

Department of CSE (Emerging Technologies) (DATA SCIENCE, IOT, CYBER SECURITY)

> B.TECH(R-22 Regulation) (III YEAR – II SEM) (2024-2025)

MACHINE LEARNING LAB Compiled by

V.Suneetha, Associate Professor

V.Bala, Associate Professor

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12(B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE-Accredited by NBA & NAAC – 'A' Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad–500100, Telangana State, India

Department of Computer Science and Engineering EMERGING TECHNOLOGIES

Vision

"To be at the forefront of Emerging Technologies and to evolve as a Centre of Excellence in Research Learning and Consultancy to foster the students into globally competent professionals useful to the Society."

Mission

The department of CSE (Emerging Technologies) is committed to:

- To offer highest Professional and Academic Standards in terms of Personal growth and satisfaction.
- Make the society as the hub of emerging technologies and thereby capture opportunities in new age technologies.
- To create a benchmark in the areas of Research, Education and Public Outreach.
- To provide students a platform where independent learning and scientific study are encouraged with emphasis on latest engineering techniques.

QUALITY POLICY

- To pursue continual improvement of teaching learning process of Undergraduate and PostGraduateprogramsin Engineering & Managementvigorously.
- To provide state of art infrastructure and expertise to impart the quality education and research environment to students for a complete learning experiences.
- Developing students with a disciplined and integrated personality.
- To offer quality relevant and cost effective programmes to produce engineers as per requirements of the industry need.

For more information:www.mrcet.ac.in

S. No	Name of the Program				
	Implementation of Python Basic Libraries such as Statistics, Math, Numpy and				
1.	Scipy				
	 a) Usage of methods such as floor(), ceil(), sqrt(), isqrt(), gcd() etc. b) Usage of attributes of arrow such as ndim share, size, methods such as 				
	b) Usage of attributes of array such as norm, shape, size, methods such as sum() mean() sort() sin() etc				
	c) Usage of methods such as det(), eig() etc.				
	d) Consider a list datatype(1D) then reshape it into2D, 3D matrix using				
	numpy				
	e) Generater and ommatrices using numpy				
	f) Find the determinant of a matrix using scipy				
	g) Find eigen value and eigen vector of a matrix using scipy				
2.	Implementation of Python Libraries for ML application such as Pandas and				
	Matplotlib.				
	a) Create a Series using pandas and display b) Access the index and the values of our Series				
	c) Compare an array using Numpy with a series using pandas				
	d) Define Series objects with individual indices				
	e) Access single value of a series				
	f) Load datasets in a Data frame variable using pandas				
	g) Usage of different methods in Matplotlib.				
3.	a) Creation and Loading different types of datasets in Python using the required libraries				
	i. Creation using pandas				
	ii. Loading CSV dataset files using Pandas				
	iii. Loading datasets using sklearn				
	b) Write a python program to compute Mean, Median, Mode, Variance				
	Standard Deviation using Datasets				
	Write a python program to compute				
	write a python program to compute				
	i. Filtering the data				
	iii Morging the date				
	in. Merging the data				
	IV. Handning the missing values in datasets				
	V. Fedure Normanzation: Min-max normanzation				
4	a dataset iris				
5	Write a program to demonstrate the working of the decision tree based ID3 algorithm by considering a dataset.				
6	Consider a dataset, use Random Forest to predict the output class. Vary the				
0.	number of trees as follows and compare the results:				
	i.20 ii.50 iii.100 iv.200 v.500				

List of Experiments

7.	Write a Python program to implement Simple Linear Regression and plot the graph.
8	Write a Python program to implement Logistic Regression for iris using sklearn and plot the confusion matrix.
9	Build KNN Classification model for a given dataset. Vary the number of k values as follows and compare the results: i. 1 ii. 3 iii. 5 iv. 7 v. 11
10	Implement Support Vector Machine for a dataset and compare the accuracy by applying the following kernel functions: i. Linear ii. Polynomial iii. RBF
11	Write a python program to implement K-Means clustering Algorithm. Vary the number of k values as follows and compare the results: i. 1 ii. 3 iii. 5

Week 1:

a)Implementation of Python Basic Libraries such as Math, Numpy and Scipy Theory/Description:

• Python Libraries

There are a lot of reasons why Python is popular among developers and one of them is that it has an amazingly large collection of libraries that users can work with. In this Python Library, we will discuss Python Standard library and different libraries offered by Python Programming Language: scipy, numpy, etc.

We know that a module is a file with some Python code, and a package is a directory for sub packages and modules. A Python library is a reusable chunk of code that you may want to includein your programs/ projects. Here, a _library' loosely describes a collection of core modules. Essentially, then, a library is a collection of modules. A package is a library that can be installed using a package manager like npm.

• Python Standard Library

The Python Standard Library is a collection of script modules accessible to a Python program to simplify the programming process and removing the need to rewrite commonly used commands. They can be used by 'calling/importing' them at the beginning of a script. A list of the Standard Library modules that are most important

- 2 time
- 2 sys
- ? csv
- 2 math
- 2 random
- 2 pip
- ? os
- 2 tkinter
- I socket

To display a list of all available modules, use the following command in the Python console: >>> help('modules')

- List of important Python Libraries
- o Python Libraries for Data Collection
 - Beautiful Soup
 - Scrapy
 - Selenium
- o Python Libraries for Data Cleaning and Manipulation
 - Pandas
 - PyOD

2024-2025

- NumPy
- Scipy
- Spacy
- Python Libraries for Data Visualization
 - Matplotlib
 - Seaborn
 - Bokeh
- o Python Libraries for Modeling
 - Scikit-learn
 - TensorFlow
 - PyTorch

Implementation of Python Basic Libraries such as Math, Numpy and Scipy

• Python Math Library

The math module is a standard module in Python and is always available. To use mathematical functions under this module, you have to import the module using import math. It gives access to the underlying C library functions. This module does not support complex datatypes. The cmath module is the complex counterpart.

List of Functions in Python Math Module				
Function	Description			
ceil(x)	Returns the smallest integer greater than or equal to x.			
copysign(x,	Returns x with the sign of y			
y)				
fabs(x)	Returns the absolute value of x			
factorial(x)	Returns the factorial of x			
floor(x)	Returns the largest integer less than or equal to x			
fmod(x, y)	Returns the remainder when x is divided by y			
frexp(x)	Returns the mantissa and exponent of x as the pair (m, e)			
fsum(iterable)	Returns an accurate floating point sum of values in the iterable			
isfinite(x)	Returns True if x is neither an infinity nor a NaN (Not a Number)			
isinf(x)	Returns True if x is a positive or negative infinity			
isnan(x)	Returns True if x is a NaN			
ldexp(x, i)	Returns x * (2**i)			
modf(x)	Returns the fractional and integer parts of x			
trunc(x)	Returns the truncated integer value of x			
exp(x)	Returns e**x			
expm1(x)	Returns e**x - 1			

MACHINE LEARNING LAB MANUAL 2024-2025 Program-1 In [15]: # Import math library import math # Round a number upward to its nearest integer print(math.ceil(1.4)) print(math.ceil(5.3)) print(math.ceil(-5.3)) print(math.ceil(22.6)) print(math.ceil(10.0)) 2 6 -5 23 10 Program-2 In [16]: #Import math Library import math #Return factorial of a number print(math.factorial(9)) print(math.factorial(6)) print(math.factorial(12)) 362880 720 479001600 Program-3 In [17]: # Import math library import math # Round numbers down to the nearest integer print(math.floor(0.6)) print(math.floor(1.4)) print(math.floor(5.3)) print(math.floor(-5.3)) print(math.floor(22.6)) print(math.floor(10.0)) 0 1 5 -6 22 10 7 **Department of Emerging Technologies**

```
2024-2025
```

