIDP-1.0  

MicroEdition-Configuration: CLDC-1.0  

 

 The MIDlet-n attribute can contain three values that describe the MIDlet. A comma separates each value. The 

first value is the name of the MIDlet, which is BestMIDlet. Next is an optional value that specifies the icon that 

will be used with the MIDlet. In this example, BestMIDlet.png is the icon. The icon must be in the PNG image 

format. And the last value for the MIDlet-n attribute is the MIDlet class name, which is Best.BestMIDlet. The 

application manager uses the class name to load the MIDlet.  

 
Inside the Java Application Descriptor File 

 
 A JAD file is also used to provide the application manager with additional content information about the JAR 

file to determine whether the MIDlet suite can be implemented on the device. AJAD file is similar to a manifest 

in that both contain attributes that are name:value pairs. Name:value pairs can appear in any order within the 

JAD file. There are five required system attributes for a JAD file:  

 

MIDlet-Name  

MIDlet-Version  

MIDlet-Vendor  

MIDlet-n  

MIDlet-Jar-URL 18  

 
 A developer can include application attributes in a JAD file. An application attribute is a name:value pair that 

contains a value unique to the application.  

 

MIDlet Programming 

 
 Programming a MIDlet is similar to creating a J2SE application in that you define a class and related 

methods. A MIDlet is a class that extends the MIDlet class and is the interface between application statements 

and the run-time environment, which is controlled by the application manager. A MIDlet class must contain 

three abstract methods that are called by the application manager to manage the life cycle of the MIDlet. These 

abstract methods are startApp(), pauseApp(), and destroyApp().  

 

The startApp() method is called by the application 

manager when the MIDlet is started and contains 

statements that are executed each time the 

application begins execution. The pauseApp() 

method is called before the application manager 

temporarily stops the MIDlet. The application 

manager restarts the MIDlet by recalling the 

startApp() method. The destroyApp() method is 

called prior to the termination of the MIDlet by the 

application manager. 



Mobile Application Development   Page | 7  

 

 

 public class BasicMIDletShell extends MIDlet { public void startApp() { } public void pauseApp() { } public 

void destroyApp( boolean unconditional) { } }  

 

 Both the startApp() and pauseApp() methods are public and have no return value nor parameter list. The 

destroyApp() method is also a public method without a return value. However, the destroyApp() method has a 

boolean parameter that is set to true if the termination of the MIDlet is unconditional, and false if the MIDlet can 

throw a MIDletStateChangeException telling the application manager that the MIDlet does not want to be 

destroyed just yet. At the center of every MIDlet are the MIDP API classes used by the MIDlet to interact with 

the user and handle data management. The data-handling MIDP API classes enable the developer to perform 

four kinds of data routines: write and read persistent data, store data in data types, receive data from and send 

data to a network, and interact with the small computing device’s input/output features.  

 

Event Handling 

 
 A MIDlet is an event-based application. All routines executed in the MIDlet are invoked in response to an 

event reported to the MIDlet by the application manager. The startApp() method in a typical MIDlet contains a 

statement that displays a screen of data and prompts the user to enter a selection from among one or more 

options. A Command object is used to present a user with a selection of options to choose from when a screen is 

displayed. Each screen must have a CommandListener. A CommandListener monitors user events with a screen 

and causes the appropriate code to execute based on the current event.  

 
User Interfaces 

 

 The design of a user interface for a MIDlet depends on the restrictions of a small computing device. A rich 

user interface contains the following elements, and a device with a minimal user interface has some subset of 

these elements as determined by the profile used for the device. A Form is the most commonly invoked user 

interface element found in a MIDlet and is used to contain other user interface elements. Text is placed on a 

form as a StringItem, a List, a ChoiceGroup, and a Ticker. A StringItem contains text that appears on a form that 

cannot be changed by the user. A List is an itemized options list from which the user can choose an option. A 

ChoiceGroup is a related itemized options list. And a Ticker is text that is scrollable. A user enters information 

into a form by using the Choice element, TextBox, TextField, or DateField elements. The Choice element 

returns an option that the user selected. TextBox and TextField elements collect textual information from a user 

and enable the user to edit information that appears in these user interface elements. The DateField is similar to 

a TextBox and TextField except its contents are a date and time. An Alert is a special Form that is used to alert 

the user that an error has occurred. An Alert is usually limited to a StringItem user interface element that defines 

the nature of the error to the user.  

 
Device Data 

 

 Small computing devices don’t have the resources necessary to run an onboard database management system 

(DBMS). A MIDlet can use an MIDP class—RecordStore—and two MIDP interfaces— RecordComparator and 

RecordFilter—to write and read persistent data. A RecordStore class contains methods used to write and read 

persistent data in the form of a record. Persistent data is read from a RecordStore by using either the 

RecordComparator interface or the RecordFilter interface.  

 

J2ME Wireless Toolkit 

 
The J2ME Wireless Toolkit is used to develop and test J2ME applications by selecting a few buttons from a 

toolbar.  

 

Building and Running a Project 
 

After downloading the J2ME Wireless Toolkit from the Sun web site, let’s create a new project by selecting the 

New Project button from the toolbar. You’ll be prompted to enter a project name and class name. Enter Hello 

World as the project name and greeting.HelloWorld as the class name, which is the name of the first MIDlet that 

is associated with the project. After selecting the Create Project button, the J2ME Wireless Toolkit 

automatically creates a directory structure for the project and also creates the manifest file and JAD file.  

 



Mobile Application Development   Page | 8  

 

 
 

You can see and modify attributes of these files by selecting the Settings option, which displays a dialog box 

containing a series of tabs. The first tab displayed, Required (see Figure 3-9), contains a list of attributes that are 

necessary for the manifest file and JAD 62 J2ME: The Complete Reference Complete Reference / J2ME: TCR / 

Keogh / 222710-9 / Chapter 3 file, as previously discussed in this chapter. The Optional tab (see Figure 3-10) 

contains attributes that are common to many projects but not required to build and deploy a J2ME application. 

Figure 3-9. List of required attributes Figure 3-8.  

 

 
 

Enter the project name and class name of the first MIDlet to begin the project. P:\010Comp\CompRef8\710-

9\ch03.vp Thursday, February 06, 2003 11:40:19 AM Color profile: Generic CMYK printer profile Composite 

Default screen Chapter 3: J2ME Architecture and Development Environment 63 Complete Reference / J2ME: 

TCR / Keogh / 222710-9 / Chapter 3 J2ME BASICS. 

 

The User Defined tab (Figure 3-11) contains 

optional attributes specific to your application, as 

discussed previously in this chapter. This tab will 

be empty until you select the Add button and 

insert your own attributes.  

 

The MIDlets tab lists MIDlets of your project. 

Notice that the HelloWorld MIDlet is listed in the 

tab, which is the MIDlet you entered as the class 

name when beginning the project. A well-

organized file structure is automatically created 

for your project as a result of starting a new 

project. Within the WTK104 directory, you’ll see 

an apps subdirectory in which the projects you 

create are stored. Browse the apps subdirectory to 

see a subdirectory called Hello World, which is 

the name that you gave to your project.  

 

A subdirectory of the apps directory is created for every project. And within the project’s subdirectory is another 

set of subdirectories. These are ■ src, containing source code ■ bin, containing the manifest.mf file, JAD file, 

and JAR file Figure 3-10. List of optional attributes P:\010Comp\CompRef8\710-9\ch03.vp Thursday, February 

06, 2003 11:40:20 AM Color profile: Generic CMYK printer profile Composite Default screen ■ classes, 

containing the compiled classes ■ tmpclasses, containing the preverify classes ■ res, containing image, data, and 

other files required by the application. 

 

Hello World J2ME Style 
 

 create the first MIDlet once the Java development kit, Connected Limited Device  Configuration (CLDC), 

and Mobile Information Device Profile (MIDP) are installed.  

 Lets begin by creating a directory structure within which you can create and run MIDlets. Lets create the 

HelloWorld MIDlet now. Enter the code shown in Listing 3-4 into a text editor such as Notepad, and save the 

file in the j2me\src\greeting directory as HelloWorld.java.  

 

The HelloWorld MIDlet performs three basic functions that are found in nearly all MIDlets. These are to display 

a text box and a command on the screen, then listen to events that occur while the MIDlet is running. The 

HelloWorld MIDlet is created by defining a class called HelloWorld that extends the MIDlet class and 

implements a CommandListener. The HelloWorld class contains three private data members and four methods. 



Mobile Application Development   Page | 9  

 

The data members are a Display object, a text box, and a command. The methods are startApp(), pauseApp(), 

and destroyApp(). The fourth method is called commandAction() and is invoked by the application manager 

whenever an event occurs. 

 

 import javax.microedition.midlet.*; import javax.microedition.lcdui.*; public class HelloWorld extends 

MIDlet implements CommandListener { private Display display ; private TextBox textBox ; private Command 

quitCommand; public void startApp() { display = Display.getDisplay(this); quitCommand = new 

Command("Quit", Command.SCREEN, 1); textBox = new TextBox("Hello World", "My first MIDlet", 40, 0); 

textBox .addCommand(quitCommand); textBox .setCommandListener(this); display .setCurrent(textBox ); } 

public void pauseApp() { } public void destroyApp(boolean unconditional) { } public void 

commandAction(Command choice, Displayable displayable) { if (choice == quitCommand) { 

destroyApp(false); notifyDestroyed(); } } }  

 

 the final statement within the startApp() method associates the TextBox object with the Display object by 

calling the setCurrent() method of the Display object and passing the setCurrent() method the TextBox object. 

Prior to invoking the notifyDestroyed() method, a MIDlet should have completed its own garbage collection.  

 

Compiling Hello World 

 

 The Hello World source code files should be saved in the new j2me\src\greeting directory as 

HelloWorld.java. The first step is to use the Java compiler to transform the source file into a class file. The 

second step is to preverify the class file. The preverification generates a modified class file. Make 

j2me\src\greeting the current directory, and then enter the following command at the command line. javac -d 

d:\j2me\tmp_classes -target 1.1 -bootclasspath d:\j2me\midp1.0.3fcs\classes HelloWorld.java.  

 

Running Hello World:  

 

 A MIDlet should be tested in an emulator before being downloaded to a small computing device. An emulator 

is software that simulates how a MIDlet will run in a small computing device. There are two ways to run a 

MIDlet. These are either by invoking the MIDlet class or by creating a JAR file, then running the MIDlet from 

the JAR file. Click the right telephone handset icon to close the MIDlet. midp -classpath d:\j2me\classes 

greeting.HelloWorld.  

 

Deploying Hello World:  

 

 A MIDlet should be placed in a MIDlet suite after testing is completed. This suite is then packaged into a 

JAR file along with other related files for downloading. This process is commonly referred to as packaging.  