Program-4

```
In [18]: #Import math Library
          import math
          #find the the greatest common divisor of the two integers
          print (math.gcd(3, 6))
          print (math.gcd(6, 12))
          print (math.gcd(12, 36))
          print (math.gcd(-12, -36))
          print (math.gcd(5, 12))
          print (math.gcd(10, 0))
          print (math.gcd(0, 34))
          print (math.gcd(0, 0))
          3
          6
          12
          12
          1
          10
          34
          0
Program-5
  In [19]: # Import math Library
            import math
            # Check whether some values are NaN or not
            print (math.isnan (56))
            print (math.isnan (-45.34))
            print (math.isnan (+45.34))
            print (math.isnan (math.inf))
           print (math.isnan (float("nan")))
            print (math.isnan (float("inf")))
           print (math.isnan (float("-inf")))
           print (math.isnan (math.nan))
            False
            False
            False
            False
            True
            False
            False
            True
Department of Emerging Technologies
```

2024-2025

Program-6

```
In [25]:
         # Import math Library
         import math
         # Print the square root of different numbers
         print (math.sqrt(10))
         print (math.sqrt (12))
         print (math.sqrt (68))
         print (math.sqrt (100))
         # Round square root downward to the nearest integer
         print (math.isgrt(10))
         print (math.isqrt (12))
         print (math.isqrt (68))
         print (math.isqrt (100))
         3.1622776601683795
         3.4641016151377544
         8.246211251235321
         10.0
         3
         3
         8
         10
```

• Python Numpy Library

NumPy is an open source library available in Python that aids in mathematical, scientific, engineering, and data science programming. NumPy is an incredible library to perform mathematical and statistical operations. It works perfectly well for multi-dimensional arrays and matrices multiplication

For any scientific project, NumPy is the tool to know. It has been built to work with the N- dimensional array, linear algebra, random number, Fourier transform, etc. It can be integrated toC/C++ and Fortran.

NumPy is a programming language that deals with multi-dimensional arrays and matrices. On top of the arrays and matrices, NumPy supports a large number of mathematical operations.

NumPy is memory efficiency, meaning it can handle the vast amount of data more accessible than anyother library. Besides, NumPy is very convenient to work with, especially for matrix multiplication and reshaping. On top of that, NumPy is fast. In fact, TensorFlow and Scikit learn to use NumPy arrayto compute the matrix multiplication in the back end.

• Arrays in NumPy: NumPy's main object is the homogeneous multidimensional array.

- It is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers.
- In NumPy dimensions are called axes. The number of axes is rank.
- 2 NumPy's array class is called **ndarray**. It is also known by the alias **array**.

We use python numpy array instead of a list because of the below three reasons:

- 1. Less Memory
- 2. Fast
- 3. Convenient
- Numpy Functions

Numpy arrays carry attributes around with them. The most important ones are:ndim: The number of axes or rank of the array shape: A tuple containing the length in each dimensionsize: The total number of elements

Program-1

```
In [27]: import numpy #DEPT OF SoCSE4
x = numpy.array([[1,2,3], [4,5,6], [7,8,9]]) # 3x3 matrix
print(x.ndim) # Prints 2
print(x.shape) # Prints (3L, 3L)
print(x.size) # Prints 9
2
```

```
Can be used just like Python lists x[1] will access the second element x[-1] will access the last element
```

(3, 3) 9

Program-2

Arithmetic operations apply element wise

```
2024-2025
```

```
In [32]: a = numpy.array( [20,30,40,50,60] )
b = numpy.arange( 5 )
c = a-b #DEPT OF SoCSE4
#c => array([20, 29, 38, 47])
c
Out[32]: array([20, 29, 38, 47, 56])
```

• Built-in Methods

Many standard numerical functions are available as methods out of the box: Program-3

```
In [34]: x = numpy.array([1,2,3,4,5])
avg = x.mean() #DEPT OF SoCSE4
sum = x.sum()
sx = numpy.sin(x)
sx
```

Out[34]: array([0.84147098, 0.90929743, 0.14112001, -0.7568025 , -0.95892427])

• Python Scipy Library

SciPy is an Open Source Python-based library, which is used in mathematics, scientific computing, Engineering, and technical computing. SciPy also pronounced as "Sigh Pi."

- SciPy contains varieties of sub packages which help to solve the most common issue related to Scientific Computation.
- SciPy is the most used Scientific library only second to GNU Scientific Library for C/C++ or Matlab's.
- 2 Easy to use and understand as well as fast computational power.
- It can operate on an array of NumPy library.

Numpy VS SciPyNumpy:

- 1. Numpy is written in C and use for mathematical or numeric calculation.
- 2. It is faster than other Python Libraries
- 3. Numpy is the most useful library for Data Science to perform basic calculations.
- 4. Numpy contains nothing but array data type which performs the most basic operation like sorting, shaping, indexing, etc.

SciPy:

- 1. SciPy is built in top of the NumPy
- 2. SciPy is a fully-featured version of Linear Algebra while Numpy contains only a few features.
- 3. Most new Data Science features are available in Scipy rather than Numpy.

Linear Algebra with SciPy

- 1. Linear Algebra of SciPy is an implementation of BLAS and ATLAS LAPACK libraries.
- 2. Performance of Linear Algebra is very fast compared to BLAS and LAPACK.

Linear algebra routine accepts two-dimensional array object and output is also a two-dimensional array.

Now let's do some test with scipy.linalg,

Calculating determinant of a two-dimensional matrix,

Program-1

```
from scipy import linalg
import numpy as np #define square matrix
two_d_array = np.array([ [4,5], [3,2] ]) #pass values to det() function
linalg.det( two_d_array )
```

-7.0

Eigenvalues and Eigenvector - scipy.linalg.eig()

- The most common problem in linear algebra is eigenvalues and eigenvector which can beeasily solved using **eig**() function.
- \square Now lets we find the Eigenvalue of (**X**) and correspond eigenvector of a twodimensional square matrix.

Program-2

```
from scipy import linalg
import numpy as np
#define two dimensional array
arr = np.array([[5,4],[6,3]]) #pass value into function
eg_val, eg_vect = linalg.eig(arr) #get eigenvalues
print(eg_val) #get eigenvectors print(eg_vect)
```

[9.+0.j -1.+0.j]

Exercise programs:

- 1. consider a list datatype then reshape it into 2d,3d matrix using numpy
- 2. Genrate random matrices using numpy
- 3. Find the determinant of a matrix using scipy
- 4. Find eigenvalue and eigenvector of a matrix using scipy

Week 2:

Implementation of Python Libraries for ML application such as Pandas and Matplotlib.

• Pandas Library

The primary two components of pandas are the Series and DataFrame.

A Series is essentially a column, and a DataFrame is a multi-dimensional table made up of acollection of Series.

DataFrames and Series are quite similar in that many operations that you can do with oneyou can do with the other, such as filling in null values and calculating

Series

Series

DataFrame

	apples			oranges			apples	oranges
0	3		0	0		0	3	0
1	2	+	1	3	=	1	2	3
2	0		2	7		2	0	7
3	1		3	2		3	1	2

the mean.

Reading data from CSVs

With CSV files all you need is a single line to load in the data:

df =

pd.read_csv('purchases.csv')df

Let's load in the IMDB movies dataset to begin:

movies_df = pd.read_csv("IMDB-Movie-Data.csv", index_col="Title") We're loading this dataset from a CSV and designating the movie titles to be our index.

Viewing your data

The first thing to do when opening a new dataset is print out a few rows to keep as a visualreference. We accomplish this with .head(): movies_df.head()

Another fast and useful attribute is .shape, which outputs just a tuple of (rows, columns): movies_df.shape

Note that .shape has no parentheses and is a simple tuple of format (rows, columns). So we have1000 rows and 11 columns in our movies DataFrame.

You'll be going to .shape a lot when cleaning and transforming data. For example, you might filtersome rows based on some criteria and then want to know quickly how many rows were removed.

Program-1

```
import pandas as pd
S = pd.Series([11, 28, 72, 3, 5, 8])
S
0
     11
1
     28
2
     72
3
      3
4
      5
5
      8
dtype: int64
```

We haven't defined an index in our example, but we see two columns in our output: The right column contains our data, whereas the left column contains the index. Pandas created a default index starting with 0 going to 5, which is the length of the data minus 1.

Program-2

We can directly access the index and the values of our Series S:

```
print(S.index)
print(S.values)
RangeIndex(start=0, stop=6, step=1)
```

```
[11 28 72 3 5 8]
```

Program-3

If we compare this to creating an array in numpy, we will find lots of similarities:

```
import numpy as np
X = np.array([11, 28, 72, 3, 5, 8])
print(X)
print(S.values)
# both are the same type:
print(type(S.values), type(X))
[11 28 72 3 5 8]
[11 28 72 3 5 8]
```

```
<class 'numpy.ndarray'> <class 'numpy.ndarray'>
```

So far our Series have not been very different to ndarrays of Numpy. This changes, as soon as we start defining Series objects with individual indices:

2024-2025

Program-4

```
fruits = ['apples', 'oranges', 'cherries', 'pears']
quantities = [20, 33, 52, 10]
S = pd.Series(quantities, index=fruits)
S
apples 20
apples
```

oranges 33 cherries 52 pears 10 dtype: int64

Program-5

A big advantage to NumPy arrays is obvious from the previous example: We can use arbitrary indices. If we add two series with the same indices, we get a new series with the same index and the correponding values will be added:

```
fruits = ['apples', 'oranges', 'cherries', 'pears']
S = pd.Series([20, 33, 52, 10], index=fruits)
S2 = pd.Series([17, 13, 31, 32], index=fruits)
print(S + S2)
print("sum of S: ", sum(S))
```

OUTPUT:

apples37oranges46cherries83pears42dtype:int64sum of S:115

Program-6

The indices do not have to be the same for the Series addition. The index will be the "union" of both indices. If an index doesn't occur in both Series, the value for this Series will be NaN:

```
fruits = ['peaches', 'oranges', 'cherries', 'pears']
fruits2 = ['raspberries', 'oranges', 'cherries', 'pears']
```

```
S = pd.Series([20, 33, 52, 10], index=fruits)
S2 = pd.Series([17, 13, 31, 32], index=fruits2)
print(S + S2)
```

2024-2025

OUTPUT:

cherries 83.0 oranges 46.0 peaches NaN pears 42.0 raspberries NaN dtype: float64

Program-7

In principle, the indices can be completely different, as in the following example. We have two indices. One is the Turkish translation of the English fruit names:

fruits = ['apples', 'oranges', 'cherries', 'pears']

fruits tr = ['elma', 'portakal', 'kiraz', 'armut']

```
S = pd.Series([20, 33, 52, 10], index=fruits)
S2 = pd.Series([17, 13, 31, 32], index=fruits tr)
print(S + S2)
```

OUTPUT:

apples	NaN
armut	NaN
cherries	NaN
elma	NaN
kiraz	NaN
oranges	NaN
pears	NaN
portakal	NaN
dtype: flo	at64

Program-8

Indexing

It's possible to access single values of a Series.

print(S['apples'])

OUTPUT:

20

• Matplotlib Library

Pyplot is a module of Matplotlib which provides simple functions to add plot elementslike lines, images, text, etc. to the current axes in the current figure.

Make a simple plot

import matplotlib.pyplot as pltimport numpy as np

List of all the methods as they appeared.

- plot(x-axis values, y-axis values) plots a simple line graph with x-axis values against y-axis values
- \square show() displays the graph
- \mathbb{Z} title(—string!) set the title of the plot as specified by the string
- \mathbb{Z} xlabel(—string) set the label for x-axis as specified by the string
- $\[] ylabel(-string) set the label for y-axis as specified by the string \]$
- ☑ figure() used to control a figure level attributes
- 2 subplot(nrows, ncols, index) Add a subplot to the current figure
- 2 suptitle(—string) It adds a common title to the figure specified by the string
- subplots(nrows, ncols, figsize) a convenient way to create subplots, in a single call.
 It returns a tuple of a figure and number of axes.
- \mathbb{Z} set_title(—string) an axes level method used to set the title of subplots in a figure
- 2 bar(categorical variables, values, color) used to create vertical bar graphs
- 2 barh(categorical variables, values, color) used to create horizontal bar graphs
- \square legend(loc) used to make legend of the graph
- Z xticks(index, categorical variables) Get or set the current tick locations and labels of the x-axis
- 2 pie(value, categorical variables) used to create a pie chart
- ☑ hist(values, number of bins) used to create a histogram
- 2 xlim(start value, end value) used to set the limit of values of the x-axis
- 2 ylim(start value, end value) used to set the limit of values of the y-axis
- scatter(x-axis values, y-axis values) plots a scatter plot with x-axis values against y-axis values
- \square axes() adds an axes to the current figure
- \mathbb{Z} set_xlabel(—string) axes level method used to set the x-label of the plot specified as a string
- \mathbb{Z} set_ylabel(—string) axes level method used to set the y-label of the plot specified as a string
- scatter3D(x-axis values, y-axis values) plots a three-dimensional scatter plot with x-axis values against y-axis values
- plot3D(x-axis values, y-axis values) plots a three-dimensional line graph with xaxis values against y-axis values

MACHINE LEARNING LAB MANUAL	2024-2025

Program-3

We can also specify the size of the figure using method figure() and passing the values as a tuple of the length of rows and columns to the argument figsize

```
import matplotlib.pyplot as plt
import numpy as np
```

```
plt.figure(figsize=(15,5))
plt.plot([1,2,3,4],[1,4,9,16])
plt.show()
```


Program-4

With every X and Y argument, you can also pass an optional third argument in the formof a string which indicates the colour and line type of the plot. The default format is **b**- which means a solid blue line. In the figure below we use **go** which means green circles.Likewise, we can make many such combinations to format our plot.

```
plt.plot([1,2,3,4],[1,4,9,16],"go")
plt.title("First Plot")
plt.xlabel("X label")
plt.ylabel("Y label")
plt.show()
```



```
MACHINE LEARNING LAB MANUAL
```

Week 3: Creation and Loading different datasets in Python

Program-1

Method-I

```
df
```

	Name	Age	Gender	Marks
0	Jai	17	м	90
1	Princi	17	F	76
2	Gaurav	18	м	NaN
3	Anuj	17	м	74
4	Ravi	18	м	65
5	Natasha	17	F	NaN
6	Riya	17	F	71

Program-2

2024-2025

Method-II:

```
from sklearn.datasets import load boston
        boston_dataset = load_boston()
        print(boston_dataset.DESCR)
        .. _boston_dataset:
        Boston house prices dataset
        **Data Set Characteristics:**
            :Number of Instances: 506
            :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.
            :Attribute Information (in order):
                           per capita crime rate by town
                - CRIM
                - ZN
                           proportion of residential land zoned for lots over 25,000 sq.ft.
                - INDUS
                           proportion of non-retail business acres per town
                - CHAS
                           Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
                - NOX
                          nitric oxides concentration (parts per 10 million)
                - RM
                           average number of rooms per dwelling
                - AGE
                           proportion of owner-occupied units built prior to 1940
                - DIS
                           weighted distances to five Boston employment centres
                - RAD
                           index of accessibility to radial highways
                - TAX
                           full-value property-tax rate per $10,000
                - PTRATIO pupil-teacher ratio by town
                - B
                           1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
                - LSTAT
                           % lower status of the population
                           Median value of owner-occupied homes in $1000's
                - MEDV
             Minister Arrithmen Arthurst Area
Program-3 Uploading csv file:
Method-III:
    import pandas as pd
```

```
df = pd.read_csv (r'E:\ml datasets\Machine-Learning-with-Python-master\Datasets\loan_data.csv')
print (df.head())
                           purpose int.rate installment log.annual.inc \
  credit.policy
                                   0.1189
             1 debt consolidation
0
                                                 829.10
                                                             11.350407
                                                 228.22
1
             1
                       credit_card
                                     0.1071
                                                              11.082143
2
             1 debt consolidation 0.1357
                                                 366.86
                                                             10.373491
3
             1 debt consolidation 0.1008
                                                 162.34
                                                             11.350407
4
                                                 102.92
             1
                       credit card 0.1426
                                                             11,299732
```

	dti	fico	days.wit	h.cr.line	revol.bal	revol.util	inq.last.6mths	3
0	19.48	737	56	39.958333	28854	52.1	0	
1	14.29	707	27	60.000000	33623	76.7	0	
2	11.63	682	47	10.000000	3511	25.6	1	
з	8.10	712	26	99.958333	33667	73.2	1	
4	14.97	667	40	66.000000	4740	39.5	0	
	deling	.2yrs	pub.rec	not.fully	.paid			
0	225	0	. 0	5	0			
1		0	0		0			
2		0	0		0			
3		0	0		0			

a

b) Write a python program to compute Mean, Median, Mode, Variance, Standard Deviation using Datasets

Department of Emerging Technologies

1

a

4

• Python Statistics library

This module provides functions for calculating mathematical statistics of numeric (Real-valued) data. The statistics module comes with very useful functions like: Mean, median, mode, standard deviation, and variance.