 MIDlet-1: HelloWorld, , greeting.HelloWorld MIDlet-Name: Hello World MIDlet-Version: 1.0 MIDlet-

Vendor: Jim MIDlet-1: HelloWorld, /greeting/myLogo.png, greeting.HelloWorld MicroEdition-Configuration: 

CLDC-1.0 MicroEdition-Profile: MIDP-1.0.  

 can create the JAR file once the manifest.txt file is saved in the j2me\src\ greeting directory. Make sure the 

j2me\src\greeting directory is the current directory, and then create the JAR file by entering the following 

command: jar -cfvm d:\j2me\midlets\HelloWorld.jar manifest.txt -C d:\j2me\classes greeting The final piece of 

the Hello World package is a JAD file. save the JAD file in the j2me/src/greeting directory.  

 

MIDlet-Name: Hello World MIDlet-Version: 1.0 MIDlet-Vendor: Jim, MIDlet-Description: My First MIDlet 

suite MIDlet-1: HelloWorld, /greeting/myLogo.png, greeting.HelloWorld MIDlet-Jar-URL: HelloWorld.jar 

MIDlet-Jar-Size: 1428. Copy the HelloWorld.jad file into the j2me/midlets directory, and then make 

j2me/midlets the current directory. Click the right telephone handset icon to close the MIDlet. midp -classpath 

HelloWorld.jar -Xdescriptor HelloWorld.jad.  

 

Multiple MIDlets in a MIDlet Suite 

 
 In the real world, multiple MIDlets are distributed in a single MIDlet suite. The application manager then 

displays each MIDlet as a menu option, enabling the user to run one of the MIDlets.   



Mobile Application Development   Page | 10  

 

 

UNIT –II 

 

HISTORY OFANDROID 

 
In October 2003, Android Inc was founded in Palo Alto, California and its four founders 

were Rich Miner, Nick Sears, Chris White, and Andy Rubin. In 2005, Android was acquired 

by Google. Rubin stayed at Google as head of the Android team until 2013.  

 

The logo for the Android OS was created by Irina Blok while she was employed by Google. 

 

Versions of Android along with their names 

 

ANDROID1.5           CUPCAKE 

ANDROID1.6           DONUT 

ANDROID2.0-2.1    ÉCLAIR 

ANDROID2.2           FROYO 

ANDROID2.3           GINGERBREAD 

ANDROID3.0           HONEYCOMB 

ANDROID4.0           ICECREAMSANDWICH 

ANDROID4.1-4.3    JELLYBEAN 

ANDROID4.4           KITKAT 

ANDROID5.0           LOLLIPOP 

ANDROID6.0           MARSHMALLOW 

ANDROID7.0           NOUGAT 

ANDROID8.0           OREO 

ANDROID9.0           PIE 

ANDROID10 Q  

 

Android Q will allow users to control apps’ access to their phone’s Photos and Videos or the Audio collections 

via new runtime permissions. 

INTRODUCTION TO ANDROID  

 

In 2007, Apple launched the first iPhone and ushered in a new era in mobile computing. In Sept. 2008, the 

very first Android smartphone was announced, the T-Mobile G1  went on sale in the U.S. Oct. of that year.  

Android 1.0 OS inside integrated a number of the company’s other products and services, including Google 

Maps, YouTube, and an HTML browser (pre-Chrome) that, of course, used Google’s search services. It also had 

the first version of Android Market, the app store with ―dozens of unique, first-of-a-kind Android applications.‖  

 

The first version of the OS (1.0) released in Sept. 2008 did not have a code name at all. However, it reportedly 

used the internal name ―Petit four‖ while it was in development at Google. The name refers to a French dessert. 

Android has come a long way from its humble beginnings, as the 

product of a small start up, all the way to becoming the leading 

mobile operating system worldwide. Google’s introduction of Project 

Treble in Android Oreo should make it easier for phone makers to 

update their devices faster. 

One challenge for Android device owners that has been an issue for 

the OS ever since it launched is updating it with the latest security 

patches, for major feature updates. Google’s supported Nexus and 

Pixel devices consistently receive regular monthly security updates, 

and the latest version of the OS.  

OPERATING SYSTEMS 

 
Different OS run on different types of hardware and are designed for different types of applications. For 

example, iOS is designed for iPhones and iPad tablets, while Mac desktops and laptops use macOS.  

https://newsroom.t-mobile.com/news-and-blogs/t-mobile-unveils-the-t-mobile-g1-the-first-phone-powered-by-android.htm
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html


Mobile Application Development   Page | 11  

 

 

MICROSOFT WINDOWS :  

 

Initial versions of Windows worked with MS-DOS, providing a modern graphical interface on top of DOS's 

traditional text-based commands. The Windows Start menu helps users find programs and files on their devices. 

 

APPLE IOS 

Apple's iOS is one of the most popular smartphone operating systems, second only to Android. It runs on Apple 

hardware, including iPhones, iPad tablets and iPod Touch media players. 

GOOGLE'S ANDROID OS 

Android is the most popular operating system in the world judging by the number of devices installed. Users can 

download custom versions of the operating system.  

APPLE MAC OS 

Apple's macOS, successor to the popular OS X operating system, runs on Apple laptops and desktops.. MacOS 

is known for its user-friendly features, which include Siri and FaceTime. 

LINUX OPERATING SYSTEM  

 

Linux can be run on a wide variety of hardware and is available free of charge over the internet. 

 

ANDROID DEVELOPMENT TOOLS 
 Editors and IDEs 

 Language Resources 

 Libraries 

 Plug-ins 

 

Android Editors and IDEs 

 

 Android Studio – The official IDE, based on the community-created IntelliJIDEA (see below). 

 Eclipse – Before Android Studio, this was the official Android development environment. Used to code 

Java but can be expanded to other languages via plugins, it is still a powerful tool. 

 IntelliJIDEA – Android Studio is based on this, and this IDE is not only extremely useful, but has a 

massive amount of community-created plugins, making it highly customisable. 

 DroidEdit – An Android text and code editor to use on Android platforms. 

 Android-IDE – A complete web and Android development environment, it also allows you to edit Java 

and PhoneGap apps.  

 Cordova – Mobile apps with HTML, CSS and JS, its one of the best tools if you want to create hybrid 

apps. Free and open source. 

 Corona – A 2D-development platform with a specific focus on games but can be used to create other 

types of mobile apps too. One of the best for cross-platform development and 100% free. 

 Titanium – One of the lesser-known platforms, it allows for the creation of native apps for iOS, 

Android and Windowsphone and runs off a single JavaScript codebase. 

 Xamarin – Widely featured in the press and a very impressive IDE for native Android, iOS and 

Windows applications. Open source and free with two further price plans, it uses C# as its language 

 CppDroid – Allows you to code, edit compile and execute C and C++ code. Packed full of features 

including practice programs and syntax highlighting. 

 

Android Language Resources 

 

 Java – Straight to the source, if you’re developing in Android, Java is probably the language you want 

to be using. Has it’s own development kit, but there are plenty of other SDKs out there too. 

 Codeacademy – One of the premier code-learning resources online, it has been used by thousands of 

people to get into Java coding, as well as other languages and frameworks. An interactive, learn-as-

you-code format. 

 Team treehouse – Another e-learning website, but well known for the strength of its Java courses. 

 Udemy – Online learning can’t go without mentioning Udemy, which features dozens of both highly 

specific and generic Java learning courses. 

 New Boston – Youtube tutorials to learn how to develop in Android – currently has over 5 million 

views. Covers everything from setting up the SDK to XLM Layouts. 200 videos in total. 

http://www.businessofapps.com/marketplace/app-development-software/research/android-development-tools/#1
http://www.businessofapps.com/marketplace/app-development-software/research/android-development-tools/#2
http://www.businessofapps.com/marketplace/app-development-software/research/android-development-tools/#3
http://www.businessofapps.com/marketplace/app-development-software/research/android-development-tools/#4
https://developer.android.com/studio/index.html
https://eclipse.org/downloads/
https://www.jetbrains.com/idea/features/android.html
http://www.droidedit.com/
http://www.android-ide.com/
https://cordova.apache.org/
http://coronalabs.com/
http://www.appcelerator.com/titanium/titanium-sdk/
https://www.xamarin.com/
http://www.cppdroid.info/
http://java.com/en/download/faq/develop.xml
https://www.codecademy.com/en/courses/learn-java
https://teamtreehouse.com/
https://www.udemy.com/
https://www.youtube.com/course?list=EC2F07DBCDCC01493A


Mobile Application Development   Page | 12  

 

 Ryan Park Apps resource list – Ryan Parks taught himself how to code in Java and published, among 

others, a personal finance application. This is the list of resources he used. 

 Oracle Java Tutorials – Both general and specialised Java tutorials by IT giants Oracle, starts from the 

very basic concepts and overview. 

 Cave of Programming – Covers both Java and C++, comes with exercises and tests: also sometimes 

offers paid-for courses for free, pending approval by the creator of the site, John. 

 

Android Libraries 

 

 GSon – Serialising and deserialising Java objects in JSON. 

 Retrofit – Described as an ―elegant solution for organising API calls‖. 

 Awesome Java – A list of some of the best Java frameworks and libraries. 

 AndroidView Animations – Library with very simple syntax to get regular View animations working 

smoothly. 

 EventBus – Aimed at making communication between parts of your application as smooth and easy as 

possible. 

 ButterKnife – Very lightweight library which streamlines various wordy Android syntax issues by 

using annotations to create boilerplate template code. 

 Picasso – Specifically useful when download images for apps. Just inputting the image’s URL will 

download the image, store as bitmap and cache it. 

 

Android Plug-ins 

 

 Plugin collection for IntelliJ – The main repository for IntelliJ plugins, an absolute treasure-trove of 

handy tools for the IntelliJ IDE. 

 A curated list of IntelliJ Plugins – The above repository is absolutely huge, so to help you get started 

and find some gems, here’s a curated list of the best IntelliJ plugins. 

 Import Drawables – For IntelliJ, allows importing of drawables at different resolutions and other 

image-based functionalities. 

 GenyMotion – One of the biggest and most reliable testing and emulation tools for Android apps – 

employed by BlaBla Car among other high-profile names. 

 Boilerplate Code Generation – For IntelliJ, generates parcelable boilerplate code. 

 Android Holo Colors – Generates all necessary XML to have editext and colour spinners in your 

Android app. 