The four functions we'll use in this post are common in statistics:

- 1. mean average value
- 2. median middle value
- 3. mode most often value
- 4. standard deviation spread of values

Averages and measures of central location

These functions calculate an average or typical value from a population or

sample.mean()	Arithmetic mean (—average∥) of data.
harmonic_mean()	Harmonic mean of data.
median()	Median (middle value) of
data.median_low()	Low median of data.
median_high()	High median of data.
median_grouped()	Median, or 50th percentile, of grouped
data.mode()	Mode (most common value) of discrete
data.	

• Measures of spread

These functions calculate a measure of how much the population or sample tends to deviate from the typical or average values.

pstdev()	Population standard deviation of data.
pvariance()	Population variance of data.
stdev()	Sample standard deviation of data.
variance()	Sample variance of data.

2024-2025

```
MACHINE LEARNING LAB MANUAL
```

2024-2025

Program-1

```
# Import statistics Library
        import statistics
        # Calculate average values
        print(statistics.mean([1, 3, 5, 7, 9, 11, 13]))
        print(statistics.mean([1, 3, 5, 7, 9, 11]))
        print(statistics.mean([-11, 5.5, -3.4, 7.1, -9, 22]))
        7
        6
        1.8666666666666666
Program-2
        # Import statistics Library
        import statistics
        # Calculate middle values
        print(statistics.median([1, 3, 5, 7, 9, 11, 13]))
        print(statistics.median([1, 3, 5, 7, 9, 11]))
        print(statistics.median([-11, 5.5, -3.4, 7.1, -9, 22]))
        7
        6.0
        1.05
Program-3
            # Import statistics Library
            import statistics
            # Calculate the mode
            print(statistics.mode([1, 3, 3, 3, 5, 7, 7, 9, 11]))
            print(statistics.mode([1, 1, 3, -5, 7, -9, 11]))
            print(statistics.mode(['red', 'green', 'blue', 'red']
            3
            1
            red
```

```
MACHINE LEARNING LAB MANUAL
```

2024-2025

Program-4

```
# Import statistics Library
import statistics
# Calculate the standard deviation from a sample of data
print(statistics.stdev([1, 3, 5, 7, 9, 11]))
print(statistics.stdev([2, 2.5, 1.25, 3.1, 1.75, 2.8]))
print(statistics.stdev([-11, 5.5, -3.4, 7.1]))
print(statistics.stdev([1, 30, 50, 100]))
```

```
3.7416573867739413
0.6925797186365384
8.414471660973929
41.67633221226008
```

Program-5

```
# Import statistics Library
import statistics
```

```
# Calculate the variance from a sample of data
print(statistics.variance([1, 3, 5, 7, 9, 11]))
print(statistics.variance([2, 2.5, 1.25, 3.1, 1.75, 2.8]))
print(statistics.variance([-11, 5.5, -3.4, 7.1]))
print(statistics.variance([1, 30, 50, 100]))
```

14

```
0.4796666666666667
70.8033333333334
1736.91666666666667
```

	MACHINE	LEARNING	LAB MANUAL
--	---------	----------	------------

```
2024-2025
```

c) Write a python program to compute reshaping the data, Filtering the data , merging the data and handling the missing values in datasets.

Program-2

Method:II

Assigning the data:

```
#Import pandas package
import pandas as pd
```

```
# Convert into DataFrame
df = pd.DataFrame(data)
```

```
# Display data
df
```

	Name	Age	Gender	Marks
0	Jai	17	м	90
1	Princi	17	F	76
2	Gaurav	18	м	NaN
3	Anuj	17	м	74
4	Ravi	18	м	65
5	Natasha	17	F	NaN
6	Riya	17	F	71

2024-2025

Program-3

df

	Name	Age	Gender	Marks
0	Jai	17	0.0	90
1	Princi	17	1.0	76
2	Gaurav	18	0.0	NaN
3	Anuj	17	0.0	74
4	Ravi	18	0.0	65
5	Natasha	17	1.0	NaN
6	Riya	17	1.0	71

2024-2025

Filtering the data

suppose there is a requirement for the details regarding name, gender, marks of the top-scoring students. Here we need to remove some unwanted data.

Program-1

df.filter(['Name'])

- 0 Jai
- 1 Princi
- 2 Gaurav
- 3 Anuj
- 4 Ravi
- 5 Natasha
- 6 Riya

Program-2

df.filter(['Age'])

- Age 0 17
- 0 17
- 1 17
- 2 18 3 17
- "
- 4 18
- 5 17
- 6 17

Program-3

: df[df['Age'] == 17]

	٠	

	Name	Age	Gender	Marks
0	Jai	17	0.0	90
1	Princi	17	1.0	76
3	Anuj	17	0.0	74
5	Natasha	17	1.0	NaN
6	Riya	17	1.0	71

Merge data:

Merge operation is used to merge raw data and into the desired format. **Syntax:**

pd.merge(data_frame1,data_frame2, on="field ")

Program-4

First type of data:

```
# import module
import pandas as pd
# creating DataFrame for Student Details
details = pd.DataFrame({
    'ID': [101, 102, 103, 104, 105, 106,
           107, 108, 109, 110],
    'NAME': ['Jagroop', 'Praveen', 'Harjot',
             'Pooja', 'Rahul', 'Nikita',
             'Saurabh', 'Ayush', 'Dolly', "Mohit"],
    'BRANCH': ['CSE', 'CSE', 'CSE', 'CSE', 'CSE',
               'CSE', 'CSE', 'CSE', 'CSE', 'CSE']})
# printing details
print(details)
    TD.
           NAME BRANCH
0
   101
        Jagroop
                   CSE
                   CSE
1
   102
       Praveen
2
       Harjot
                 CSE
   103
3
   104
         Pooja
                   CSE
4
   105
         Rahul
                   CSE
5
   106
         Nikita
                 CSE
6
   107 Saurabh
                   CSE
7
   108
        Ayush
                  CSE
   109 Dolly
8
                 CSE
9
         Mohit
   110
                   CSE
```

2024-2025

Program-5

Second type of data:

```
# Import module
import pandas as pd
# Creating Dataframe for Fees Status
fees_status = pd.DataFrame(
     {'ID': [101, 102, 103, 104, 105,
106, 107, 108, 109, 110],
      'PENDING': ['5000', '250', 'NIL',
                    '9000', '15000', 'NIL',
'4500', '1800', '250', 'NIL']})
# Printing fees_status
print(fees status)
     ID PENDING
    101
           5000
0
1
    102
            250
2
    103
            NTI
з
    104
           9000
4
    105
          15000
5
    106
            NIL
6
   107
           4500
7
           1800
    108
8
    109
            250
9
    110
            NTL
Program-6
print(pd.merge(details, fees status, on='ID'))
     TD
              NAME BRANCH PENDING
    101
          Jagroop
                        CSE
                                 5000
0
1
    102
          Praveen
                        CSE
                                  250
2
          Harjot
                        CSE
    103
                                  NIL
3
             Pooja
    104
                        CSE.
                                 9000
             Rahul
4
    105
                        CSE.
                                15000
5
    106 Nikita
                        CSE
                                  NTL
6
    107 Saurabh
                       CSE
                                4500
7
           Ayush
                        CSE
    108
                                 1800
            Dolly
8
    109
                        CSE
                                  250
9
    110
            Mohit
                        CSE
                                  NIL
Department of Emerging Technologies
                                                           31
```