 

ANDROID ARCHITECTURE 

 

 

 

https://docs.google.com/spreadsheets/d/1Iv2DD18vl8JnDz8Mblo_mI2tBoOBKUh-9eKJuMCiEjU/pub?output=html
https://docs.oracle.com/javase/tutorial/
https://www.caveofprogramming.com/
https://code.google.com/p/google-gson/
http://square.github.io/retrofit/
https://github.com/akullpp/awesome-java
https://github.com/daimajia/AndroidViewAnimations
http://greenrobot.github.io/EventBus/
https://github.com/JakeWharton/butterknife
https://github.com/square/picasso
https://plugins.jetbrains.com/
http://blog.jetbrains.com/idea/2015/04/a-curated-list-of-ide-plugins-for-android-development/
https://github.com/winterDroid/android-drawable-importer-intellij-plugin
https://www.genymotion.com/
https://github.com/mcharmas/android-parcelable-intellij-plugin/
https://github.com/jeromevdl/android-holo-colors


Mobile Application Development   Page | 13  

 

Android is structured in the form of a software stack comprising applications, an operating system, run-time 

environment, middleware, services and libraries. Each layer of the stack, and the corresponding elements within 

each layer, are tightly integrated and carefully tuned to provide the optimal application development and 

execution environment for mobile devices.  

THE LINUX KERNEL 

Positioned at the bottom of the Android software stack, the Linux Kernel provides a level of abstraction between 

the device hardware and the upper layers of the Android software stack. Based on Linux version 2.6, the kernel 

provides pre-emptive multitasking, low-level core system services such as memory, process and power 

management in addition to providing a network stack and device drivers for hardware such as the device 

display, Wi-Fi and audio. 

ANDROID RUNTIME – ART 

When an Android app is built within Android Studio it is compiled into an intermediate byte-code format (DEX 

format). When the application is subsequently loaded onto the device, the Android Runtime (ART) uses a 

process referred to as Ahead-of-Time (AOT) compilation to translate the byte-code down to the native 

instructions required by the device processor. This format is known as Executable and Linkable Format (ELF). 

Each time the application is subsequently launched, the ELF executable version is run, resulting in faster 

application performance and improved battery life. 

ANDROID LIBRARIES 

In addition to a set of standard Java development libraries (providing support for such general purpose tasks as 

string handling, networking and file manipulation), the Android development environment also includes the 

Android Libraries. These are a set of Java-based libraries that are specific to Android development.  

C/C++ LIBRARIES 

The Android runtime core libraries are Java-based and provide the primary APIs for developers writing Android 

applications. It is important to note, however, that the core libraries do not perform much of the actual work and 

are, in fact, essentially Java ―wrappers‖ around a set of C/C++ based libraries. 

APPLICATION FRAMEWORK 

The Application Framework is a set of services that collectively form the environment in which Android 

applications run and are managed. This framework implements the concept that Android applications are 

constructed from reusable, interchangeable and replaceable components. This concept is taken a step further in 

that an application is also able to publish its capabilities along with any corresponding data so that they can be 

found and reused by other applications. 

APPLICATIONS 

Located at the top of the Android software stack are the applications. These comprise both the native 

applications provided with the particular Android implementation (for example web browser and email 

applications) and the third party applications installed by the user after purchasing the device. 

 

 

  



Mobile Application Development   Page | 14  

 

UNIT – III 

DEVELOPMENT TOOLS 

 
INSTALLING AND USING ECLIPSE WITH ADT PLUG-IN 

 

Installing the Eclipse Plugin 

 

Android offers a custom plugin for the Eclipse IDE, called Android Development Tools (ADT). This plugin 

provides a powerful, integrated environment in which to develop Android apps. It extends the capabilities of 

Eclipse to let you quickly set up new Android projects, build an app UI, debug your app, and export signed (or 

unsigned) app packages (APKs) for distribution. 

If you need to install Eclipse, you can download it from eclipse.org/mobile. 

 

Note: If you prefer to work in a different IDE, you do not need to install Eclipse or ADT. Instead, you can 

directly use the SDK tools to build and debug your application. 

Download the ADT Plugin 

1. Start Eclipse, then select Help > Install New Software. 

2. Click Add, in the top-right corner. 

3. In the Add Repository dialog that appears, enter "ADT Plugin" for the Name and the following URL 

for the Location: 

4. https://dl-ssl.google.com/android/eclipse/ 

5. Click OK. 

6. If you have trouble acquiring the plugin, try using "http" in the Location URL, instead of "https" (https 

is preferred for security reasons). 

7. In the Available Software dialog, select the checkbox next to Developer Tools and click Next. 

8. In the next window, you'll see a list of the tools to be downloaded. Click Next. 

9. Read and accept the license agreements, then click Finish. 

10. If you get a security warning saying that the authenticity or validity of the software can't be established, 

click OK. 

11. When the installation completes, restart Eclipse. 

Configure the ADT Plugin 

1. Once Eclipse restarts, you must specify the location of your Android SDK directory: 

2. In the "Welcome to Android Development" window that appears, select Use existing SDKs. 

3. Browse and select the location of the Android SDK directory you recently downloaded and unpacked. 

4. Click Next. 

5. Your Eclipse IDE is now set up to develop Android apps, but you need to add the latest SDK platform 

tools and an Android platform to your environment. To get these packages for your SDK, continue 

to Adding Platforms and Packages. 

Troubleshooting Installation 

1. If you are having trouble downloading the ADT plugin after following the steps above, here are some 

suggestions: 

2. If Eclipse can not find the remote update site containing the ADT plugin, try changing the remote site 

URL to use http, rather than https. That is, set the Location for the remote site to: 

3. http://dl-ssl.google.com/android/eclipse/ 

4. If you are behind a firewall (such as a corporate firewall), make sure that you have properly configured 

your proxy settings in Eclipse. In Eclipse, you can configure proxy information from the main Eclipse 

menu in Window (on Mac OS X, Eclipse) > Preferences > General > Network Connections. 

 

If you are still unable to use Eclipse to download the ADT plugin as a remote update site, you can download the 

ADT zip file to your local machine and manually install it: 

 

1. Download the ADT Plugin zip file (do not unpack it): 

http://eclipse.org/mobile/
https://stuff.mit.edu/afs/sipb/project/android/docs/sdk/installing/adding-packages.html


Mobile Application Development   Page | 15  

 

Package Size MD5 Checksum 

ADT-21.1.0.zip 13564671 

bytes 

f1ae183891229784bb9c33bcc9c5ef1e 

2. Start Eclipse, then select Help > Install New Software. 

3. Click Add, in the top-right corner. 

4. In the Add Repository dialog, click Archive. 

5. Select the downloaded ADT-21.1.0.zip file and click OK. 

6. Enter "ADT Plugin" for the name and click OK. 

7. In the Available Software dialog, select the checkbox next to Developer Tools and click Next. 

8. In the next window, you'll see a list of the tools to be downloaded. Click Next. 

9. Read and accept the license agreements, then click Finish. 

10. If you get a security warning saying that the authenticity or validity of the software can't be established, 

click OK. 

11. When the installation completes, restart Eclipse. 

 

To update your plugin once you've installed using the zip file, you will have to follow these steps again instead 

of the default update instructions. 

 

For Linux users: 

 

If you encounter this error when installing the ADT Plugin for Eclipse: 

 

 

 

 

 

...then your development machine lacks a suitable Java VM. Installing Sun Java 6 will resolve this issue and you 

can then reinstall the ADT Plugin. 

 

INSTALLING VIRTUAL MACHINE FOR ANDROID JELLY BEAN (EMULATOR) 

 
Initially, install VirtualBox on your Windows PC. 

 

Instructions to Install Android 4.3 on a windows computer  
. 

Step 1: Install and open Virtualbox. 

 

Step 2: Click on new and enter a name and the operating system details for the virtual machine. Select type 

as Linux and version as other and click next.                            

 

Step 3: Enter the amount of ram you would like to allot for the virtual machine and click next. Android 4.3 

requires at least 1Gb of ram but its not necessary. 

 

Step 4: In the next window select ― Create a virtual hard disk ― and then select VDI .      

 

   
 

An error occurred during provisioning. 

Cannot connect to keystore. 

JKS 

 

http://dl.google.com/android/ADT-21.1.0.zip


Mobile Application Development   Page | 16  

 

Step 5: According to your space requirement you can either select dynamically allocated or fixed size for 

your storage space . i selected fixed size because i want to allocate only 8Gb of storage space to android.  

 

Step 6: Your virtual machine is now set . all you need to do is add the location of the Android 4.3 image 

file . Click on  the settings button in virtualbox . Under the settings navigate to storage , below the storage 

tree select empty and click on the disk image and select ― choose a virtual CD/DVD disk file ― and select 

the android 4.3 image . Check the Live CD/DVD box and click ok. 

 

 
 

Step 7: Double click on your virtual machine to start it and click OK for all the dialog boxes . Select Install 

Android-X86 to hard disk and click OK for all the dialog boxes . 

         

Step 8: in the next window you have to create a partition for installing Android . The new partition will not 

mess up anything with your windows computer . From now onwards you have to use your up , down , left 

and  right keys on your keyboard to Select ―create/modify partitions ― and click OK . 

 

       Step 9: In the next windows select new > primary and then specify the size of the new partition 

 

Step 10: Your new partition has been created . Select write and press enter and type ―yes ― and press enter 

again when prompted . In the next window select quit and press enter.     

 

Step 11 : In the next window select the Sda1 and press enter. select the et3 file system and press enter . 

When prompted to install grub loader select yes. Select now when prompted to make system directory as 

read-write . 

 

Step 12: Now android 4.3 is successfully installed on your virtual machine . select Run Android 4.3 and 

press enter . click OK for any other dialog boxes that appear . You will now see the android loading screen . 

 
Step 13: Select your language and enter , now fill in the Gmail details and all the details that are asked . 

 

Step 14: Now We have successfully installed Android 4.3 on windows computer . 

 

                
 

Inorder to uninstall the android 4.3 virtual box, right click on the virtual machine and select remove. Next select 

―delete all files‖ to remove Android 4.3 completely from PC.  

 

       
 

        

https://i0.wp.com/techverse.net/wp-content/uploads/2013/09/select-android-4.3-fiel-location-8.jpg
https://i0.wp.com/techverse.net/wp-content/uploads/2013/09/select-android-4.3-fiel-location-8.jpg


Mobile Application Development   Page | 17  

 

CONFIGURING THE INSTALLED TOOLS  

 

Install the Eclipse Java Development Tools plugin 

Install the ADT plugin 

 On Google's official Android Developers website, under the section Downloading the ADT Plugin, copy the 

update URL to the clipboard 

 From the Studio menu bar, select Help > Install New Software... 