2024-2025

Handling the missing values:

Program-1

```
# Import module
import pandas as pd
import numpy as np
# Creating Dataframe for Fees_Status
fees_status = pd.DataFrame(
    {'ID': [101, 102, 103, 104, 105,
        106, 107, 108, 109, 110],
        'PENDING': [5000, 250, np.nan,
            9000, 15000, np.nan,
            4500, 1800, 250, np.nan]})
# Printing fees_status
```

fees_status

	ID	PENDING
0	101	5000.0
1	102	250.0
2	103	NaN
3	104	9000.0
4	105	15000.0
5	106	NaN
6	107	4500.0
7	108	1800.0
8	109	250.0
9	110	NaN

Program-2

In order to check null values in Pandas DataFrame, we use isnull() function this function return dataframe of Boolean values which are True for NaN values.

pd.isnull(fees_status["PENDING"])

```
0
     False
     False
1
2
      True
3
     False
4
     False
5
      True
6
     False
7
     False
8
     False
9
      True
Name: PENDING, dtype: bool
```

Program-7

Program-3

In order to check null values in Pandas Dataframe, we use notnull() function this function return dataframe of Boolean values which are False for NaN values.

print(fees_status.notnull())

	то	DENDTHG
	10	PENDING
0	True	True
1	True	True
2	True	False
3	True	True
4	True	True
5	True	False
6	True	True
7	True	True
8	True	True
9	True	False

Program-4

import pandas as pd

df = pd.read_csv (r'E:\ml datasets\Machine_Learning_Data_Preprocessing_Python-master\Sample_real_estate_data.csv')
df

	PID	ST_NUM	ST_NAME	OWN_OCCUPIED	NUM_BEDROOMS	NUM_BATH	SQ_FT
0	100001000.0	104.0	PUTNAM	γ	3	1	1000.0
1	100002000.0	197.0	LEXINGTON	Ν	3	1.5	100.0
2	100003000.0	NaN	LEXINGTON	Ν	NaN	1	850.0
3	100004000.0	201.0	BERKELEY	NaN	1	NaN	700.0
4	NaN	203.0	BERKELEY	Y	3	2	1600.0
5	100006000.0	207.0	BERKELEY	Y	NaN	1	800.0
6	100007000.0	NaN	WASHINGTON	NaN	2	HURLEY	950.0
7	100008000.0	213.0	TREMONT	Y	1	1	NaN
8	100009000.0	215.0	TREMONT	Y	na	2	1800.0

Program-5

print(df['ST_NUM'].isnull())

0 False False 1 2 True 3 False 4 False 5 False 6 True 7 False 8 False Name: ST_NUM, dtype: bool

Program-6

print(df.isnull())

	PID	ST_NUM	ST_NAME	OWN_OCCUPIED	NUM_BEDROOMS	NUM_BATH	SQ_FT
0	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False
2	False	True	False	False	True	False	False
3	False	False	False	True	False	True	False
4	True	False	False	False	False	False	False
5	False	False	False	False	True	False	False
6	False	True	False	True	False	False	False
7	False	False	False	False	False	False	True
8	False	False	False	False	False	False	False

Program-7

Method-I

Drop Columns with Missing Values

```
df = df.drop(['ST_NUM'], axis=1)
```

df

1.5	1000.0 100.0
1.5	100.0
1	850.0
NaN	700.0
2	1600.0
1	800.0
HURLEY	950.0
1	NaN
2	1800.0
	NaN 2 1 HURLEY 1 2

Department of Emerging Technologies

2022-2023

Program-8

Method-II

fillna() manages and let the user replace NaN values with some value of their own

```
import pandas as pd
```

```
# making data frame from csv file
data = pd.read_csv(r'E:\ml datasets\Machine_Learning_Data_Preprocessing_Python-master\Sample_real_estate_data.csv')
```

```
# replacing nan values in pid with No id
data["PID"].fillna("No ID", inplace = True)
```

data

	PID	ST_NUM	ST_NAME	OWN_OCCUPIED	NUM_BEDROOMS	NUM_BATH	SQ_FT
0	100001000.0	104.0	PUTNAM	Y	3	1	1000.0
1	100002000.0	197.0	LEXINGTON	N	3	1.5	100.0
2	100003000.0	NaN	LEXINGTON	N	NaN	1	850.0
3	100004000.0	201.0	BERKELEY	NaN	1	NaN	700.0
4	No ID	203.0	BERKELEY	Y	3	2	1600.0
5	100006000.0	207.0	BERKELEY	Y	NaN	1	800.0
6	100007000.0	NaN	WASHINGTON	NaN	2	HURLEY	950.0
7	100008000.0	213.0	TREMONT	Y	1	1	NaN
8	100009000.0	215.0	TREMONT	Y	na	2	1800.0

Program-9

```
import numpy as np
import pandas as pd
# A dictionary with list as values
GFG_dict = { 'G1': [10, 20,30,40],
                'G2': [25, np.NaN, np.NaN, 29],
                'G3': [15, 14, 17, 11],
                'G4': [21, 22, 23, 25]}
# Create a DataFrame from dictionary
gfg = pd.DataFrame(GFG_dict)
print(gfg)
   G1
             G3 G4
         G2
  10
       25.0
            15
                 21
0
1
  20
        NaN
             14
                 22
2
  30
       NaN
             17
                 23
```

```
3 40 29.0 11 25
```

2024-2025

Program-10

Filling missing values with mean

Updated Dataframe: **G1** G2 G3 G4 25.0 15 21 0 10 27.0 14 1 20 22 2 27.0 17 23 30 з 40 29.0 11 25

Program-11

Filling missing values in csv files: df=pd.read_csv(r'E:\mldatasets\Machine_Learning_Data_Preprocessing_Pythonmaster\Sample_real_estate_data.csv', na_values='NAN')

df

	PID	ST_NUM	ST_NAME	OWN_OCCUPIED	NUM_BEDROOMS	NUM_BATH	SQ_FT
0	100001000.0	104.0	PUTNAM	Y	3	1	1000.0
1	100002000.0	197.0	LEXINGTON	N	3	1.5	100.0
2	100003000.0	NaN	LEXINGTON	N	NaN	1	850.0
3	100004000.0	201.0	BERKELEY	NaN	1	NaN	700.0
4	NaN	203.0	BERKELEY	Y	3	2	1600.0
5	100006000.0	207.0	BERKELEY	Y	NaN	1	800.0
6	100007000.0	NaN	WASHINGTON	NaN	2	HURLEY	950.0
7	100008000.0	213.0	TREMONT	Y	1	1	NaN
8	100009000.0	215.0	TREMONT	Y	na	2	1800.0

Program-12

```
df['PID'] = df['PID'].fillna(df['PID'].mean())
df
```

	PID	ST_NUM	ST_NAME	OWN_OCCUPIED	NUM_BEDROOMS	NUM_BATH	SQ_FT
0	100001000.0	104.0	PUTNAM	Y	3.000000	1	1000.0
1	100002000.0	197.0	LEXINGTON	N	3.000000	1.5	100.0
2	100003000.0	NaN	LEXINGTON	N	2.166667	1	850.0
3	100004000.0	201.0	BERKELEY	NaN	1.000000	NaN	700.0
4	100005000.0	203.0	BERKELEY	Y	3.000000	2	1600.0
5	100006000.0	207.0	BERKELEY	Y	2.166667	1	800.0
6	100007000.0	NaN	WASHINGTON	NaN	2.000000	HURLEY	950.0
7	100008000.0	213.0	TREMONT	Y	1.000000	1	NaN
8	100009000.0	215.0	TREMONT	Y	2.166667	2	1800.0