 Click the Add button, to add the Google ADT Plugin update site 

 In the Name field, enter something descriptive, such as Google ADT 

 Paste the Google ADT update site URL, copied to the clipboard in the previous step, into the Location field 

 Click the OK button 

 

 

 Using the Work with drop-down menu, select the Google ADT entry that you added in the previous step 

 Wait for the package list to be populated 

 Select all the resulting ADT packages 

 Click the Next button 

 Click the Next button on the Install Details screen that follows 

 Select each package in turn from the left-hand pane and accept the respective license agreement 

 Click the Finish button 

 Once the installation is complete, click the Restart Now button 

 

Configure Studio to use the SDKs 

 Using the perspective icon(s) in the top-right hand corner, select the one titled Web 

 Using the Project Explorer tab in the left-hand pane, right-click an existing project and select Open Project 

 Browse the resulting project file list, right-click tiapp.xml in root of project, select Open With > TiApp Editor 

 

 Choose your preferred Titanium SDK version from the SDK Version drop-down list 

 Check the Android SDK / Target Android Platform section of the Titanium Compatibility Matrix, to determine 

which Android versions are compatible with your chosen Titanium SDK. For example, Titanium SDK 1.6.X is 

compatible with Android versions 1.6 to 2.3. This information will be needed for the configuration in the 

following steps 

 Close tiapp.xml 

http://developer.android.com/sdk/installing/installing-adt.html
https://wiki.appcelerator.org/display/guides2/Titanium+Compatibility+Matrix#TitaniumCompatibilityMatrix-AndroidSDK/TargetAndroidplatform


Mobile Application Development   Page | 18  

 

 

 From the Studio menu, select Window > Preferences or Studio > Preference for Mac OS X to open 

the Preferences dialog 

 Navigate to Android 

 Click the Browse... button to configure the Android SDK Location 

 Select a target Android SDK from the list, ensuring that its version is within the range compatible with the 

Titanium SDK you have chosen, as discovered in the previous step 

 Navigate to Studio > Platforms > Android 

 Click the Browse... button to configure the Android SDK Home 

 Select a target Android SDK from the Default Android SDK drop-down list, ensuring that its version is within 

the range compatible with the Titanium SDK you have chosen, as discovered in the previous step 

 Click OK to save preference changes 

As explained in the Android SDK / Target Android Platform, if you require advanced Android features, such 

Maps, remember to choose a target that includes the enhanced Google APIs, listed as Google APIs in 

the Default Android SDK list 

Launch the emulator and app 

 Using the Project Explorer, select the project that was opened earlier 

 Using the Launch toolbar button, located between the Project Explorer tab and its file list, select Android 

Emulator to launch the project app 

Add the DDMS perspective button 

 While the emulator boots, open the ADT perspective.  From the Studio menu bar, select the Window > Open 

Perspective > Other... 

 
 Select DDMS (which stands for, Dalvik Debug Monitor Server) from the list of available perspectives 

 To ensure that the perspective is in its default state, select the Window > Reset Perspective... menu 

 Click the OK button, when the resulting Do you want to reset the current DDMS perspective to its 

defaults?dialog displays 

 

 
 

https://wiki.appcelerator.org/display/guides2/Titanium+Compatibility+Matrix#TitaniumCompatibilityMatrix-AndroidSDK/TargetAndroidplatform


Mobile Application Development   Page | 19  

 

 Click the LogCat viewer tab above the bottom pane, to watch the console output while the emulator boots 

 If you wish, you may relocate this tab to the main pane, next to the File Explorer tab, using a simple drag and 

drop gesture 

 To show only Ti.API log messages, create a logcat filter using the green plus icon in the logcat toolbar and set 

the by Log Tag field to "TiAPI". See Reading and Writing Logs for more information about logcat filters. 

 Once booted, unlock the emulator and wait for the app to launch 

 

 
 

 Now that the emulator is running, select it from the list of devices in the left-hand pane, and inspect it using the 

tools 

 For example, select the File Explorer tab, and navigate to the directory /data/data/yourAppId 

 

The /data/data/yourAppId directory is equivalent to Titanium.Filesystem.applicationDataDirectory 

 

AppId was defined when the project was created, as shown in the TiApp Editor (see below) 

 
  

CREATING AN ANDROID PROJECT 
 

CREATE THE APP PROJECT 

 

1. Open Android Studio if it is not already opened. 

2. In the main Welcome to Android Studio window, click Start a new Android Studio project. 

3. In the Create Android Project window, enter Hello World for the Application name. 

4. Verify that the default Project location is where you want to store your Hello World app and other 

Android Studio projects, or change it to your preferred directory. 

5. Accept the default android.example.com for Company Domain, or create a unique company domain. 

If you are not planning to publish your app, you can accept the default. Be aware that changing the 

package name of your app later is extra work. 

6. Leave unchecked the options to Include C++ support and Include Kotlin support, and click Next. 

7. On the Target Android Devices screen, Phone and Tablet should be selected. Ensure that API 15: 

Android 4.0.3 IceCreamSandwich is set to Minimum SDK; if not, use the popup menu to set it. 

 

http://developer.android.com/guide/developing/debugging/debugging-log.html
https://docs.appcelerator.com/platform/latest/#!/api/Titanium.Filesystem


Mobile Application Development   Page | 20  

 

 
 

These are the settings. As of this writing, these settings make Hello World app compatible with 97% of 

Android devices active on the Google Play Store. 

 

8. Leave unchecked the Include Instant App support and all other options. Then click Next. If your 

project requires additional components for your chosen target SDK, Android Studio will install them 

automatically. 

9. The Add an Activity window appears. An Activity is a single, focused thing that the user can do. It is a 

crucial component of any Android app. An Activity typically has a layout associated with it that 

defines how UI elements appear on a screen. Android Studio provides Activity templates to help you 

get started. For the Hello World project, choose Empty Activity as shown below, and click Next. 

 

10. The Configure Activity screen appears (which differs depending on which template you chose in the 

previous step). By default, the empty Activity provided by the template is named MainActivity. You 

can change this if you want, but this lesson uses MainActivity. 

 

11. Make sure that the Generate Layout file option is checked. The layout name by default 

is activity_main. You can change this if you want, but this lesson uses activity_main. 

12. Make sure that the Backwards Compatibility (App Compat) option is checked. This ensures that 

your app will be backwards-compatible with previous versions of Android. 

13. Click Finish. 

 

Android Studio creates a folder for your projects, and builds the project with Gradle. 

The Android Studio editor appears. Follow these steps: 

1. Click the activity_main.xml tab to see the layout editor. 

2. Click the layout editor Design tab, if not already selected, to show a graphical rendition of the layout as 

shown below. 

 
3. Click the MainActivity.java tab to see the code editor as shown below. 

 

 

Explore the Project > Android pane 
. 

1. If not already selected, click the Project tab in the vertical tab column on the left side of the Android 

Studio window. The Project pane appears. 

2. To view the project in the standard Android project hierarchy, choose Android from the popup menu 

at the top of the Project pane, as shown below. 

 

https://developer.android.com/reference/android/app/Activity.html
https://gradle.org/


Mobile Application Development   Page | 21  

 

Explore the manifests folder 

 

The manifests folder contains files that provide essential information about your app to the Android system, 

which the system must have before it can run any of the app's code. 

1. Expand the manifests folder. 

2. Open the AndroidManifest.xml file. 

The AndroidManifest.xml file describes all of the components of your Android app. All components for an app, 

such as each Activity, must be declared in this XML file. In other course lessons you will modify this file to add 

features and feature permissions. For an introduction, see App Manifest Overview. 

 

RUN ON EMULATOR  
 

1. Lets create an android virtual device (avd). In order to run an emulator on your computer, you have to create a 

configuration that describes the virtual device. In Android Studio, select Tools > Android > AVD Manager, or 

click the AVD Manager icon  in the toolbar. The Your Virtual Devices screen appears. If you've 

already created virtual devices, the screen shows them; otherwise you see a blank list. 

2. Click the +Create Virtual Device. The Select Hardware window appears showing a list of pre configured 

hardware devices. For each device, the table provides a column for its diagonal display size (Size), screen 

resolution in pixels (Resolution), and pixel density (Density). 

3. Choose a device such as Nexus 5x or Pixel XL, and click Next. The System Image screen appears. 

4. Click the Recommended tab if it is not already selected, and choose which version of the Android system to 

run on the virtual device (such as Oreo).Click the link to start the download, and click Finish when it's done. 

5.  After choosing a system image, click Next. The Android Virtual Device (AVD) window appears. You can 

also change the name of the AVD. Check your configuration and click Finish. 

Run the app on the virtual device 

Let’s run your Hello World app. 

1. In Android Studio, choose Run > Run app or click the Run icon  in the toolbar. 

2. The Select Deployment Target window, under Available Virtual Devices, select the virtual device, 

which you just created, and click OK 

 

The emulator starts and boots just like a physical device. Your app builds, and once the emulator is ready, 

Android Studio will upload the app to the emulator and run it. 

DEPLOY IT ON USB-CONNECTED ANDROID DEVICE 

Configure the Android device 

 

In order to install an application directly to your device, you need to configure it to use a USB connection. 

The configuration settings vary by device. 

https://developer.android.com/guide/topics/manifest/manifest-intro.html


Mobile Application Development   Page | 22  

 

For Android 4.2 and later devices, you need to enable Developer options by opening Settings, 

click About then click the Build number item seven items. If you do not do this, you will not see 

the Developer options item in Settings. 

 

1. Open Settings. 

2. Click Security. 

3. Enable Unknown sources, that is, check this option. This permits the device to install apps that do 

not originate from Google Play. 

4. Back out to Settings. 

5. Click Developer options. 

6. If available: Set the switch in the title bar to on. 

7. Enable USB debugging, that is, check this option. This permits the device to install apps over a 

USB connection. 

8. Optional: Enable Stay awake, that is, check this option. This option keeps the screen on and 

disables the lock screen while the device is connected to USB. 

9. Optional: Enable Allow mock locations, that is, check this option. This option creates fake GPS 

locations to test location services. 

10. Back out of or close Settings. 

Install the USB driver (Windows only) 

 

Developers on Windows may need to install a USB driver specific to the manufacturer and model of the 

device on which they'll be testing. The driver enables your Windows computer to communicate with your 

Android device. Google provides download links to the drivers at Android Developer: OEM USB Drivers. 

Connect the device 

 

Connect the Android device to your computer using an USB cord. Note that some USB cables are only 

power cables and do not allow communications with the device. Make sure you use a USB cable that allows 

a data connection. 

For 4.2 devices, an "Allow USB debugging?" dialog will appear once connected via USB. Click 

the OK button. 

 

Deploy the application using Axway Appcelerator Studio 

Once you have configured your device and connected it to your computer's USB port, you are ready to   

deploy your app to it. 