Program-13

Code:

missing_value = ["n/a","na","--"]
data1=pd.read_csv(r'E:\mldatasets\Machine_Learning_Data_Preprocessing_Pythonmaster\Sample_real_estate_data.csv', na_values = missing_value)
df = data1

df

	PID	ST_NUM	ST_NAME	OWN_OCCUPIED	NUM_BEDROOMS	NUM_BATH	SQ_FT
0	100001000.0	104.0	PUTNAM	Y	3.000000	1	1000.0
1	100002000.0	197.0	LEXINGTON	Ν	3.000000	1.5	100.0
2	100003000.0	NaN	LEXINGTON	Ν	2.166667	1	850.0
3	100004000.0	201.0	BERKELEY	NaN	1.000000	NaN	700.0
4	NaN	203.0	BERKELEY	Y	3.000000	2	1600.0
5	100006000.0	207.0	BERKELEY	Y	2.166667	1	800.0
6	100007000.0	NaN	WASHINGTON	NaN	2.000000	HURLEY	950.0
7	100008000.0	213.0	TREMONT	Y	1.000000	1	NaN
8	100009000.0	215.0	TREMONT	Y	2.166667	2	1800.0

Program-1

Reshaping the data:

Method-I

```
import numpy as np
array1 = np.arange(8)
print("Original array : \n", array1)
# shape array with 2 rows and 4 columns
array2 = np.arange(8).reshape(2,4)
print("\narray reshaped with 2 rows and 4 columns : \n", array2)
# shape array with 4 rows and 2 columns
array3 = np.arange(8).reshape(4, 2)
print("\narray reshaped with 4 rows and 2 columns : \n",array3)
# Constructs 3D array
array4 = np.arange(8).reshape(2, 2, 2)
print("\nOriginal array reshaped to 3D : \n",array4)
Original array :
 [01234567]
array reshaped with 2 rows and 4 columns :
 [[0 1 2 3]
 [4 5 6 7]]
array reshaped with 4 rows and 2 columns :
 [[0 1]
 [2 3]
 [4 5]
 [6 7]]
Original array reshaped to 3D :
 [[[0 1]
 [2 3]]
 [[4 5]
 [6 7]]]
```

Program:

Write a python program to loading csv dataset files using Pandas library functions. Program:

a. Importing data(CSV)

In [2]: 1 import pandas as pd In [3]: 1 dataset = pd.read_csv("annual-enterprise-survey-2019-financial-year-provisional-csv.csv") In [4]: 1 dataset.head() Out[4]: Vear Industry_aggregation_NZSIOC Industry_Code_NZSIOC Industry_name_NZSIOC Units Variable_code Variable_na 0 2019 Level 1 99999 All industries Dollars H01 Total inco 1 2019 Level 1 99999 All industries Dollars Dollars H04 fundaren 1 2019 Level 1 99999 All industries Dollars Dollars H04 fundaren 1 2019 Level 1 99999 All industries Dollars H05 divident 1 2019 Level 1 99999 All industries Dollars Dollars H04 fundaren 1 dataset.tail() Out[5]: 1 dataset.tail() Out[5]: 1 dataset.tail() Out[5]: 2244 2013 Level 3 ZZ11 Food product 3244 2013 Level 3 ZZ11 Food product 1 2019 Level 3 ZZ11 Food product 1 2013 Level	In [1]:	1 ###How to Load C	SV File or CSV Data	set				
In [3]: 1 dataset = pd.read_csv("annual-enterprise-survey-2019-financial-year-provisional-csv.csv") In [4]: 1 dataset.head() Out[4]: Year industry_aggregation_NZSIOC industry_code_NZSIOC industry_name_NZSIOC Units Variable_code Variable_a 0 2019 Level 1 99999 All industries Dollars Hoi 1 2019 Level 1 99999 All industries Dollars 2 2019 Level 1 99999 All industries Dollars 1 dataset.tail() Out[5]: Year Industry_aggregation_NZSIOC Industry_code_NZSIOC Industry_name_NZSIOC Units Variable_code Variable 1 dataset.tail() Out[5]: 1 2 2019 Level 3 ZZ11 Food product Percentage 32441 2013 Level 3 ZZ11 Food product Percentage 32442 2013 Level 3 ZZ11 Food product Percentage 32443 2013 Level 3 ZZ11 Food product Percentage 41 2013 Level 3 ZZ11 Food product Percentage 1 Level 3 2211 Food product Percentage H40	In [2]:	1 import pandas as	pd					
In [4]: 1 dataset.head() Out[4]: Year Industry_aggregation_NZSIOC Industry_code_NZSIOC Industry_name_NZSIOC Units Variable_code Variable_na 0 2019 Level 1 99999 All industries Dollars (millions) H01 Total inco Sai governm funding, rai 2 2019 Level 1 99999 All industries Dollars (millions) H04 Sai governm funding, rai 1 2019 Level 1 99999 All industries Dollars (millions) H05 Variable_code 1 2019 Level 1 99999 All industries Dollars (millions) H05 diverse donate 1 1 dataset.tail() Dollars Dollars H05 diverse donate 0ut[5): Year Industry_aggregation_NZSIOC Industry_code_NZSIOC Industry_name_NZSIOC Units Variable_code Variable_code Variable_ donate 1 2440 2013 Level 3 ZZ11 Food product manufacturing Percentage H38 sale 2441 2013 Level 3 ZZ11 Food product ma	In [3]:	1 dataset = pd.read	d_csv("annual-enter	prise-survey-2019	-financial-year-p	provisional	-csv.csv")	
Out[4]: Verr Industry_aggregation_NZSIOC Industry_code_NZSIOC Industry_name_NZSIOC Units Variable_code Variable_	In [4]:	1 dataset.head()						
V 2019 Level 1 99999 All industries Dollars (millions) H01 Total incomponential system 1 2019 Level 1 99999 All industries Dollars (millions) H04 $\frac{1}{900000000000000000000000000000000000$	Out[4]:	Year Industry_aggreg	ation_NZSIOC Industry_	code_NZSIOC Industr	y_name_NZSIOC	Units Variab	le_code Varial	ole_name
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0 2019	Level 1	99999	All industries (mi	Oollars Ilions)	H01 Tot	al income
2 2019		1 2019	Level 1	99999	All industries [mi	Dollars Illions)	H04 go fundi and	Sales, overnment ng, grants subsidies
In [5]: 1 dataset.tail() Units Variable_code Variable_c		2 2019	Level 1	99999	All industries [mi	Oollars Illions)	H05 divid	Interest, lends and donations
Vert Industry_aggregation_NZSIOC Industry_code_NZSIOC Industry_name_NZSIOC Units Variable_code Var	In [5]:	<pre>1 dataset.tail()</pre>						
32440 2013 Level 3 ZZ11 Food product manufacturing Percentage H37 32441 2013 Level 3 ZZ11 Food product manufacturing Percentage H38 sale 32442 2013 Level 3 ZZ11 Food product manufacturing Percentage H39 H39 32442 2013 Level 3 ZZ11 Food product manufacturing Percentage H40 Return 32444 2013 Level 3 ZZ11 Food product manufacturing Percentage H40 Return	Out[5]:	Year Industry_ag	gregation_NZSIOC Indu	stry_code_NZSIOC Inc	dustry_name_NZSIOC	Units	Variable_code	Variable_
32441 2013 Level 3 ZZ11 Food product manufacturing Percentage H38 sale 32442 2013 Level 3 ZZ11 Food product manufacturing Percentage H39 H39 32443 2013 Level 3 ZZ11 Food product manufacturing Percentage H40 Return 32444 2013 Level 3 ZZ11 Food product manufacturing Percentage H40 Return		32440 2013	Level 3	ZZ11	Food product manufacturing	Percentage	H37	Quic
32442 2013 Level 3 ZZ11 Food product manufacturing Percentage H39 32443 2013 Level 3 ZZ11 Food product manufacturing Percentage H40 Return Return 32444 2013 Level 3 ZZ11 Food product manufacturing Percentage H40 Return		32441 2013	Level 3	ZZ11	Food product manufacturing	Percentage	H38	Ma sales of for
32443 2013 Level 3 ZZ11 Food product manufacturing Percentage H40 Return 32444 2013 Level 3 ZZ11 Food product manufacturing Percentage H41		32442 2013	Level 3	ZZ11	Food product manufacturing	Percentage	H39	Ret
32444 2013 Level 3 ZZ11 Food product Percentage H41		32443 2013	Level 3	ZZ11	Food product manufacturing	Percentage	H40	Return c
b manuacturing		32444 2013 ▷	Level 3	ZZ11	Food product manufacturing	Percentage	H41	Lia sti
		<						,