  

In Studio, first select the project in the Project Explorer view, then in the global tool bar, select Run from 

the Launch Mode drop-down list and an Android device from the Target drop-down list under the Android 

Application Installer category. If the Launch Automatically option is enabled under the Target drop-

down list, the application will be automatically launched after the device is selected. If not, you need to click 

the Run button to start the build process. Your app will be built, installed to your device and automatically 

launched. 

 

  

http://developer.android.com/sdk/oem-usb.html
https://docs.axway.com/bundle/Titanium_SDK_allOS_en/page/files/_29004923LaunchAndroidDevice.png


Mobile Application Development   Page | 23  

 

UNIT – IV 

 

USER INTERFACE ARCHITECTURE 

 
APPLICATION CONTEXT 

 

Application Context is It is an instance which is the singleton and can be accessed in an activity 

via getApplicationContext(). This context is tied to the lifecycle of an application. The application context 

can be used where you need a context whose lifecycle is separate from the current context or when you are 

passing a context beyond the scope of an activity. 

 

Activity Context 

 

This context is available in an activity. This context is tied to the lifecycle of an activity. The activity context 

should be used when you are passing the context in the scope of an activity or you need the context whose 

lifecycle is attached to the current context. 

 

getContext() in ContentProvider 

 

This context is the application context and can be used similar to the application context. This can be 

accessed via getContext() method. 

 

INTENTS 

 

Intent is a simple message object that is used to communicate between android components such as activities, 

content providers, broadcast receivers and services. Intents are also used to transfer data between activities. 

The implicit intent is the intent where instead of defining the exact components, you define the action that you 

want to perform for different activities.An explicit intent is Intent where you explicitly define the component 

that needs to be called by the Android System. An explicit intent is one that you can use to launch a specific app 

component, such as a particular activity or service in your app. 

ACTIVITY LIFECYCLE 

Android Activity Lifecycle is controlled by 7 methods that describes how activity will behave at different states. 

 



Mobile Application Development   Page | 24  

 

 

MULTIPLE SCREEN SIZES 

Android devices come in all shapes and sizes, so your app's layout needs to be flexible. That is, instead of 

defining your layout with rigid dimensions that assume a certain screen size and aspect ratio, your layout should 

gracefully respond to different screen sizes and orientations. 

The best way to create a responsive layout for different screen sizes is to use Constraint Layout as the base 

layout in your UI. Constraint Layout allows you to specify the position and size for each view according to 

spatial relationships with other views in the layout. This way, all the views can move and stretch together as the 

screen size changes. 

The easiest way to build a layout with Constraint Layout is to use the Layout Editor in Android Studio. It allows 

you to drag new views to the layout, attach their constraints to the parent view and other sibling views, and edit 

the view's properties, all without editing any XML by hand. 

USER INTERFACE DESIGN 

FORM WIDGETS  

 
Widgets enable users to interact with an Android Studio application page. There are various kinds of widgets, 

such as Buttons and TextViews. 

 

To see all the widgets at your disposal, create a new application project called ―Widgets‖ and select "empty 

activity". Call your activity ―MainActivity‖. 

 

There are two components of each Android activity: the XML (Extensible Markup Language) design (the 

beauty) and the Java text (the brains). 

 

On the activity_main.xml page, you can see the full widgets palette underneath the various layout options. 

 

As you can see, there are 20 widgets available for you to use. In this guide, we’ll discuss TextViews and 

Buttons, which are probably the most common widgets in Android development. 

  
TEXT FIELDDS  

 

A text field allows the user to type text into your app. It can be either single line or multi-line. Touching a text 

field places the cursor and automatically displays the keyboard. In addition to typing, text fields allow for a 

variety of other activities, such as text selection (cut, copy, paste) and data look-up via auto-completion. 

 

You can add a text field to you layout with the EditText object. You should usually do so in your XML layout 

with a <EditText> element. 

Text fields can have different input types, such as number, date, password, or email address. 

LAYOUTS 

A layout defines the visual structure for a user interface, such as the UI for an activity or app widget. Each 

layout has a set of attributes which define the visual properties of that layout. There are few common attributes 

among all the layouts and there are other attributes which are specific to that layout. Following are common 

attributes and will be applied to all the layouts. 

BUTTON CONTROL 

Button is a user interface control which is used to perform an action whenever the user click or tap on it.  

Buttons in android will contains a text or an icon or both and perform an action when user touches it. Different 

types of buttons available are ImageButton, ToggleButton, RadioButton. 

 

https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintLayout.html
https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintLayout.html
https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintLayout.html
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/widget/EditText.html
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/components/activities.html
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/topics/appwidgets/index.html


Mobile Application Development   Page | 25  

 

TOGGLE BUTTONS 

A toggle button allows the user to change a setting between two states. 

You can add a basic toggle button to your layout with the ToggleButton object. Android 4.0 (API level 14) 

introduces another kind of toggle button called a switch that provides a slider control, which you can add with 

a Switch object.SwitchCompat is a version of the Switch widget which runs on devices back to API 7. 

SPINNERS / COMBO BOXES 

Spinners provide a quick way to select one value from a set. In the default state, a spinner shows its currently 

selected value. Touching the spinner displays a dropdown menu with all other available values, from which the 

user can select a new one. 

IMAGES 

 
public abstract class Image  

extends Object implements AutoCloseable 

java.lang.Object  

   ↳  android.media.Image 

 

A single complete image buffer to use with a media source such as a MediaCodec or a CameraDevice. 

 

This class allows for efficient direct application access to the pixel data of the Image through one or more 

ByteBuffers. Each buffer is encapsulated in a Plane that describes the layout of the pixel data in that plane. Due 

to this direct access, and unlike the Bitmap class, Images are not directly usable as UI resources. 

 

MENU 

 
In android, Options Menu is a primary collection of menu items for an activity and it is useful to implement 

actions that have a global impact on the app, such as Settings, Search, etc.  
 

In case, if we define items for the options menu in both activity or fragment, then those items will be combine 

and display in UI. 

 

DIALOG 

 
A dialog is a small window that prompts the user to make a decision or enter additional information. A dialog 

does not fill the screen and is normally used for modal events that require users to take an action before they can 

proceed. 

 

The Dialog class is the base class for dialogs, but you should avoid instantiating Dialog directly. Instead, use 

one of the following subclasses: 

 

 AlertDialog : A dialog that can show a title, up to three buttons, a list of selectable items, or a custom 

layout. 

 DatePickerDialog or TimePickerDialog : A dialog with a pre-defined UI that allows the user to select a 

date or time. 

 

  

https://developer.android.com/reference/android/widget/ToggleButton.html
https://developer.android.com/reference/android/widget/Switch.html
https://developer.android.com/reference/androidx/appcompat/widget/SwitchCompat.html
https://developer.android.com/reference/java/lang/Object.html
https://developer.android.com/reference/java/lang/AutoCloseable.html
https://developer.android.com/reference/java/lang/Object.html
https://developer.android.com/reference/android/media/MediaCodec.html
https://developer.android.com/reference/android/hardware/camera2/CameraDevice.html
https://developer.android.com/reference/java/nio/ByteBuffer.html
https://developer.android.com/reference/android/media/Image.Plane.html
https://developer.android.com/reference/android/graphics/Bitmap.html
https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://developer.android.com/reference/android/app/Dialog.html
https://developer.android.com/reference/android/app/Dialog.html
https://developer.android.com/reference/android/app/AlertDialog.html
https://developer.android.com/reference/android/app/DatePickerDialog.html
https://developer.android.com/reference/android/app/TimePickerDialog.html


Mobile Application Development   Page | 26  

 

UNIT – V 

DATABASE  

UNDERSTANDING OF SQLite DATABASE 

SQLite is a opensource SQL database that stores data to a text file on a device. Android comes in with built in 

SQLite database implementation. 

SQLite supports all the relational database features. In order to access this database, you don't need to establish 

any kind of connections for it like JDBC,ODBC e.t.c 

Database - Package 

The main package is android.database.sqlite that contains the classes to manage your own databases 

Database - Creation 

In order to create a database you just need to call this method openOrCreateDatabase with your database name 

and mode as a parameter. It returns an instance of SQLite database which you have to receive in your own 

object.Its syntax is given below 

SQLiteDatabase mydatabase = openOrCreateDatabase("your database name",MODE_PRIVATE,null); 

Apart from this , there are other functions available in the database package , that does this job. They are listed 

below 

Sr.No Method & Description 

1 
openDatabase(String path, SQLiteDatabase.CursorFactory factory, int flags, 

DatabaseErrorHandler errorHandler) 

This method only opens the existing database with the appropriate flag mode. The common flags 

mode could be OPEN_READWRITE OPEN_READONLY 

2 
openDatabase(String path, SQLiteDatabase.CursorFactory factory, int flags) 

It is similar to the above method as it also opens the existing database but it does not define any 

handler to handle the errors of databases 

3 
openOrCreateDatabase(String path, SQLiteDatabase.CursorFactory factory) 

It not only opens but create the database if it not exists. This method is equivalent to openDatabase 

method. 

4 
openOrCreateDatabase(File file, SQLiteDatabase.CursorFactory factory) 

This method is similar to above method but it takes the File object as a path rather then a string. It is 

equivalent to file.getPath() 



Mobile Application Development   Page | 27  

 

Database - Insertion 

we can create table or insert data into table using execSQL method defined in SQLiteDatabase class. Its syntax 

is given below 

mydatabase.execSQL("CREATE TABLE IF NOT EXISTS TutorialsPoint(Username VARCHAR,Password 

VARCHAR);"); 

mydatabase.execSQL("INSERT INTO TutorialsPoint VALUES('admin','admin');"); 

This will insert some values into our table in our database. Another method that also does the same job but take 

some additional parameter is given below 

Sr.No Method & Description 

1 
execSQL(String sql, Object[] bindArgs) 

This method not only insert data , but also used to update or modify already existing data in database 

using bind arguments 

Database - Fetching 

We can retrieve anything from database using an object of the Cursor class. We will call a method of this class 

called rawQuery and it will return a resultset with the cursor pointing to the table. We can move the cursor 

forward and retrieve the data. 

Cursor resultSet = mydatbase.rawQuery("Select * from MRCET",null); 

resultSet.moveToFirst(); 

String username = resultSet.getString(0); 

String password = resultSet.getString(1); 

There are other functions available in the Cursor class that allows us to effectively retrieve the data. That 

includes 

Sr.No Method & Description 

1 
getColumnCount() 

This method return the total number of columns of the table. 

2 
getColumnIndex(String columnName) 

This method returns the index number of a column by specifying the name of the column 

3 
getColumnName(int columnIndex) 

This method returns the name of the column by specifying the index of the column 

4 
getColumnNames() 

This method returns the array of all the column names of the table. 