MACHINE LEARNING LAB MANUAL 2024-2025 b. Importing data(EXCEL) 1 #import pandas in Jupyter Notebook environment: In [1]: 2 import pandas 1 dataset = pandas.read_excel("housing_excel.xlsx") In [2]: 1 import pandas as pd In [3]: dataset = pd.read_excel("housing_excel.xlsx") In [4]: 1 dataset In [5]: Ι Out[5]: longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median 0 -122.23 37.88 41 880 129.0 322 126 8.3252 -122.22 8.3014 37.86 21 7099 1106.0 2401 1138 1 -122.24 37.85 52 1467 190.0 496 177 7.2574 2 -122.25 235.0 219 5.6431 3 37.85 52 1274 558 280.0 3.8462 -122.25 37.85 52 1627 565 259 4

2024-2025

Excersice:

Demonstrate various data pre-processing techniques for a given dataset. <mark>Program:</mark>

2024-2025

```
In [25]: import pandas as pd
```

```
In [26]: iris=pd.read_csv('iris.csv')
```

```
In [27]: iris.head()
```

Out[27]:

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
			12		

In []: |

2024-2025

```
one=[1,2,3,4,5,6,7,8,9]
two=[1,2,3,4,5,4,3,2,1]
three=[6,7,8,9,8,7,6,5,4]
data=list([one,two,three])
plt.violinplot(data,showmedians=True,showmeans=True)
plt.grid(True)
plt.title("Distribution of data")
plt.xlabel("x axis")
plt.ylabel("y axis")
plt.show()
```


In [41]: #pie-chart

```
fruit=['apple','mango','orange','grapes']
quantity=[30,45,12,100]
```

```
plt.pie(quantity,labels=fruit,autopct='%0.1f%%')
plt.show()
```


MACHI	NE LEARNING LAB MANUAL	2024-2025
Obser	vations:	
- x1 an	nd x2 do not seem correlated	
- x1 se	ems very correlated with both x3 and x4	
- x2 se	ems somewhat correlated with both x3 and x4	
- x3 an	nd x4 seem very correlated	
In [5]:	<pre>#initialize pca = PCA(n_components=4)</pre>	
	<pre>#fit pca.fit(X)</pre>	
Out[5]:	PCA(n_components=4)	
In [6]:	<pre>#get principal components principal_comps_builtin = pca.componentsT</pre>	
In [7]:	<pre>#print each principal component for i,component in enumerate(pca.components_): print(f'principal component {i}') print(component) print()</pre>	
	principal component 0 [0.21836467 -0.11571309 0.88882471 0.38589893]	
	principal component 1 [0.48454841 0.80382872 -0.14943543 0.31103261]	
	principal component 2 [0.18131723	
	principal component 3 [0.82743808 -0.50444808 -0.22779784 -0.0947972]	
Depart	ment of Emerging Technologies	52

Week 5:

Develop Decision Tree Classification model for a given dataset and use it to classify a new sample. Program:

```
import numpy as np
    import math
    from data_loader import read_data
    class Node:
            f __init__(self, attribute):
self.attribute = attribute
        def
            self.children = []
self.answer = ""
            ef __str__(self):
return self.attribute
        def
    def subtables(data, col, delete):
        dict = \{\}
        items = np.unique(data[:, col])
count = np.zeros((items.shape[0], 1), dtype=np.int32)
        for x in range(items.shape[0]):
            for y in range(data.shape[0]):
if data[y, col] == items[x]:
count[x] += 1
        for x in range(items.shape[0]):
    dict[items[x]] = np.empty((int(count[x]), data.shape[1]), dtype="IS32")
             pos = 0
            for y in range(data.shape[0]):
    if data[y, col] == items[x]:
                     dict[items[x]][pos] = data[y]
                     pos += 1
            if delete:
                dict[items[x]] = np.delete(dict[items[x]], col, 1)
        return items, dict
    def entropy(S):
        items = np.unique(S)
        if items.size == 1:
            return 0
   counts = np.zeros((items.shape[0], 1))
sums = 0
   for x in range(items.shape[0]):
    counts[x] = sum(S == items[x]) / (S.size * 1.0)
   for count in counts:

sums += -1 * count * math.log(count, 2)

return sums
def gain_ratio(data, col):
    items, dict = subtables(data, col, delete=False)
   total_size = data.shape[0]
entropies = np.zeros((items.shape[0], 1))
intrinsic = np.zeros((items.shape[0], 1))
   for x in range(items.shape[0]):
    ratio = dict[items[x]].shape[0]/(total_size * 1.0)
    entropies[x] = ratio * entropy(dict[items[x]][:, -1])
    intrinsic[x] = ratio * math.log(ratio, 2)
```

```
2024-2025
```

```
total_entropy = entropy(data[:, -1])
iv = -1 * sum(intrinsic)
  for x in range(entropies.shape[0]):
      total\_entropy -= entropies[x]
  return total_entropy / iv
def create_node(data, metadata):
  #TODO: Co jeśli information gain jest zerowe?
  if (np.unique(data[:, -1])).shape[0] == 1:
    node = Node("")
    node.answer = np.unique(data[:, -1])[0]
     return node
  gains = np.zeros((data.shape[1] - 1, 1))
  for col in range(data.shape[1] - 1):
      gains[col] = gain_ratio(data, col)
  split = np.argmax(gains)
  node = Node(metadata[split])
   metadata = np.delete(metadata, split, 0)
  items, dict = subtables(data, split, delete=True)
   for x in range(items.shape[0]):
    child = create_node(dict[items[x]], metadata)
    node.children.append((items[x], child))
   return node
def empty(size):
   for x in range(size):
       s += "
   return s
def print_tree(node, level):
    if node.answer != "":
      print(empty(level), node.answer)
       return
   print(empty(level), node.attribute)
   for value, n in node.children:
       print(empty(level + 1), value)
print_tree(n, level + 2)
metadata, traindata = read_data("tennis.data")
data = np.array(traindata)
node = create_node(data, metadata)
print_tree(node, 0)
```

2024-2025

outlook overcast b'yes' rain wind b'strong' b'no' b'weak' b'yes' sunny humidity b'high' b'no'

b'normal'

b'yes'

MACHINE	LEARNING	LAB MANUAL
---------	----------	------------

Week 6:

Consider a dataset use Random Forest to predict the output class vary the number of trees as follows and compare the results. i) 20 ii)50 iii)100 iv)200 v)500

Week 7:

Write a python program to implement Simple Linear Regression Models and plot the graph. Program:

a) To implement Simple Linear Regression.

```
# Importing the Libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import LinearRegression
dataset = pd.read_csv('Salary_Data.csv')
x = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
liner =LinearRegression()
#x = x.reshape(-1,1)
liner.fit(x,y)
y_pred = liner.predict(x)
plt.scatter(x,y)
```

```
plt.plot(x,y_pred,color='red')
plt.show()
```