Mobile Application Development   Page | 28  

 

5 
getCount() 

This method returns the total number of rows in the cursor 

6 
getPosition() 

This method returns the current position of the cursor in the table 

7 
isClosed() 

This method returns true if the cursor is closed and return false otherwise 

Database - Helper class 

For managing all the operations related to the database , an helper class has been given and is called 

SQLiteOpenHelper. It automatically manages the creation and update of the database. Its syntax is given below 

public class DBHelper extends SQLiteOpenHelper { 

   public DBHelper(){ 

      super(context,DATABASE_NAME,null,1); 

   } 

   public void onCreate(SQLiteDatabase db) {} 

   public void onUpgrade(SQLiteDatabase database, int oldVersion, int newVersion) {} 

} 

Example 

Here is an example demonstrating the use of SQLite Database. It creates a basic contacts applications that 

allows insertion, deletion and modification of contacts. 

To experiment with this example, you need to run this on an actual device on which camera is supported. 

Steps Description 

1 You will use Android studio to create an Android application under a package 

com.example.sairamkrishna.myapplication. 

2 Modify src/MainActivity.java file to get references of all the XML components and populate the 

contacts on listView. 

3 Create new src/DBHelper.java that will manage the database work 

4 Create a new Activity as DisplayContact.java that will display the contact on the screen 



Mobile Application Development   Page | 29  

 

5 Modify the res/layout/activity_main to add respective XML components 

6 Modify the res/layout/activity_display_contact.xml to add respective XML components 

7 Modify the res/values/string.xml to add necessary string components 

8 Modify the res/menu/display_contact.xml to add necessary menu components 

9 Create a new menu as res/menu/mainmenu.xml to add the insert contact option 

10 Run the application and choose a running android device and install the application on it and verify the 

results. 

Following is the content of the modified MainActivity.java. 

package com.example.sairamkrishna.myapplication; 

 

import android.content.Context; 

import android.content.Intent; 

import android.support.v7.app.ActionBarActivity; 

import android.os.Bundle; 

 

import android.view.KeyEvent; 

import android.view.Menu; 

import android.view.MenuItem; 

import android.view.View; 

 

import android.widget.AdapterView; 

import android.widget.ArrayAdapter; 

import android.widget.AdapterView.OnItemClickListener; 

import android.widget.ListView; 

 

import java.util.ArrayList; 

import java.util.List; 



Mobile Application Development   Page | 30  

 

 

public class MainActivity extends ActionBarActivity { 

   public final static String EXTRA_MESSAGE = "MESSAGE"; 

   private ListView obj; 

   DBHelper mydb; 

    

   @Override 

   protected void onCreate(Bundle savedInstanceState) { 

      super.onCreate(savedInstanceState); 

      setContentView(R.layout.activity_main); 

       

      mydb = new DBHelper(this); 

      ArrayList array_list = mydb.getAllCotacts(); 

      ArrayAdapter arrayAdapter=new ArrayAdapter(this,android.R.layout.simple_list_item_1, array_list); 

       

      obj = (ListView)findViewById(R.id.listView1); 

      obj.setAdapter(arrayAdapter); 

      obj.setOnItemClickListener(new OnItemClickListener(){ 

         @Override 

         public void onItemClick(AdapterView<?> arg0, View arg1, int arg2,long arg3) { 

            // TODO Auto-generated method stub 

            int id_To_Search = arg2 + 1; 

             

            Bundle dataBundle = new Bundle(); 

            dataBundle.putInt("id", id_To_Search); 

             

            Intent intent = new Intent(getApplicationContext(),DisplayContact.class); 

             

            intent.putExtras(dataBundle); 

            startActivity(intent); 

         } 

      }); 

   } 



Mobile Application Development   Page | 31  

 

    

   @Override 

   public boolean onCreateOptionsMenu(Menu menu) { 

      // Inflate the menu; this adds items to the action bar if it is present. 

      getMenuInflater().inflate(R.menu.menu_main, menu); 

      return true; 

   } 

    

   @Override 

   public boolean onOptionsItemSelected(MenuItem item){ 

      super.onOptionsItemSelected(item); 

       

      switch(item.getItemId()) { 

         case R.id.item1:Bundle dataBundle = new Bundle(); 

         dataBundle.putInt("id", 0); 

          

         Intent intent = new Intent(getApplicationContext(),DisplayContact.class); 

         intent.putExtras(dataBundle); 

          

         startActivity(intent); 

         return true; 

         default: 

         return super.onOptionsItemSelected(item); 

      } 

   } 

    

   public boolean onKeyDown(int keycode, KeyEvent event) { 

      if (keycode == KeyEvent.KEYCODE_BACK) { 

         moveTaskToBack(true); 

      } 

      return super.onKeyDown(keycode, event); 

   } 

} 



Mobile Application Development   Page | 32  

 

Following is the modified content of display contact activity DisplayContact.java 

package com.example.sairamkrishna.myapplication; 

 

import android.os.Bundle; 

import android.app.Activity; 

import android.app.AlertDialog; 

 

import android.content.DialogInterface; 

import android.content.Intent; 

import android.database.Cursor; 

 

import android.view.Menu; 

import android.view.MenuItem; 

import android.view.View; 

 

import android.widget.Button; 

import android.widget.TextView; 

import android.widget.Toast; 

 

public class DisplayContact extends Activity { 

   int from_Where_I_Am_Coming = 0; 

   private DBHelper mydb ; 

    

   TextView name ; 

   TextView phone; 

   TextView email; 

   TextView street; 

   TextView place; 

   int id_To_Update = 0; 

    

   @Override 

   protected void onCreate(Bundle savedInstanceState) { 

      super.onCreate(savedInstanceState); 



Mobile Application Development   Page | 33  

 

      setContentView(R.layout.activity_display_contact); 

      name = (TextView) findViewById(R.id.editTextName); 

      phone = (TextView) findViewById(R.id.editTextPhone); 

      email = (TextView) findViewById(R.id.editTextStreet); 

      street = (TextView) findViewById(R.id.editTextEmail); 

      place = (TextView) findViewById(R.id.editTextCity); 

 

      mydb = new DBHelper(this); 

 

      Bundle extras = getIntent().getExtras();  

      if(extras !=null) { 

         int Value = extras.getInt("id"); 

          

         if(Value>0){ 

            //means this is the view part not the add contact part. 

            Cursor rs = mydb.getData(Value); 

            id_To_Update = Value; 

            rs.moveToFirst(); 

             

            String nam = rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_NAME)); 

            String phon = rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_PHONE)); 

            String emai = rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_EMAIL)); 

            String stree = rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_STREET)); 

            String plac = rs.getString(rs.getColumnIndex(DBHelper.CONTACTS_COLUMN_CITY)); 

             

            if (!rs.isClosed())  { 

               rs.close(); 

            } 

            Button b = (Button)findViewById(R.id.button1); 

            b.setVisibility(View.INVISIBLE); 

 

            name.setText((CharSequence)nam); 

            name.setFocusable(false); 



Mobile Application Development   Page | 34  

 

            name.setClickable(false); 

 

            phone.setText((CharSequence)phon); 

            phone.setFocusable(false);  

            phone.setClickable(false); 

 

            email.setText((CharSequence)emai); 

            email.setFocusable(false); 

            email.setClickable(false); 

 

            street.setText((CharSequence)stree); 

            street.setFocusable(false);  

            street.setClickable(false); 

 

            place.setText((CharSequence)plac); 

            place.setFocusable(false); 

            place.setClickable(false); 

         } 

      } 

   } 

    

   @Override 

   public boolean onCreateOptionsMenu(Menu menu) { 

      // Inflate the menu; this adds items to the action bar if it is present. 

      Bundle extras = getIntent().getExtras();  

       

      if(extras !=null) { 

         int Value = extras.getInt("id"); 

         if(Value>0){ 

            getMenuInflater().inflate(R.menu.display_contact, menu); 

         } else{ 

            getMenuInflater().inflate(R.menu.menu_main menu); 

         } 



Mobile Application Development   Page | 35  

 

      } 

      return true; 

   } 

 

   public boolean onOptionsItemSelected(MenuItem item) {  

      super.onOptionsItemSelected(item);  

      switch(item.getItemId()) {  

         case R.id.Edit_Contact:  

         Button b = (Button)findViewById(R.id.button1); 

         b.setVisibility(View.VISIBLE); 

         name.setEnabled(true); 

         name.setFocusableInTouchMode(true); 

         name.setClickable(true); 

 

         phone.setEnabled(true); 

         phone.setFocusableInTouchMode(true); 

         phone.setClickable(true); 

 

         email.setEnabled(true); 

         email.setFocusableInTouchMode(true); 

         email.setClickable(true); 

 

         street.setEnabled(true); 

         street.setFocusableInTouchMode(true); 

         street.setClickable(true); 

 

         place.setEnabled(true); 

         place.setFocusableInTouchMode(true); 

         place.setClickable(true); 

 

         return true;  

         case R.id.Delete_Contact: 

 



Mobile Application Development   Page | 36  

 

         AlertDialog.Builder builder = new AlertDialog.Builder(this); 

         builder.setMessage(R.string.deleteContact) 

            .setPositiveButton(R.string.yes, new DialogInterface.OnClickListener() { 

               public void onClick(DialogInterface dialog, int id) { 

                  mydb.deleteContact(id_To_Update); 

                  Toast.makeText(getApplicationContext(), "Deleted Successfully",  

                     Toast.LENGTH_SHORT).show();   

                  Intent intent = new Intent(getApplicationContext(),MainActivity.class); 

                  startActivity(intent); 

               } 

         }) 

         .setNegativeButton(R.string.no, new DialogInterface.OnClickListener() { 

            public void onClick(DialogInterface dialog, int id) { 

               // User cancelled the dialog 

            } 

         }); 

    

         AlertDialog d = builder.create(); 

         d.setTitle("Are you sure"); 

         d.show(); 

 

         return true; 

         default:  

         return super.onOptionsItemSelected(item);  

  

      }  

   }  

 

   public void run(View view) {  

      Bundle extras = getIntent().getExtras(); 

      if(extras !=null) { 

         int Value = extras.getInt("id"); 

         if(Value>0){ 



Mobile Application Development   Page | 37  

 

            if(mydb.updateContact(id_To_Update,name.getText().toString(), 

               phone.getText().toString(), email.getText().toString(),  

       street.getText().toString(), place.getText().toString())){ 

               Toast.makeText(getApplicationContext(), "Updated", Toast.LENGTH_SHORT).show();  

               Intent intent = new Intent(getApplicationContext(),MainActivity.class); 

               startActivity(intent); 

            } else{ 

               Toast.makeText(getApplicationContext(), "not Updated", Toast.LENGTH_SHORT).show();  

            } 

         } else{ 

            if(mydb.insertContact(name.getText().toString(), phone.getText().toString(),  

       email.getText().toString(), street.getText().toString(),  

       place.getText().toString())){ 

                  Toast.makeText(getApplicationContext(), "done", 

         Toast.LENGTH_SHORT).show();  

            } else{ 

               Toast.makeText(getApplicationContext(), "not done",  

        Toast.LENGTH_SHORT).show();  

            } 

            Intent intent = new Intent(getApplicationContext(),MainActivity.class); 

            startActivity(intent); 

         } 

      } 

   } 

} 

Following is the content of Database class DBHelper.java 

package com.example.sairamkrishna.myapplication; 

 

import java.util.ArrayList; 

import java.util.HashMap; 

import java.util.Hashtable; 

import android.content.ContentValues; 

import android.content.Context; 



Mobile Application Development   Page | 38  

 

import android.database.Cursor; 

import android.database.DatabaseUtils; 

import android.database.sqlite.SQLiteOpenHelper; 

import android.database.sqlite.SQLiteDatabase; 

 

public class DBHelper extends SQLiteOpenHelper { 

 

   public static final String DATABASE_NAME = "MyDBName.db"; 

   public static final String CONTACTS_TABLE_NAME = "contacts"; 

   public static final String CONTACTS_COLUMN_ID = "id"; 

   public static final String CONTACTS_COLUMN_NAME = "name"; 

   public static final String CONTACTS_COLUMN_EMAIL = "email"; 

   public static final String CONTACTS_COLUMN_STREET = "street"; 

   public static final String CONTACTS_COLUMN_CITY = "place"; 

   public static final String CONTACTS_COLUMN_PHONE = "phone"; 

   private HashMap hp; 

 

   public DBHelper(Context context) { 

      super(context, DATABASE_NAME , null, 1); 

   } 

   @Override 

   public void onCreate(SQLiteDatabase db) { 

      // TODO Auto-generated method stub 

      db.execSQL( 

         "create table contacts " + 

         "(id integer primary key, name text,phone text,email text, street text,place text)" 

      ); 

   } 

 

   @Override 

   public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) { 

      // TODO Auto-generated method stub 

      db.execSQL("DROP TABLE IF EXISTS contacts"); 



Mobile Application Development   Page | 39  

 

      onCreate(db); 

   } 

 

   public boolean insertContact (String name, String phone, String email, String street,String place) { 

      SQLiteDatabase db = this.getWritableDatabase(); 

      ContentValues contentValues = new ContentValues(); 

      contentValues.put("name", name); 

      contentValues.put("phone", phone); 

      contentValues.put("email", email);  

      contentValues.put("street", street); 

      contentValues.put("place", place); 

      db.insert("contacts", null, contentValues); 

      return true; 

   } 

    

   public Cursor getData(int id) { 

      SQLiteDatabase db = this.getReadableDatabase(); 

      Cursor res =  db.rawQuery( "select * from contacts where id="+id+"", null ); 

      return res; 

   } 

    

   public int numberOfRows(){ 

      SQLiteDatabase db = this.getReadableDatabase(); 

      int numRows = (int) DatabaseUtils.queryNumEntries(db, CONTACTS_TABLE_NAME); 

      return numRows; 

   } 

    

   public boolean updateContact (Integer id, String name, String phone, String email, String street,String place) { 

      SQLiteDatabase db = this.getWritableDatabase(); 

      ContentValues contentValues = new ContentValues(); 

      contentValues.put("name", name); 

      contentValues.put("phone", phone); 

      contentValues.put("email", email); 



Mobile Application Development   Page | 40  

 

      contentValues.put("street", street); 

      contentValues.put("place", place); 

      db.update("contacts", contentValues, "id = ? ", new String[] { Integer.toString(id) } ); 

      return true; 

   } 

 

   public Integer deleteContact (Integer id) { 

      SQLiteDatabase db = this.getWritableDatabase(); 

      return db.delete("contacts",  

      "id = ? ",  

      new String[] { Integer.toString(id) }); 

   } 

    

   public ArrayList<String> getAllCotacts() { 

      ArrayList<String> array_list = new ArrayList<String>(); 

       

      //hp = new HashMap(); 

      SQLiteDatabase db = this.getReadableDatabase(); 

      Cursor res =  db.rawQuery( "select * from contacts", null ); 

      res.moveToFirst(); 

       

      while(res.isAfterLast() == false){ 

         array_list.add(res.getString(res.getColumnIndex(CONTACTS_COLUMN_NAME))); 

         res.moveToNext(); 

      } 

      return array_list; 

   } 

} 

Following is the content of the res/layout/activity_main.xml 

<?xml version="1.0" encoding="utf-8"?> 

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" 

   xmlns:tools="http://schemas.android.com/tools" android:layout_width="match_parent" 

   android:layout_height="match_parent"  



Mobile Application Development   Page | 41  

 

   android:paddingLeft="@dimen/activity_horizontal_margin" 

   android:paddingRight="@dimen/activity_horizontal_margin" 

   android:paddingTop="@dimen/activity_vertical_margin" 

   android:paddingBottom="@dimen/activity_vertical_margin" tools:context=".MainActivity"> 

 

   <TextView 

      android:layout_width="wrap_content" 

      android:layout_height="wrap_content" 

      android:id="@+id/textView" 

      android:layout_alignParentTop="true" 

      android:layout_centerHorizontal="true" 

      android:textSize="30dp" 

      android:text="Data Base" /> 

 

   <TextView 

      android:layout_width="wrap_content" 

      android:layout_height="wrap_content" 

      android:text="Tutorials Point" 

      android:id="@+id/textView2" 

      android:layout_below="@+id/textView" 

      android:layout_centerHorizontal="true" 

      android:textSize="35dp" 

      android:textColor="#ff16ff01" /> 

 

   <ImageView 

      android:layout_width="wrap_content" 

      android:layout_height="wrap_content" 

      android:id="@+id/imageView" 

      android:layout_below="@+id/textView2" 

      android:layout_centerHorizontal="true" 

      android:src="@drawable/logo"/> 

 

   <ScrollView 



Mobile Application Development   Page | 42  

 

      android:layout_width="wrap_content" 

      android:layout_height="wrap_content" 

      android:id="@+id/scrollView" 

      android:layout_below="@+id/imageView" 

      android:layout_alignParentLeft="true" 

      android:layout_alignParentStart="true" 

      android:layout_alignParentBottom="true" 

      android:layout_alignParentRight="true" 

      android:layout_alignParentEnd="true"> 

         

      <ListView 

         android:id="@+id/listView1" 

         android:layout_width="match_parent" 

         android:layout_height="wrap_content" 

         android:layout_centerHorizontal="true" 

         android:layout_centerVertical="true" > 

      </ListView> 

   

   </ScrollView> 

 

</RelativeLayout> 

Following is the content of the res/layout/activity_display_contact.xml 

<?xml version="1.0" encoding="utf-8"?> 

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android" 

   xmlns:tools="http://schemas.android.com/tools" 

   android:id="@+id/scrollView1" 

   android:layout_width="match_parent" 

   android:layout_height="wrap_content" 

   tools:context=".DisplayContact" > 

 

   <RelativeLayout 

      android:layout_width="match_parent" 

      android:layout_height="370dp" 



Mobile Application Development   Page | 43  

 

      android:paddingBottom="@dimen/activity_vertical_margin" 

      android:paddingLeft="@dimen/activity_horizontal_margin" 

      android:paddingRight="@dimen/activity_horizontal_margin" 

      android:paddingTop="@dimen/activity_vertical_margin"> 

 

      <EditText 

         android:id="@+id/editTextName" 

         android:layout_width="wrap_content" 

         android:layout_height="wrap_content" 

         android:layout_alignParentLeft="true" 

         android:layout_marginTop="5dp" 

         android:layout_marginLeft="82dp" 

         android:ems="10" 

         android:inputType="text" > 

      </EditText> 

 

      <EditText 

         android:id="@+id/editTextEmail" 

         android:layout_width="wrap_content" 

         android:layout_height="wrap_content" 

         android:layout_alignLeft="@+id/editTextStreet" 

         android:layout_below="@+id/editTextStreet" 

         android:layout_marginTop="22dp" 

         android:ems="10" 

         android:inputType="textEmailAddress" /> 

 

      <TextView 

         android:id="@+id/textView1" 

         android:layout_width="wrap_content" 

         android:layout_height="wrap_content" 

         android:layout_alignBottom="@+id/editTextName" 

         android:layout_alignParentLeft="true" 

         android:text="@string/name" 



Mobile Application Development   Page | 44  

 

         android:textAppearance="?android:attr/textAppearanceMedium" /> 

 

      <Button 

         android:id="@+id/button1" 

         android:layout_width="wrap_content" 

         android:layout_height="wrap_content" 

         android:layout_alignLeft="@+id/editTextCity" 

         android:layout_alignParentBottom="true" 

         android:layout_marginBottom="28dp" 

         android:onClick="run" 

         android:text="@string/save" /> 

 

      <TextView 

         android:id="@+id/textView2" 

         android:layout_width="wrap_content" 

         android:layout_height="wrap_content" 

         android:layout_alignBottom="@+id/editTextEmail" 

         android:layout_alignLeft="@+id/textView1" 

         android:text="@string/email" 

         android:textAppearance="?android:attr/textAppearanceMedium" /> 

 

      <TextView 

         android:id="@+id/textView5" 

         android:layout_width="wrap_content" 

         android:layout_height="wrap_content" 

         android:layout_alignBottom="@+id/editTextPhone" 

         android:layout_alignLeft="@+id/textView1" 

         android:text="@string/phone" 

         android:textAppearance="?android:attr/textAppearanceMedium" /> 

 

      <TextView 

         android:id="@+id/textView4" 

         android:layout_width="wrap_content" 



Mobile Application Development   Page | 45  

 

         android:layout_height="wrap_content" 

         android:layout_above="@+id/editTextEmail" 

         android:layout_alignLeft="@+id/textView5" 

         android:text="@string/street" 

         android:textAppearance="?android:attr/textAppearanceMedium" /> 

 

      <EditText 

         android:id="@+id/editTextCity" 

         android:layout_width="wrap_content" 

         android:layout_height="wrap_content" 

         android:layout_alignRight="@+id/editTextName" 

         android:layout_below="@+id/editTextEmail" 

         android:layout_marginTop="30dp" 

         android:ems="10" 

         android:inputType="text" /> 

 