2024-2025

HINE LEARNIN	IG LA	BMA	ANUAL				2024-2025
In [9]: 🕨	1 ×	< = df.	drop(col	umns = '	charges	')	
	2 X	ĸ			U	· ^	
Out[9]:		age se	ex bmi	children	smoker	region	
	0	19	0 27.900	0	1	3	
	1	18	1 33.770	1	0	2	
	3	33	1 22.705	0	0	1	
	4	32	1 28.880	0	0	1	
		 E0	1 20.070	2	0		
	1334	18	0 31.920	0	0	0	
	1335	18	0 36.850	0	0	2	
	1336	21	0 25.800	0	0	3	
	1337	61	0 29.070	0	1	1	
	1338 r	rows × 6	6 columns				
In [10]: 🕨	1 y	/ = df['charges	']			
In [12]: 🗎	1 f	from sk	learn.mo	del_sele	ction i	m <mark>port</mark> trai	_test_split
	2 X	(_train	, X_test	, y_trai	n, y_te	st = trair	test_split(X, y, test_size = 0.3, random_state = 0)
In [13]: 🕨	1 f	From sk	learn.li	near_mod	el <mark>impo</mark>	rt LinearF	gression
			incur negr	()			
In []: 🕨	1 1	lr.fit(X_train,	ğ_train)		
Out[14]: [1 In [15]:] In [16]:] Out[16]: -1 In [17]:] Out[17]: ar In [18]:]	1 c = 1 c 11 c 11827.7 1 m = m rray([2 1 y_p	egressi 1r.int 7331417 1r.coc 256.5 23400.2 red_tra	<pre>con() tercept_ '95668 ef_ 5772619 , 28378787, ain = lr.</pre>	-49.3 -276.3 predict(9232379 1576201 X_train	, 329.02))	1564, 479.08499828,
In [19]: 🕨	1 y_p	red_tra	ain				
Out[19]: ar	rray([3 1 1 1 1	2074.0 6305.1 10489.5 39312.1 15406.3 15349.4 6700.8 8825.6 15608.5 10003.2	0645306 , 12726989, 66733846, 16870908, 30681252, 19652486, 30932636, 52578924, 58732963, 22154888,	8141.8 2023.1 16254.0 5825.9 4648.5 8970.9 26943.2 34394.3 29584.7 33049.0	1393908 9725425 2800921 1078917 8167988 7358853 5864121 8378457 6846515 8935397	, 18738.94 , 26861.18 , 11726.39 , 12314.92 , 5011.79 , 8780.43 , 27280.48 , 10177.85 , 29453.37 , 3963.45	2528, 7874.86959064, 3021, 14932.93021746, 4257, 11284.0092172 , 2527, 3164.68427134, 5436, 6012.4796038 , 2222, 34229.60622887, 4482, 15477.83837581, 8603, 3901.18161227, 8923, 28132.67012427, 4974, 25461.54857001,
		_					

Week 8:

Write a python program to implement Logistic Regression Model for a given dataset.

Program:

```
from sklearn.datasets import make_classification
from matplotlib import pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import pandas as pd
dataset = pd.read_csv('iris.csv')
#print(dataset.head())
#dataset.info()
# Splitting the dataset into the Training set and Test set
x = dataset.iloc[:, [0,1,2, 3]].values
#print(x
y = dataset.iloc[:, 4].values
#print(y)
# Split the dataset into training and test dataset
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1)
# Create a Logistic Regression Object, perform Logistic Regression
log_reg = LogisticRegression()
log_reg.fit(x_train, y_train)
y_pred = log_reg.predict(x_test)
cm =confusion_matrix(y_test,y_pred)
print(cm)
# PLot confusion matrix
import seaborn as sns
import pandas as pd
# confusion matrix sns heatmap
## https://www.kaggle.com/agungor2/various-confusion-matrix-plots
ax = plt.axes()
df cm = cm
sns.heatmap(df_cm, annot=True, annot_kws={"size": 30}, fmt='d',cmap="Blues", ax = ax )
ax.set_title('Confusion Matrix')
plt.show()
  [[13 0 0]
```

[0151] [009]]

Excersice:

Implement Naive Bayes classification in python. Program:

Import LabelEncoder from sklearn import preprocessing #Generating the Gaussian Naive Bayes model from sklearn.naive bayes import GaussianNB # Assign features and encoding labels weather=['Sunny', 'Sunny', 'Overcast', 'Rainy', 'Rainy', 'Rainy', 'Overcast', 'Sunny', 'Sunny', 'Rainy','Sunny','Overcast','Overcast','Rainy'] humidity=['High','High','High','Medium','Low','Low','Low','Medium','Low','Medium','Medium','Medium','High','Medium'] bat_first=['No','No','Yes','Yes','Yes','No','Yes','No','Yes','Yes','Yes','Yes','Yes','No'] # Creating LabelEncoder le = preprocessing.LabelEncoder() # Converting string labels into numbers. weather encoded=le.fit transform(weather) hum_encoded=le.fit_transform(humidity) label=le.fit_transform(bat_first) print(weather_encoded,hum_encoded,label) #Combining weather and humidity in a single tuple as features features=list(zip(weather_encoded,hum_encoded)) #Create a Gaussian Classifier model = GaussianNB() model.fit(features, label) #Train the model using training set. print("Enter Weather and Humidtity conditions : ") w,h=map(int, input().split()) #Predict Output predicted= model.predict([[w,h]]) # ''' For Weather : 0:Overcast, 2:Sunny , 1:Rainy ''' For Humidity : 0:High, 2:Medium, 1:Low print(predicted) # --> [1] that means ves, the player should bat first and [0] that means No, player should bowl first. [2 2 0 1 1 1 0 2 2 1 2 0 0 1] [0 0 0 2 1 1 1 2 1 2 2 2 0 2] [0 0 1 1 1 0 1 0 1 1 1 1 1 0] Enter Weather and Humidtity conditions : 20 35 [1]

Week 9:

Build KNN Classification model for a given dataset.

Program:

from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split import pandas as pd

```
dataset=pd.read_csv("iris.csv")
```

X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=0,test_size=0.25)

classifier=KNeighborsClassifier(n_neighbors=8,p=3,metric='euclidean')

classifier.fit(X_train,y_train)

#predict the test resuts
y_pred=classifier.predict(X_test)

cm=confusion_matrix(y_test,y_pred)
print('Confusion matrix is as follows\n',cm)
print('Accuracy Metrics')
print(classification_report(y_test,y_pred))
print(" correct predicition",accuracy_score(y_test,y_pred)))
print(" worng predicition",(1-accuracy_score(y_test,y_pred)))

Confusion matrix is as follows [[13 0 0] [0151] [0 0 9]] Accuracy Metrics precision recall f1-score support 1.00 1.00 1.00 13 Iris-setosa Iris-versicolor 1.00 0.94 0.97 16 Iris-virginica 0.90 0.95 9 1.00 avg / total 0.98 0.97 0.97 38

correct predicition 0.9736842105263158 worng predicition 0.02631578947368418 2024-2025

2024-2025

Week-10

Implement Support Vector Machine for a dataset.

```
import matplotlib.pyplot as plt
    import pandas as pd
    #Load the Dataset
    dataset = pd.read_csv('Social_Network_Ads.csv')
    #Split Dataset into X and Y
    X = dataset.iloc[:, [0, 1]].values
    y = dataset.iloc[:, 2].values
    #Split the X and Y Dataset into the Training set and Test set
    from sklearn.model selection import train test split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
    #Perform Feature Scaling
    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    X train = sc.fit transform(X train)
    X test = sc.transform(X test)
    # Fit SVM to the Training set
    from sklearn.svm import SVC
    classifier = SVC(kernel = 'rbf', random state = 0)
    classifier.fit(X train, y train)
    #Predict the Test Set Results
    y pred = classifier.predict(X test)
    print(y pred)
    # predict accuracy
    accuracy score(y test, y pred)
    [0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0
     0010000100101100111001001001010100001001
     00001111001001100100000111]
5]: 0.93
```

Week-11

Write a python program to implement K-Means clustering Algorithm.

Program:

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline #Import dataset df = pd.read_csv('Live.csv') #Check for missing values in dataset df.isnull().sum() #Drop redundant coLumns df.drop(['status_id', 'status_published', 'Column1', 'Column2', 'Column3', 'Column4'], axis=1, inplace=True) #Declare feature vector and target variable X = dfy = df['status_type'] #Convert categorical variable into integers from sklearn.preprocessing import LabelEncoder le = LabelEncoder() X['status_type'] = le.fit_transform(X['status_type']) y = le.transform(y) #Feature Scaling cols = X.columns from sklearn.preprocessing import MinMaxScaler ms = MinMaxScaler() X = ms.fit_transform(X) X= pd.DataFrame(X, columns=[cols]) #K-Means model with four clusters from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=4, random_state=0) kmeans.fit(X) labels = kmeans.labels # check how many of the samples were correctly labeled correct_labels = np.sum(y == labels) correct_labels print("Result: %d out of %d samples were correctly labeled." % (correct_labels, y.size)) print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size))) Result: 4340 out of 7050 samples were correctly labeled. Accuracy score: 0.62