      <TextView 

         android:id="@+id/textView3" 

         android:layout_width="wrap_content" 

         android:layout_height="wrap_content" 

         android:layout_alignBaseline="@+id/editTextCity" 

         android:layout_alignBottom="@+id/editTextCity" 

         android:layout_alignParentLeft="true" 

         android:layout_toLeftOf="@+id/editTextEmail" 

         android:text="@string/country" 

         android:textAppearance="?android:attr/textAppearanceMedium" /> 

   

    <EditText 

         android:id="@+id/editTextStreet" 

         android:layout_width="wrap_content" 

         android:layout_height="wrap_content" 

         android:layout_alignLeft="@+id/editTextName" 

         android:layout_below="@+id/editTextPhone" 



Mobile Application Development   Page | 46  

 

         android:ems="10" 

         android:inputType="text" > 

         <requestFocus /> 

      </EditText> 

 

      <EditText 

         android:id="@+id/editTextPhone" 

         android:layout_width="wrap_content" 

         android:layout_height="wrap_content" 

         android:layout_alignLeft="@+id/editTextStreet" 

         android:layout_below="@+id/editTextName" 

         android:ems="10" 

         android:inputType="phone|text" /> 

 

   </RelativeLayout> 

</ScrollView> 

Following is the content of the res/value/string.xml 

<?xml version="1.0" encoding="utf-8"?> 

<resources> 

   <string name="app_name">Address Book</string> 

   <string name="action_settings">Settings</string> 

   <string name="hello_world">Hello world!</string> 

   <string name="Add_New">Add New</string> 

   <string name="edit">Edit Contact</string> 

   <string name="delete">Delete Contact</string> 

   <string name="title_activity_display_contact">DisplayContact</string> 

   <string name="name">Name</string> 

   <string name="phone">Phone</string> 

   <string name="email">Email</string> 

   <string name="street">Street</string> 

   <string name="country">City/State/Zip</string> 

   <string name="save">Save Contact</string> 

   <string name="deleteContact">Are you sure, you want to delete it.</string> 



Mobile Application Development   Page | 47  

 

   <string name="yes">Yes</string> 

   <string name="no">No</string> 

</resources> 

Following is the content of the res/menu/main_menu.xml 

<?xml version="1.0" encoding="utf-8"?> 

<menu xmlns:android="http://schemas.android.com/apk/res/android" > 

    

   <item android:id="@+id/item1"  

      android:icon="@drawable/add" 

      android:title="@string/Add_New" > 

   </item> 

    

</menu> 

Following is the content of the res/menu/display_contact.xml 

<?xml version="1.0" encoding="utf-8"?> 

<menu xmlns:android="http://schemas.android.com/apk/res/android" > 

   <item 

      android:id="@+id/Edit_Contact" 

      android:orderInCategory="100" 

      android:title="@string/edit"/> 

    

   <item 

      android:id="@+id/Delete_Contact" 

      android:orderInCategory="100" 

      android:title="@string/delete"/> 

 

</menu> 

This is the defualt AndroidManifest.xml of this project 

<?xml version="1.0" encoding="utf-8"?> 

<manifest xmlns:android="http://schemas.android.com/apk/res/android" 

   package="com.example.sairamkrishna.myapplication" > 

    



Mobile Application Development   Page | 48  

 

   <application 

      android:allowBackup="true" 

      android:icon="@mipmap/ic_launcher" 

      android:label="@string/app_name" 

      android:theme="@style/AppTheme" > 

       

      <activity 

         android:name=".MainActivity" 

         android:label="@string/app_name" > 

          

         <intent-filter> 

            <action android:name="android.intent.action.MAIN" /> 

            <category android:name="android.intent.category.LAUNCHER" /> 

         </intent-filter> 

       

      </activity> 

       

      <activity android:name=".DisplayContact"/> 

       

   </application> 

</manifest> 

Let's try to run your application. I assume you have connected your actual Android Mobile device with your 

computer. To run the app from Android studio , open one of your project's activity files and click Run  icon 

from the tool bar. Before starting your application,Android studio will display following window to select an 

option where you want to run your Android application. 

 

Select your mobile device as an option and then check your mobile device which will display following screen  

 



Mobile Application Development   Page | 49  

 

 

Optional menu appears different places on different versions 

Click on the add button of the menu screen to add a new contact. It will display the following screen − 

It will display the following fields. Please enter the required information and click on save contact. It will bring 

you back to main screen. 

Now our contact has been added. In order to see where the database is created, open your android studio, 

connect your mobile. Go tools/android/android device monitor. Now browse the file explorer tab. Now 

browse this folder /data/data/<your.package.name>/databases<database-name>. 

CONNECTING WITH THE DATABASE 

In Android, the SQLiteDatabase namespace defines the functionality to connect and manage a database. It 

provides functionality to create, delete, manage and display database content.  

Create a Database 

Simple steps to create a database and handle are as following. 

 Create "SQLiteDatabase" object. 

 Open or Create database and create connection. 

 Perform insert, update or delete operation. 

 Create Cursor to display data from table of database. 

 Close the database connectivity. 

Step 1: Instantiate "SQLiteDatabase" object 

 

SQLiteDatabase db; 

Before you can use the above object, you must import the android.database.sqlite.SQLiteDatabasenamespace in 

your application.  

db=openOrCreateDatabase(String path, int mode, SQLiteDatabase.CursorFactory factory) 

 

This method is used to create/open database. As the name suggests, it will open a database connection if it is 

already there, otherwise it will create a new one. 

 

Example, 

 

db=openOrCreateDatabase("XYZ_Database",SQLiteDatabase.CREATE_IF_NECESSARY,null); 

 

Arguments: 

String path Name of the database 

Int mode operating mode. Use 0 or "MODE_PRIVATE" for the default operation, or 

"CREATE_IF_NECESSARY"  if you like to give option that "if database is not 

there, create it" 

CursorFactory factory An optional factory class that is called to instantiate a cursor when query is called 

Step 2: Execute DDL command 

 

db.execSQL(String sql) throws SQLException 
 

This command is used to execute single SQL statement which doesn't return any data means other than 

SELECT or any other. 



Mobile Application Development   Page | 50  

 

 

db.execSQL("Create Table Temp (id Integer, name Text)"); 

 

In the above example, it takes "CREATE TABLE" statement of SQL. This will create a table of "Integer" & 

"Text" fields. 

 

Try and Catch block is require while performing this operation. An exception that indicates there was an error 

with SQL parsing or execution. 

 

Step 3: Create object of "ContentValues" and Initiate it. 

 

ContentValues values=new ContentValues(); 
 

This class is used to store a set of values. We can also say, it will map ColumnName and relavent ColumnValue. 

 

values.put("id", eid.getText().toString());           

values.put("name", ename.getText().toString());  

String Key Name of field as in table. Ex. "id", "name" 

String Value Value to be inserted. 

Step 4: Perform Insert Statement. 

 

insert(String table, String nullColumnHack, ContentValues values) 

String table Name of table related to database. 

String nullColumnHack If not set to null, the nullColumnHack parameter provides the name of nullable 

column name to explicitly insert a NULL into in the case where yourvalues is 

empty. 

ContentValues values This map contains the initial column values for the row. 

This method returns a long. The row ID of the newly inserted row, or -1 if an error occurred. 

 

Example, 

 

db.insert("temp", null, values); 

 

Step 5: Create Cursor 

 

This interface provides random read-write access to the result set returned by a database query. 

 

Cursor c=db.rawQuery(String sql, String[] selectionArgs) 

  

Strign sql The SQL query 

String []selectionArgs You may include ?s in where clause in the query, which will be replaced by 

the values from selectionArgs. The values will be bound as Strings. 

Example, 

 

Cursor c=db.rawQuery("SELECT * FROM temp",null); 

 



Mobile Application Development   Page | 51  

 

Methods 

              

Example, 

 

c.moveToFirst(); 

while(!c.isAfterLast()) 

{ 

     //statementâ€¦ 

c.moveToNext(); 

} 

 

Step 6: Close Cursor and Close Database connectivity 

 

It is very important to release our connections before closing our activity. It is advisable to release the Database 

connectivity in "onStop" method. And Cursor connectivity after use it. 

 

DatabaseDemoActivity.java 

 

package com.DataBaseDemo; 

import android.app.Activity; 

import android.content.ContentValues; 

import android.database.Cursor; 

import android.database.SQLException; 

import android.database.sqlite.SQLiteDatabase; 

import android.os.Bundle; 

import android.view.View; 

import android.widget.Button; 

import android.widget.EditText; 

import android.widget.Toast; 

public class DataBaseDemoActivity extends Activity { 

    /** Called when the activity is first created. */ 

      SQLiteDatabase db; 

Button btnInsert; 

      @Override 

      public void onCreate(Bundle savedInstanceState) { 

      super.onCreate(savedInstanceState); 

      setContentView(R.layout.main); 

      btnInsert=(Button)findViewById(R.id.button1); 

      try{ 

      db=openOrCreateDatabase("StudentDB",SQLiteDatabase.CREATE_IF_NECESSARY,null); 

      db.execSQL("Create Table Temp(id integer,name text)"); 

      }catch(SQLException e) 

      { 

      } 

      btnInsert.setOnClickListener(new View.OnClickListener() { 

           @Override 

           public void onClick(View v) { 

           // TODO Auto-generated method stub 

           EditText eid=(EditText) findViewById(R.id.editText1); 

           EditText ename=(EditText)findViewById(R.id.editText2); 

           ContentValues values=new ContentValues(); 

           values.put("id", eid.getText().toString()); 

           values.put("name", ename.getText().toString()); 

           if((db.insert("temp", null, values))!=-1) 

           { 

           Toast.makeText(DataBaseDemoActivity.this, "Record Successfully Inserted", 2000).show(); 

           } 

           else 

moveToFirst Moves cursor pointer at first position of result set 

moveToNext Moves cursor pointer next to current position. 

isAfterLast Returs false, if cursor pointer is not at last position of result 

set. 



Mobile Application Development   Page | 52  

 

           { 

           Toast.makeText(DataBaseDemoActivity.this, "Insert Error", 2000).show(); 

           } 

           eid.setText(""); 

           ename.setText(""); 

           Cursor c=db.rawQuery("SELECT * FROM temp",null); 

           c.moveToFirst(); 

           while(!c.isAfterLast()) 

           { 

           Toast.makeText(DataBaseDemoActivity.this,c.getString(0)+ " "+c.getString(1),1000).show(); 

           c.moveToNext(); 

           } 

           c.close(); 

           } 

        }); 

    } 

    @Override 

    protected void onStop() { 

      // TODO Auto-generated method stub 

      db.close(); 

      super.onStop(); 

    } 

} 

 
 

To see where your database is stored, (1)Start Your Emulator ( It is necessary to start Emulator to see File 

Explorer content and (2) Open "File Explorer" 

Data -> Data -> find your "package" -> databases -> "database" 

 
  


